Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

New Era on Combining Both Imaging and Drug Delivery to Treat Cancer

Author(s): Panoraia Siafaka, Emre Şefik Çağlar, Evren Atlıhan Gündoğdu and Neslihan Üstündağ Okur*

Volume 24, Issue 7, 2023

Published on: 07 October, 2022

Page: [832 - 855] Pages: 24

DOI: 10.2174/1389201023666220617152334

Price: $65

Abstract

It is well documented that cancer is one of the leading causes of death worldwide. During the pandemic, cancer screening was suspended, and only symptomatic patients were referred for screening. It is believed that deaths related to various cancer types have increased by around 10%, and the screening suspension was assumed as the main reason. It is well documented that the early diagnosis of cancer is important for the outcome; last decades, the introduction of nanotechnology-based carriers, which can serve as both imaging and therapeutic modalities, has risen. Although the combination of imaging and drug delivery for targeting cancer is a hopeful field, it is still under investigation and has not met clinical standards. Nanotheranostics, as they are also referred to, can combine both imaging and delivery and improve the survival rates and overall quality of life of patients. Would cancer patients have a chance to live a normal life if nano theranostics were incorporated into the daily clinical oncology practice? This review tries to answer this question by providing the most current applications of nanotheranostics targeting different types of cancer and summarizing their most significant characteristics.

Keywords: Cancer treatment, drug delivery, imaging, cancer, nanomedicine, MRI.

[1]
Cancer incidence and mortality in Eu-27 countries 2020.https://ec.europa.eu/jrc/en/news/2020-cancer-incidence-and-mortality-eu-27-countries
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[4]
Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. Int. J. Oncol., 2019, 54(2), 407-419.
[PMID: 30570109]
[5]
Liang, X.J.; Chen, C.; Zhao, Y.; Wang, P.C. Circumventing tumor resistance to chemotherapy by nanotechnology.In Multi-Drug resistance in cancer; Method Mol. Biol, 2010, p. 546.
[http://dx.doi.org/10.1007/978-1-60761-416-6_21]
[6]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[7]
Whitaker, K. Earlier diagnosis: The importance of cancer symptoms. Lancet Oncol., 2020, 21(1), 6-8.
[http://dx.doi.org/10.1016/S1470-2045(19)30658-8] [PMID: 31704136]
[8]
Neal, R.D.; Tharmanathan, P.; France, B.; Din, N.U.; Cotton, S.; Fallon-Ferguson, J.; Hamilton, W.; Hendry, A.; Hendry, M.; Lewis, R.; Macleod, U.; Mitchell, E.D.; Pickett, M.; Rai, T.; Shaw, K.; Stuart, N.; Tørring, M.L.; Wilkinson, C.; Williams, B.; Williams, N.; Emery, J. Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes? Systematic review. Br. J. Cancer, 2015, 112(S1)(Suppl. 1), S92-S107.
[http://dx.doi.org/10.1038/bjc.2015.48] [PMID: 25734382]
[9]
Zhang, Y.; Li, M.; Gao, X.; Chen, Y.; Liu, T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol., 2019, 12(1), 137.
[http://dx.doi.org/10.1186/s13045-019-0833-3] [PMID: 31847897]
[10]
Beyer, T.; Bidaut, L.; Dickson, J.; Kachelriess, M.; Kiessling, F.; Leitgeb, R.; Ma, J.; Shiyam Sundar, L.K.; Theek, B.; Mawlawi, O. What scans we will read: Imaging instrumentation trends in clinical oncology. Cancer Imaging, 2020, 20(1), 38.
[http://dx.doi.org/10.1186/s40644-020-00312-3] [PMID: 32517801]
[11]
Abotaleb, M.; Kubatka, P.; Caprnda, M.; Varghese, E.; Zolakova, B.; Zubor, P.; Opatrilova, R.; Kruzliak, P.; Stefanicka, P.; Büsselberg, D. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update. Biomed. Pharmacother., 2018, 101, 458-477.
[http://dx.doi.org/10.1016/j.biopha.2018.02.108] [PMID: 29501768]
[12]
Puhalla, S.; Brufsky, A. Ixabepilone: A new chemotherapeutic option for refractory metastatic breast cancer. Biologics, 2008, 2(3), 505-515.
[PMID: 19707381]
[13]
Tse, A.K.W.; Chen, Y.J.; Fu, X.Q.; Su, T.; Li, T.; Guo, H.; Zhu, P.L.; Kwan, H.Y.; Cheng, B.C.Y.; Cao, H.H.; Lee, S.K.W.; Fong, W.F.; Yu, Z.L. Sensitization of melanoma cells to alkylating agent-induced DNA damage and cell death via orchestrating oxidative stress and IKKβ inhibition. Redox Biol., 2017, 11, 562-576.
[http://dx.doi.org/10.1016/j.redox.2017.01.010] [PMID: 28107677]
[14]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[15]
Infante Lara, L.; Fenner, S.; Ratcliffe, S.; Isidro-Llobet, A.; Hann, M.; Bax, B.; Osheroff, N. Coupling the core of the anticancer drug etoposide to an oligonucleotide induces topoisomerase II-mediated cleavage at specific DNA sequences. Nucleic Acids Res., 2018, 46(5), 2218-2233.
[http://dx.doi.org/10.1093/nar/gky072] [PMID: 29447373]
[16]
Iqbal, N.; Iqbal, N. Imatinib: A breakthrough of targeted therapy in cancer. Chemother. Res. Pract., 2014, 2014357027.
[http://dx.doi.org/10.1155/2014/357027] [PMID: 24963404]
[17]
Xu, J.; Lv, J.; Zhuang, Q.; Yang, Z.; Cao, Z.; Xu, L.; Pei, P.; Wang, C.; Wu, H.; Dong, Z.; Chao, Y.; Wang, C.; Yang, K.; Peng, R.; Cheng, Y.; Liu, Z. A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. Nat. Nanotechnol., 2020, 15(12), 1043-1052.
[http://dx.doi.org/10.1038/s41565-020-00781-4] [PMID: 33139933]
[18]
Schirrmacher, V.; van Gool, S.; Stuecker, W. Breaking therapy resistance: An update on oncolytic newcastle disease virus for improvements of cancer therapy. Biomedicines, 2019, 7(3), 66.
[http://dx.doi.org/10.3390/biomedicines7030066]
[19]
Schirrmacher, V. Quo Vadis Cancer Therapy? Fascinating Discoveries of the Last 60 Years; Lambert Academic Publishing: Riga, 2017.
[20]
Hendrikx, J.J.M.A.; Haanen, J.B.A.G.; Voest, E.E.; Schellens, J.H.M.; Huitema, A.D.R.; Beijnen, J.H. Fixed dosing of monoclonal antibodies in oncology. Oncologist, 2017, 22(10), 1212-1221.
[http://dx.doi.org/10.1634/theoncologist.2017-0167] [PMID: 28754722]
[21]
Siafaka, P.; Betsiou, M.; Tsolou, A.; Angelou, E.; Agianian, B.; Koffa, M.; Chaitidou, S.; Karavas, E.; Avgoustakis, K.; Bikiaris, D. Synthesis of folate-pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells. J. Mater. Sci. Mater. Med., 2015, 26(12), 275.
[http://dx.doi.org/10.1007/s10856-015-5609-x] [PMID: 26543021]
[22]
Wolfram, J.; Ferrari, M. Clinical cancer nanomedicine. Nano Today, 2019, 25, 85-98.
[http://dx.doi.org/10.1016/j.nantod.2019.02.005] [PMID: 31360214]
[23]
Siafaka, P.I. Üstündağ Okur, N.; Karantas, I.D.; Okur, M.E.; Gündoğdu, E.A. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J. Pharm. Sci., 2020, 16(1), 24-46.
[24]
Pandey, N.; Menon, J.U.; Takahashi, M.; Hsieh, J.T.; Yang, J.; Nguyen, K.T.; Wadajkar, A.S. Thermo-responsive fluorescent nanoparticles for multimodal imaging and treatment of cancers. Nanotheranostics, 2020, 4(1), 1-13.
[http://dx.doi.org/10.7150/ntno.39810] [PMID: 31911890]
[25]
Ahmed, N.; Fessi, H.; Elaissari, A. Theranostic applications of nanoparticles in cancer. Drug Discov. Today, 2012, 17(17-18), 928-934.
[http://dx.doi.org/10.1016/j.drudis.2012.03.010] [PMID: 22484464]
[26]
Majumder, J.; Minko, T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin. Drug Deliv., 2021, 18(2), 205-227.
[http://dx.doi.org/10.1080/17425247.2021.1828339] [PMID: 32969740]
[27]
Majumder, J.; Minko, T. Targeted nanotherapeutics for respiratory diseases: Cancer, fibrosis, and coronavirus. Adv. Ther., 2020, 4(2), 2000203.
[http://dx.doi.org/10.1002/adtp.202000203] [PMID: 33173809]
[28]
Sharma, R.; Mody, N.; Agrawal, U.; Vyas, S.P. Theranostic nanomedicine; A next generation platform for cancer diagnosis and therapy. Mini Rev. Med. Chem., 2017, 17(18), 1746-1757.
[http://dx.doi.org/10.2174/1389557516666160219122524] [PMID: 26891932]
[29]
Robertson, A.G.; Rendina, L.M. Gadolinium theranostics for the diagnosis and treatment of cancer. Chem. Soc. Rev., 2021, 50(7), 4231-4244.
[http://dx.doi.org/10.1039/D0CS01075H] [PMID: 33599224]
[30]
Zheng, Y.; Gao, Y. Molecular targeted nanotheranostics for future individualized cancer treatment. Expert Opin. Drug Deliv., 2020, 17(8), 1059-1062.
[http://dx.doi.org/10.1080/17425247.2020.1772748] [PMID: 32476497]
[31]
Ge, J.; Zhang, Q.; Zeng, J.; Gu, Z.; Gao, M. Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials, 2020, 228119553.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119553] [PMID: 31689672]
[32]
Han, N.; Yang, Y.Y.; Wang, S.; Zheng, S.; Fan, W. Polymer-based cancer nanotheranostics: Retrospectives of multi-functionalities and pharmacokinetics. Curr. Drug Metab., 2013, 14(6), 661-674.
[http://dx.doi.org/10.2174/1389200211314060003] [PMID: 23869810]
[33]
Silva, C.O.; Pinho, J.O.; Lopes, J.M.; Almeida, A.J.; Gaspar, M.M.; Reis, C. Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics, 2019, 11(1), 22.
[http://dx.doi.org/10.3390/pharmaceutics11010022] [PMID: 30625999]
[34]
Sonali; Viswanadh, M.K.; Singh, R.P.; Agrawal, P.; Mehata, A.K.; Pawde, D.M.; Narendra; Sonkar, R.; Muthu, M.S. Nanotheranostics: Emerging strategies for early diagnosis and therapy of brain cancer. Nanotheranostics, 2018, 2(1), 70-86.
[http://dx.doi.org/10.7150/ntno.21638] [PMID: 29291164]
[35]
Mukherjee, S.; Chowdhury, D.; Kotcherlakota, R.; Patra, S. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics, 2014, 4(3), 316-335.
[http://dx.doi.org/10.7150/thno.7819] [PMID: 24505239]
[36]
Ravindran Girija, A.; Balasubramanian, S. Theragnostic potentials of core/shell mesoporous silica nanostructures. Nanotheranostics, 2019, 3(1), 1-40.
[http://dx.doi.org/10.7150/ntno.27877] [PMID: 30662821]
[37]
Pedrosa, P.; Vinhas, R.; Fernandes, A.; Baptista, P.V. Gold nanotheranostics: Proof-of-concept or clinical tool? Nanomaterials, 2015, 5(4), 1853-1879.
[http://dx.doi.org/10.3390/nano5041853] [PMID: 28347100]
[38]
Huang, X.; O’Connor, R.; Kwizera, E.A. Gold nanoparticle based platforms for circulating cancer marker detection. Nanotheranostics, 2017, 1(1), 80-102.
[http://dx.doi.org/10.7150/ntno.18216] [PMID: 28217434]
[39]
Dong, C.; Feng, W.; Xu, W.; Yu, L.; Xiang, H.; Chen, Y.; Zhou, J. The coppery age: Copper (Cu)-involved nanotheranostics. Adv. Sci., 2020, 7(21), 2001549.
[http://dx.doi.org/10.1002/advs.202001549] [PMID: 33173728]
[40]
Curcio, M.; Farfalla, A.; Saletta, F.; Valli, E.; Pantuso, E.; Nicoletta, F.P.; Iemma, F.; Vittorio, O.; Cirillo, G. Functionalized carbon nanostructures versus drug resistance: Promising scenarios in cancer treatment. Molecules, 2020, 25(9), 2102.
[http://dx.doi.org/10.3390/molecules25092102] [PMID: 32365886]
[41]
Govindasamy, M.; Manavalan, S.; Chen, S.M.; Rajaji, U.; Chen, T.W.; Al-Hemaid, F.M.A.; Ali, M.A.; Elshikh, M.S. Determination of neurotransmitter in biological and drug samples using gold nanorods decorated F- MWCNTs modified electrode. J. Electrochem. Soc., 2018, 165(9), B370-B377.
[http://dx.doi.org/10.1149/2.1351809jes]
[42]
Muthumariappan, A.; Govindasamy, M.; Chen, S.M.; Sakthivel, K.; Mani, V.; Chen, T.W.; Selvaraj, S. Determination of Non-Steroidal Anti-Inflammatory Drug (NSAID) Azathioprine in human blood serum and tablet samples using Multi-Walled Carbon Nanotubes (MWCNTs) decorated manganese oxide microcubes composite film modified electrode. Int. J. Electrochem. Sci., 2017, 12(8), 7446-7456.
[http://dx.doi.org/10.20964/2017.08.145]
[43]
Shao, L.; Li, Q.; Zhao, C.; Lu, J.; Li, X.; Chen, L.; Deng, X.; Ge, G.; Wu, Y. Auto-fluorescent polymer nanotheranostics for self-monitoring of cancer therapy via triple-collaborative strategy. Biomaterials, 2019, 194, 105-116.
[http://dx.doi.org/10.1016/j.biomaterials.2018.12.021] [PMID: 30590240]
[44]
Hu, X.; Tang, Y.; Hu, Y.; Lu, F.; Lu, X.; Wang, Y.; Li, J.; Li, Y.; Ji, Y.; Wang, W.; Ye, D.; Fan, Q.; Huang, W. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics, 2019, 9(14), 4168-4181.
[http://dx.doi.org/10.7150/thno.34390] [PMID: 31281539]
[45]
Li, D.; Xu, L.; Wang, J.; Gautrot, J.E. Responsive polymer brush design and emerging applications for nanotheranostics. Adv. Healthc. Mater., 2021, 10(5), 2000953.
[PMID: 32893474]
[46]
Xing, H.; Hwang, K.; Lu, Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics, 2016, 6(9), 1336-1352.
[http://dx.doi.org/10.7150/thno.15464] [PMID: 27375783]
[47]
Prasad, R.; Jain, N.K.; Yadav, A.S.; Chauhan, D.S.; Devrukhkar, J.; Kumawat, M.K.; Shinde, S.; Gorain, M.; Thakor, A.S.; Kundu, G.C.; Conde, J.; Srivastava, R. Liposomal nanotheranostics for multimode targeted in vivo bioimaging and near-infrared light mediated cancer therapy. Commun. Biol., 2020, 3(1), 284.
[http://dx.doi.org/10.1038/s42003-020-1016-z] [PMID: 32504032]
[48]
Li, G.; Pei, M.; Liu, P. pH/Reduction dual-responsive comet-shaped PEGylated CQD-DOX conjugate prodrug: Synthesis and self-assembly as tumor nanotheranostics. Mater. Sci. Eng. C, 2020, 110110653.
[http://dx.doi.org/10.1016/j.msec.2020.110653] [PMID: 32204081]
[49]
Guo, F.; Li, G.; Ma, S.; Zhou, H.; Chen, X. Multi-responsive nanocarriers based on β-CD-PNIPAM star polymer coated MSN-SS-Fc composite particles. Polymers, 2019, 11(10), 1716.
[http://dx.doi.org/10.3390/polym11101716] [PMID: 31635114]
[50]
Ferber, S.; Baabur-Cohen, H.; Blau, R.; Epshtein, Y.; Kisin-Finfer, E.; Redy, O.; Shabat, D.; Satchi-Fainaro, R. Polymeric nanotheranostics for real-time non-invasive optical imaging of breast cancer progression and drug release. Cancer Lett., 2014, 352(1), 81-89.
[http://dx.doi.org/10.1016/j.canlet.2014.02.022] [PMID: 24614283]
[51]
Filippousi, M.; Papadimitriou, S.A.; Bikiaris, D.N.; Pavlidou, E.; Angelakeris, M.; Zamboulis, D.; Tian, H.; Van Tendeloo, G. Novel core-shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: Preparation, characterization and release properties. Int. J. Pharm., 2013, 448(1), 221-230.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.025] [PMID: 23524084]
[52]
Filippousi, M.; Altantzis, T.; Stefanou, G.; Betsiou, M.; Bikiaris, D.N.; Angelakeris, M.; Pavlidou, E.; Zamboulis, D.; Van Tendeloo, G. Polyhedral iron oxide core–shell nanoparticles in a biodegradable polymeric matrix: Preparation, characterization and application in magnetic particle hyperthermia and drug delivery. RSC Advances, 2013, 3(46), 24367.
[http://dx.doi.org/10.1039/c3ra43747g]
[53]
Dasgupta, A.; Biancacci, I.; Kiessling, F.; Lammers, T. Imaging-assisted anticancer nanotherapy. Theranostics, 2020, 10(3), 956-967.
[http://dx.doi.org/10.7150/thno.38288] [PMID: 31938045]
[54]
Allouche, J. Synthesis of organic and bioorganic nanoparticles: an overview of the preparation methods. Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective; Springer: London, 2013, Vol. 9781447142, pp. 27-74.
[http://dx.doi.org/10.1007/978-1-4471-4213-3_2]
[55]
Rao, J.P.; Geckeler, K.E. Polymer Nanoparticles: Preparation Techniques and Size-Control Parameters; Progress in Polymer Science: Oxford, 2011.
[56]
Pinto Reis, C.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F. Nanoencapsulation I. methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2(1), 8-21.
[57]
Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C, 2017, 80, 771-784.
[http://dx.doi.org/10.1016/j.msec.2017.06.004] [PMID: 28866227]
[58]
Bhardwaj, M.; Saxena, D.C. Preparation of organic and inorganic nanoparticles and their subsequent application in nanocomposites for food packaging systems: A review. Indian J. Sci. Technol., 2017, 10(31), 1-8.
[http://dx.doi.org/10.17485/ijst/2017/v10i31/113864]
[59]
Kokorina, A.A.; Ermakov, A.V.; Abramova, A.M.; Goryacheva, I.Y.; Sukhorukov, G.B. Carbon nanoparticles and materials on their basis. Colloids and Interfaces, 2020, 4(4), 42.
[60]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[61]
Lombardo, D.; Kiselev, M.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. 2022, 14(3), 543.
[62]
Petersen, A.L.; Hansen, A.E.; Gabizon, A.; Andresen, T.L. Liposome imaging agents in personalized medicine. Adv. Drug Deliv. Rev., 2012, 64(13), 1417-1435.
[http://dx.doi.org/10.1016/j.addr.2012.09.003] [PMID: 22982406]
[63]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[64]
Rostami, I.; Rezvani Alanagh, H.; Hu, Z.; Shahmoradian, S.H. Breakthroughs in medicine and bioimaging with up-conversion nanoparticles. Int. J. Nanomedicine, 2019, 14, 7759-7780.
[http://dx.doi.org/10.2147/IJN.S221433] [PMID: 31576121]
[65]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[66]
Kakde, D.; Jain, D.; Shrivastava, V.; Kakde, R.; Patil, A.T. Cancer therapeutics-opportunities, challenges and advances in drug delivery. J. Appl. Pharm. Sci., 2011, 1(9), 1-10.
[67]
Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Alsaab, H.; Iyer, A.K.; Gupta, U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today, 2017, 22(2), 314-326.
[http://dx.doi.org/10.1016/j.drudis.2016.09.013] [PMID: 27671487]
[68]
Rodgers, G.M., III; Becker, P.S.; Blinder, M.; Cella, D.; Chanan-Khan, A.; Cleeland, C.; Coccia, P.F.; Djulbegovic, B.; Gilreath, J.A.; Kraut, E.H.; Matulonis, U.A.; Millenson, M.M.; Reinke, D.; Rosenthal, J.; Schwartz, R.N.; Soff, G.; Stein, R.S.; Vlahovic, G.; Weir, A.B. III Cancer-and chemotherapy-induced anemia. J. Natl. Compr. Canc. Netw., 2012, 10(5), 628-653.
[http://dx.doi.org/10.6004/jnccn.2012.0064] [PMID: 22570293]
[69]
Zong, H.; Thomas, T.P.; Lee, K.H.; Desai, A.M.; Li, M.H.; Kotlyar, A.; Zhang, Y.; Leroueil, P.R.; Gam, J.J.; Banaszak Holl, M.M.; Baker, J.R. Jr Bifunctional PAMAM dendrimer conjugates of folic acid and methotrexate with defined ratio. Biomacromolecules, 2012, 13(4), 982-991.
[http://dx.doi.org/10.1021/bm201639c] [PMID: 22360561]
[70]
Mandal, D.; Shaw, T.K.; Dey, G.; Pal, M.M.; Mukherjee, B.; Bandyopadhyay, A.K.; Mandal, M. Preferential hepatic uptake of paclitaxel-loaded poly-(d-l-lactide-co-glycolide) nanoparticles - A possibility for hepatic drug targeting: Pharmacokinetics and biodistribution. Int. J. Biol. Macromol., 2018, 112, 818-830.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.021] [PMID: 29421493]
[71]
Brewer, J. Alston, Immunotherapy in the management of melanoma: Current status. ImmunoTargets Ther., 2013, 2013, 1-10.
[http://dx.doi.org/10.2147/ITT.S30824]
[72]
Slingerland, M.; Guchelaar, H-J.; Rosing, H.; Scheulen, M.E.; van Warmerdam, L.J.C.; Beijnen, J.H.; Gelderblom, H. Bioequivalence of Liposome-Entrapped Paclitaxel Easy-To-Use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: A randomized, two-period crossover study in patients with advanced cancer. Clin. Ther., 2013, 35(12), 1946-1954.
[http://dx.doi.org/10.1016/j.clinthera.2013.10.009] [PMID: 24290734]
[73]
Bottai, G.; Truffi, M.; Corsi, F.; Santarpia, L. Progress in nonviral gene therapy for breast cancer and what comes next? Expert Opin. Biol. Ther., 2017, 17(5), 595-611.
[http://dx.doi.org/10.1080/14712598.2017.1305351] [PMID: 28330383]
[74]
Pisano, C.; Cecere, S.C.; Di Napoli, M.; Cavaliere, C.; Tambaro, R.; Facchini, G.; Scaffa, C.; Losito, S.; Pizzolorusso, A.; Pignata, S. Clinical trials with pegylated liposomal Doxorubicin in the treatment of ovarian cancer. J. Drug Deliv., 2013, 2013898146.
[http://dx.doi.org/10.1155/2013/898146] [PMID: 23577259]
[75]
Vinhas, R.; Mendes, R.; Fernandes, A.R.; Baptista, P.V. Nanoparticles-emerging potential for managing leukemia and lymphoma. Front. Bioeng. Biotechnol., 2017, 5, 79.
[http://dx.doi.org/10.3389/fbioe.2017.00079] [PMID: 29326927]
[76]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[77]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H-S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[78]
Wickens, J.M.; Alsaab, H.O.; Kesharwani, P.; Bhise, K.; Amin, M.C.I.M.; Tekade, R.K.; Gupta, U.; Iyer, A.K. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discov. Today, 2017, 22(4), 665-680.
[http://dx.doi.org/10.1016/j.drudis.2016.12.009] [PMID: 28017836]
[79]
Lin, R.; Huang, J.; Wang, L.; Li, Y.; Lipowska, M.; Wu, H.; Yang, J.; Mao, H. Bevacizumab and near infrared probe conjugated iron oxide nanoparticles for vascular endothelial growth factor targeted MR and optical imaging. Biomater. Sci., 2018, 6(6), 1517-1525.
[http://dx.doi.org/10.1039/C8BM00225H] [PMID: 29652061]
[80]
Zhang, D.; Baldwin, P.; Leal, A.S.; Carapellucci, S.; Sridhar, S.; Liby, K.T. A nano-liposome formulation of the PARP inhibitor Talazoparib enhances treatment efficacy and modulates immune cell populations in mammary tumors of BRCA-deficient mice. Theranostics, 2019, 9(21), 6224-6238.
[http://dx.doi.org/10.7150/thno.36281] [PMID: 31534547]
[81]
Ordikhani, F.; Uehara, M.; Kasinath, V.; Dai, L.; Eskandari, S.K.; Bahmani, B.; Yonar, M.; Azzi, J.R.; Haik, Y.; Sage, P.T.; Murphy, G.F.; Annabi, N.; Schatton, T.; Guleria, I.; Abdi, R. Targeting antigen-presenting cells by anti-PD-1 nanoparticles augments antitumor immunity. JCI Insight, 2018, 3(20), 122700.
[http://dx.doi.org/10.1172/jci.insight.122700] [PMID: 30333312]
[82]
Chandra Kaushik, A.; Wang, Y.J.; Wang, X.; Kumar, A.; Singh, S.P.; Pan, C.T.; Shiue, Y.L.; Wei, D.Q. Evaluation of anti-EGFR-iRGD recombinant protein with GOLD nanoparticles: Synergistic effect on antitumor efficiency using optimized deep neural networks. RSC Advances, 2019, 9(34), 19261-19270.
[http://dx.doi.org/10.1039/C9RA01975H] [PMID: 35519377]
[83]
Xu, X.; Wu, J.; Liu, Y.; Saw, P.E.; Tao, W.; Yu, M.; Zope, H.; Si, M.; Victorious, A.; Rasmussen, J.; Ayyash, D.; Farokhzad, O.C.; Shi, J. Multifunctional envelope-Type siRNA delivery nanoparticle platform for prostate cancer therapy. ACS Nano, 2017, 11(3), 2618-2627.
[http://dx.doi.org/10.1021/acsnano.6b07195] [PMID: 28240870]
[84]
Sharma, S.; Mazumdar, S.; Italiya, K.S.; Date, T.; Mahato, R.I.; Mittal, A.; Chitkara, D. Cholesterol and morpholine grafted cationic amphiphilic copolymers for miRNA-34a delivery. Mol. Pharm., 2018, 15(6), 2391-2402.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00228] [PMID: 29747513]
[85]
Karpuz, M.; Silindir-Gunay, M.; Ozer, A.Y. Current and future approaches for effective cancer imaging and treatment. Cancer Biother. Radiopharm., 2018, 33(2), 39-51.
[http://dx.doi.org/10.1089/cbr.2017.2378] [PMID: 29634415]
[86]
Lewis, G.D.; Chiang, S.B.; Butler, E.B.; Teh, B.S. The utility of positron emission tomography/computed tomography in target delineation for stereotactic body radiotherapy for liver metastasis from primary gastric cancer: an illustrative case report and literature review. J. Gastrointest. Oncol., 2017, 8(3), E39-E42.
[http://dx.doi.org/10.21037/jgo.2017.01.18] [PMID: 28736648]
[87]
Buck, A.K.; Herrmann, K.; Stargardt, T.; Dechow, T.; Krause, B.J.; Schreyögg, J. Economic evaluation of PET and PET/CT in oncology: Evidence and methodologic approaches. J. Nucl. Med. Technol., 2010, 38(1), 6-17.
[http://dx.doi.org/10.2967/jnmt.108.059584] [PMID: 20197541]
[88]
Rowe, S.P.; Macura, K.J.; Mena, E.; Blackford, A.L.; Nadal, R.; Antonarakis, E.S.; Eisenberger, M.; Carducci, M.; Fan, H.; Dannals, R.F.; Chen, Y.; Mease, R.C.; Szabo, Z.; Pomper, M.G.; Cho, S.Y. PSMA-based [(18)F]DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol. Imaging Biol., 2016, 18(3), 411-419.
[http://dx.doi.org/10.1007/s11307-016-0957-6] [PMID: 27080322]
[89]
Ellison, P.A.; Chen, F.; Goel, S.; Barnhart, T.E.; Nickles, R.J.; DeJesus, O.T.; Cai, W. Intrinsic and stable conjugation of thiolated mesoporous silica nanoparticles with radioarsenic. ACS Appl. Mater. Interfaces, 2017, 9(8), 6772-6781.
[http://dx.doi.org/10.1021/acsami.6b14049] [PMID: 28165700]
[90]
Delbeke, D.; Schöder, H.; Martin, W.H.; Wahl, R.L. Hybrid imaging (SPECT/CT and PET/CT): Improving therapeutic decisions. Semin. Nucl. Med., 2009, 39(5), 308-340.
[http://dx.doi.org/10.1053/j.semnuclmed.2009.03.002] [PMID: 19646557]
[91]
Rainone, P.; Riva, B.; Belloli, S.; Sudati, F.; Ripamonti, M.; Verderio, P.; Colombo, M.; Colzani, B.; Gilardi, M.C.; Moresco, R.M.; Prosperi, D. Development of 99mTc-radiolabeled nanosilica for targeted detection of HER2-positive breast cancer. Int. J. Nanomedicine, 2017, 12, 3447-3461.
[http://dx.doi.org/10.2147/IJN.S129720] [PMID: 28496321]
[92]
Zhao, Y.; Pang, B.; Luehmann, H.; Detering, L.; Yang, X.; Sultan, D.; Harpstrite, S.; Sharma, V.; Cutler, C.S.; Xia, Y.; Liu, Y. Gold nanoparticles doped with (199)Au atoms and their use for targeted cancer imaging by SPECT. Adv. Healthc. Mater., 2016, 5(8), 928-935.
[http://dx.doi.org/10.1002/adhm.201500992] [PMID: 26865221]
[93]
Tee, J.K.; Yip, L.X.; Tan, E.S.; Santitewagun, S.; Prasath, A.; Ke, P.C.; Ho, H.K.; Leong, D.T. Nanoparticles’ interactions with vasculature in diseases. Chem. Soc. Rev., 2019, 48(21), 5381-5407.
[http://dx.doi.org/10.1039/C9CS00309F] [PMID: 31495856]
[94]
Dubey, N.; Varshney, R.; Shukla, J.; Ganeshpurkar, A.; Hazari, P.P.; Bandopadhaya, G.P.; Mishra, A.K.; Trivedi, P. Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv., 2012, 19(3), 132-142.
[http://dx.doi.org/10.3109/10717544.2012.657718] [PMID: 22428685]
[95]
Siafaka, P.I. Üstündağ Okur, N.; Karavas, E.; Bikiaris, D.N. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses. Int. J. Mol. Sci., 2016, 17(9), 1440.
[http://dx.doi.org/10.3390/ijms17091440] [PMID: 27589733]
[96]
Gonciar, D.; Mocan, T.; Matea, C.T.; Zdrehus, C.; Mosteanu, O.; Mocan, L.; Pop, T. Nanotechnology in metastatic cancer treatment: Current achievements and future research trends. J. Cancer, 2019, 10(6), 1358-1369.
[http://dx.doi.org/10.7150/jca.28394] [PMID: 31031845]
[97]
Li, Y.; Guo, M.; Lin, Z.; Zhao, M.; Xiao, M.; Wang, C.; Xu, T.; Chen, T.; Zhu, B. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int. J. Nanomedicine, 2016, 11, 6693-6702.
[http://dx.doi.org/10.2147/IJN.S122666] [PMID: 27994465]
[98]
Yin, H.Q.; Shao, G.; Gan, F.; Ye, G. One-step, rapid and green synthesis of multifunctional gold nanoparticles for tumor-targeted imaging and therapy. Nanoscale Res. Lett., 2020, 15(1), 29.
[http://dx.doi.org/10.1186/s11671-019-3232-3] [PMID: 32006199]
[99]
Almáši, M. Beňová, E.; Zeleňák, V.; Madaj, B.; Huntošová, V.; Brus, J.; Urbanová, M.; Bednarčík, J.; Hornebecq, V. Cytotoxicity study and influence of SBA-15 surface polarity and pH on adsorption and release properties of anticancer agent pemetrexed. Mater. Sci. Eng. C, 2020, 109, 110552.
[http://dx.doi.org/10.1016/j.msec.2019.110552] [PMID: 32228921]
[100]
Sharma, H.; Kumar, K.; Choudhary, C.; Mishra, P.K.; Vaidya, B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 672-679.
[http://dx.doi.org/10.3109/21691401.2014.978980] [PMID: 25406734]
[101]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[102]
Hadjesfandiari, N.; Parambath, A. Stealth Coatings for Nanoparticles. Engineering of Biomaterials for Drug Delivery Systems; Elsevier: Amsterdam, 2018, pp. 345-361.
[http://dx.doi.org/10.1016/B978-0-08-101750-0.00013-1]
[103]
Alfaifi, M. Y.; Shati, A. A.; Elbehairi, S. E. I.; Fahmy, U. A.; Alhakamy, N. A.; Md, S. Anti-tumor effect of PEG-coated PLGA nanoparticles of febuxostat on A549 non-small cell lung cancer cells. 3 Biotech, 2020, 10(3), 13.
[104]
de Melo-Diogo, D.; Costa, E.C.; Alves, C.G.; Lima-Sousa, R.; Ferreira, P.; Louro, R.O.; Correia, I.J. POxylated graphene oxide nanomaterials for combination chemo-phototherapy of breast cancer cells. Eur. J. Pharm. Biopharm., 2018, 131, 162-169.
[http://dx.doi.org/10.1016/j.ejpb.2018.08.008] [PMID: 30134185]
[105]
Almeida, P.V.; Shahbazi, M.A.; Mäkilä, E.; Kaasalainen, M.; Salonen, J.; Hirvonen, J.; Santos, H.A. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale, 2014, 6(17), 10377-10387.
[http://dx.doi.org/10.1039/C4NR02187H] [PMID: 25074521]
[106]
Alves, C.G.; de Melo-Diogo, D.; Lima-Sousa, R.; Costa, E.C.; Correia, I.J. Hyaluronic acid functionalized nanoparticles loaded with IR780 and DOX for cancer chemo-photothermal therapy. Eur. J. Pharm. Biopharm., 2019, 137, 86-94.
[http://dx.doi.org/10.1016/j.ejpb.2019.02.016] [PMID: 30796967]
[107]
Xiao, B.; Han, M.K.; Viennois, E.; Wang, L.; Zhang, M.; Si, X.; Merlin, D. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale, 2015, 7(42), 17745-17755.
[http://dx.doi.org/10.1039/C5NR04831A] [PMID: 26455329]
[108]
Parashar, P.; Tripathi, C.B.; Arya, M.; Kanoujia, J.; Singh, M.; Yadav, A.; Saraf, S.A. A facile approach for fabricating CD44-targeted delivery of hyaluronic acid-functionalized PCL nanoparticles in urethane-induced lung cancer: Bcl-2, MMP-9, caspase-9, and BAX as potential markers. Drug Deliv. Transl. Res., 2019, 9(1), 37-52.
[http://dx.doi.org/10.1007/s13346-018-0575-8] [PMID: 30178279]
[109]
Fathy, M.M.; Mohamed, F.S.; Elbialy, N.; Elshemey, W.M. Multifunctional chitosan-capped gold nanoparticles for enhanced cancer chemo-radiotherapy: An in vitro study. Phys. Med., 2018, 48, 76-83.
[http://dx.doi.org/10.1016/j.ejmp.2018.04.002] [PMID: 29728233]
[110]
Angelopoulou, A.; Kolokithas-Ntoukas, A.; Fytas, C.; Avgoustakis, K. Folic acid-functionalized, condensed magnetic nanoparticles for targeted delivery of doxorubicin to tumor cancer cells overexpressing the folate receptor. ACS Omega, 2019, 4(26), 22214-22227.
[http://dx.doi.org/10.1021/acsomega.9b03594] [PMID: 31891105]
[111]
Banu, H.; Sethi, D.K.; Edgar, A.; Sheriff, A.; Rayees, N.; Renuka, N.; Faheem, S.M.; Premkumar, K.; Vasanthakumar, G. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J. Photochem. Photobiol. B, 2015, 149, 116-128.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.05.008] [PMID: 26057021]
[112]
Mishra, S.; Manna, K.; Kayal, U.; Saha, M.; Chatterjee, S.; Chandra, D.; Hara, M.; Datta, S.; Bhaumik, A.; Das Saha, K. Folic acid-conjugated magnetic mesoporous silica nanoparticles loaded with quercetin: A theranostic approach for cancer management. RSC Advances, 2020, 10(39), 23148-23164.
[http://dx.doi.org/10.1039/D0RA00664E] [PMID: 35520307]
[113]
Nuzzo, S.; Brancato, V.; Affinito, A.; Salvatore, M.; Cavaliere, C.; Condorelli, G. The role of RNA and DNA aptamers in glioblastoma diagnosis and therapy: A systematic review of the literature. Cancers, 2020, 12(8), 2173.
[http://dx.doi.org/10.3390/cancers12082173] [PMID: 32764266]
[114]
Zhao, L.; Xu, Y.H.; Akasaka, T.; Abe, S.; Komatsu, N.; Watari, F.; Chen, X. Polyglycerol-coated nanodiamond as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials, 2014, 35(20), 5393-5406.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.041] [PMID: 24720879]
[115]
Li, R.; He, Y.; Zhang, S.; Qin, J.; Wang, J. Cell membrane-based nanoparticles: A new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B, 2018, 8(1), 14-22.
[http://dx.doi.org/10.1016/j.apsb.2017.11.009] [PMID: 29872619]
[116]
Alsehli, M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharm. J., 2020, 28(3), 255-265.
[http://dx.doi.org/10.1016/j.jsps.2020.01.004] [PMID: 32194326]
[117]
Liu, Z.; Lv, D.; Liu, S.; Gong, J.; Wang, D.; Xiong, M.; Chen, X.; Xiang, R.; Tan, X. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: Effect against breast cancer in mice. PLoS One, 2013, 8(4), e60190.
[http://dx.doi.org/10.1371/journal.pone.0060190] [PMID: 23577091]
[118]
Xu, N.; Huang, X.; Yin, G.; Bu, M.; Pu, X.; Chen, X.; Liao, X.; Huang, Z. Thermosensitive star polymer pompons with a core-arm structure as thermo-responsive controlled release drug carriers. RSC Advances, 2018, 8(28), 15604-15612.
[http://dx.doi.org/10.1039/C8RA02117A] [PMID: 35539452]
[119]
Miller, A.D. Lipid-based nanoparticles in cancer diagnosis and therapy. J. Drug Deliv., 2013, 2013165981.
[http://dx.doi.org/10.1155/2013/165981] [PMID: 23936655]
[120]
Mohanta, B.C.; Palei, N.N.; Surendran, V.; Dinda, S.C.; Rajangam, J.; Deb, J.; Sahoo, B.M. Lipid based nanoparticles: Current strategies for brain tumor targeting. Curr. Nanomater., 2019, 4(2), 84-100.
[http://dx.doi.org/10.2174/2405461504666190510121911]
[121]
Xu, C.; Chen, F.; Valdovinos, H.F.; Jiang, D.; Goel, S.; Yu, B.; Sun, H.; Barnhart, T.E.; Moon, J.J.; Cai, W. Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials, 2018, 165, 56-65.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.043] [PMID: 29501970]
[122]
Sharma, S.K.; Sevak, K.K.; Monette, S.; Carlin, S.D.; Knight, J.C.; Wuest, F.R.; Sala, E.; Zeglis, B.M.; Lewis, J.S. Preclinical 89Zr Immuno-PET of high-grade serous ovarian cancer and lymph node metastasis. J. Nucl. Med., 2016, 57(5), 771-776.
[http://dx.doi.org/10.2967/jnumed.115.167072] [PMID: 26837339]
[123]
Sun, X.; Cai, W.; Chen, X. Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Acc. Chem. Res., 2015, 48(2), 286-294.
[http://dx.doi.org/10.1021/ar500362y] [PMID: 25635467]
[124]
Coll, J-L. Cancer optical imaging using fluorescent nanoparticles. Nanomedicine, 2011, 6(1), 7-10.
[http://dx.doi.org/10.2217/nnm.10.144] [PMID: 21182412]
[125]
Lee, S.B.; Kim, H.L.; Jeong, H.J.; Lim, S.T.; Sohn, M.H.; Kim, D.W. Mesoporous silica nanoparticle pretargeting for PET imaging based on a rapid bioorthogonal reaction in a living body. Angew. Chem. Int. Ed. Engl., 2013, 52(40), 10549-10552.
[http://dx.doi.org/10.1002/anie.201304026] [PMID: 23956036]
[126]
Li, Y.; Zhou, Y.; Yue, X.; Dai, Z. Cyanine conjugates in cancer theranostics. Bioact. Mater., 2020, 6(3), 794-809.
[http://dx.doi.org/10.1016/j.bioactmat.2020.09.009] [PMID: 33024900]
[127]
Mishra, P.; Nayak, B.; Dey, R.K. PEGylation in anti-cancer therapy: An overview. Asian J. Pharm. Sci., 2016, 11(3), 337-348.
[http://dx.doi.org/10.1016/j.ajps.2015.08.011]
[128]
Parodi, A.; Rudzinska, M.; Leporatti, S.; Anissimov, Y.; Zamyatnin, A.A., Jr Smart nanotheranostics responsive to pathological stimuli. Front. Bioeng. Biotechnol., 2020, 8, 503.
[http://dx.doi.org/10.3389/fbioe.2020.00503] [PMID: 32523946]
[129]
Hoelzer, D.; Leiske, M.N.; Hartlieb, M.; Bus, T.; Pretzel, D.; Hoeppener, S.; Kempe, K.; Thierbach, R.; Schubert, U.S. Tumor targeting with pH-responsive poly(2-oxazoline)-based nanogels for metronomic doxorubicin treatment. Oncotarget, 2018, 9(32), 22316-22331.
[http://dx.doi.org/10.18632/oncotarget.24806] [PMID: 29854280]
[130]
Shi, Y.; van der Meel, R.; Chen, X.; Lammers, T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics, 2020, 10(17), 7921-7924.
[http://dx.doi.org/10.7150/thno.49577] [PMID: 32685029]
[131]
Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release, 2016, 244(Pt A), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.015]] [PMID: 27871992]
[132]
Li, A.; Zhao, J.; Fu, J.; Cai, J.; Zhang, P. Recent advances of biomimetic nano-systems in the diagnosis and treatment of tumor. Asian J. Pharm. Sci., 2021, 16(2), 161-174.
[133]
Wang, Y.; Song, S.; Zhang, S.; Zhang, H. Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: Current advances and future challenges. Nano Today, 2019, 25, 38-67.
[http://dx.doi.org/10.1016/j.nantod.2019.02.007]
[134]
Gao, D.; Guo, X.; Zhang, X.; Chen, S.; Wang, Y.; Chen, T.; Huang, G.; Gao, Y.; Tian, Z.; Yang, Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater. Today Bio, 2019, 5, 100035.
[http://dx.doi.org/10.1016/j.mtbio.2019.100035] [PMID: 32211603]
[135]
Zhang, K.; Zhang, Y.; Meng, X.; Lu, H.; Chang, H.; Dong, H.; Zhang, X. Light-triggered theranostic liposomes for tumor diagnosis and combined photodynamic and hypoxia-activated prodrug therapy. Biomaterials, 2018, 185, 301-309.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.033] [PMID: 30265899]
[136]
Fisher, J.W.; Sarkar, S.; Buchanan, C.F.; Szot, C.S.; Whitney, J.; Hatcher, H.C.; Torti, S.V.; Rylander, C.G.; Rylander, M.N. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res., 2010, 70(23), 9855-9864.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0250] [PMID: 21098701]
[137]
Rajkumar, S.; Prabaharan, M. Theranostics based on iron oxide and gold nanoparticles for imaging- guided photothermal and photodynamic therapy of cancer. Curr. Top. Med. Chem., 2017, 17(16), 1858-1871.
[http://dx.doi.org/10.2174/1568026617666161122120537] [PMID: 27875977]
[138]
Zeng, Y.; Liu, Y.; Shang, J.; Ma, J.; Wang, R.; Deng, L.; Guo, Y.; Zhong, F.; Bai, M.; Zhang, S.; Wu, D. Phosphorescence monitoring of hypoxic microenvironment in solid-tumors to evaluate chemotherapeutic effects using the hypoxia-sensitive iridium (III) coordination compound. PLoS One, 2015, 10(3), e0121293.
[http://dx.doi.org/10.1371/journal.pone.0121293] [PMID: 25786221]
[139]
Sekar, T.V.; Paulmurugan, R. Bioluminescence Imaging of Cancer Therapy. Cancer Theranostics; Elsevier: Amsterdam, 2014, pp. 69-93.
[http://dx.doi.org/10.1016/B978-0-12-407722-5.00006-2]
[140]
Ardeshirpour, Y.; Chernomordik, V.; Capala, J.; Hassan, M.; Zielinsky, R.; Griffiths, G.; Achilefu, S.; Smith, P.; Gandjbakhche, A. Using in-vivo fluorescence imaging in personalized cancer diagnostics and therapy, an image and treat paradigm. Technol. Cancer Res. Treat., 2011, 10(6), 549-560.
[http://dx.doi.org/10.1177/153303461101000605] [PMID: 22066595]
[141]
Li, Y.; Wei, Q.; Ma, F.; Li, X.; Liu, F.; Zhou, M. Surface-enhanced Raman nanoparticles for tumor theranostics applications. Acta Pharm. Sin. B, 2018, 8(3), 349-359.
[http://dx.doi.org/10.1016/j.apsb.2018.03.007] [PMID: 29881674]
[142]
Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev., 2019, 48(7), 2053-2108.
[http://dx.doi.org/10.1039/C8CS00618K] [PMID: 30259015]
[143]
Ferreira, M.; Sousa, J.; Pais, A.; Vitorino, C. The role of magnetic nanoparticles in cancer nanotheranostics. Materials, 2020, 13(2), 266.
[http://dx.doi.org/10.3390/ma13020266] [PMID: 31936128]
[144]
Amstad, E.; Textor, M.; Reimhult, E. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale, 2011, 3(7), 2819-2843.
[http://dx.doi.org/10.1039/c1nr10173k] [PMID: 21629911]
[145]
Anani, T.; Rahmati, S.; Sultana, N.; David, A.E. MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics, 2021, 11(2), 579-601.
[http://dx.doi.org/10.7150/thno.48811] [PMID: 33391494]
[146]
Celentano, W.; Neri, G.; Distante, F.; Li, M.; Messa, P.; Chirizzi, C.; Chaabane, L.; De Campo, F.; Metrangolo, P.; Baldelli Bombelli, F.; Cellesi, F. Design of fluorinated hyperbranched polyether copolymers for 19F MRI nanotheranostics. Polym. Chem., 2020, 11(24), 3951-3963.
[http://dx.doi.org/10.1039/D0PY00393J]
[147]
Cai, X.; Zhu, Q.; Zeng, Y.; Zeng, Q.; Chen, X.; Zhan, Y. Manganese oxide nanoparticles as MRI contrast agents in tumor multimodal imaging and therapy. Int. J. Nanomedicine, 2019, 14, 8321-8344.
[http://dx.doi.org/10.2147/IJN.S218085] [PMID: 31695370]
[148]
Zhou, L.Q.; Li, P.; Cui, X.W.; Dietrich, C.F. Ultrasound nanotheranostics in fighting cancer: Advances and prospects. Cancer Lett., 2020, 470, 204-219.
[http://dx.doi.org/10.1016/j.canlet.2019.11.034] [PMID: 31790760]
[149]
Singh, D.; Dilnawaz, F.; Sahoo, S.K. Challenges of moving theranostic nanomedicine into the clinic. Nanomedicine, 2020, 15(2), 111-114.
[http://dx.doi.org/10.2217/nnm-2019-0401] [PMID: 31903854]
[150]
Cheng, Y.; Morshed, R.A.; Auffinger, B.; Tobias, A.L.; Lesniak, M.S. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv. Drug Deliv. Rev., 2014, 66, 42-57.
[http://dx.doi.org/10.1016/j.addr.2013.09.006] [PMID: 24060923]
[151]
Saenz del Burgo, L.; Hernández, R.M.; Orive, G.; Pedraz, J.L. Nanotherapeutic approaches for brain cancer management. Nanomed. Nanotechnol. Biol. Med., 2014, 10(5), e905-e919.
[152]
Bhatt, A.; Gurnany, E.; Modi, A.; Gulbake, A.; Jain, A. Theranostic potential of targeted nanoparticles for brain cancer. Mini-reviews. Med. Chem., 2017, 17(18), 1758-1777.
[153]
Laquintana, V.; Trapani, A.; Denora, N.; Wang, F.; Gallo, J.M.; Trapani, G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin. Drug Deliv., 2009, 6(10), 1017-1032.
[154]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[155]
Friedman, H.S.; Kerby, T.; Calvert, H. Temozolomide and treatment of malignant glioma. Clin. Cancer Res., 2000, 6(7), 2585-2597.
[156]
Ohgaki, H.; Kleihues, P. Epidemiology and etiology of gliomas. Acta Neuropathol., 2005, 109(1), 93-108.
[http://dx.doi.org/10.1007/s00401-005-0991-y] [PMID: 15685439]
[157]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[158]
Pardridge, W.M. Blood-brain barrier drug targeting: The future of brain drug development. Mol. Interv., 2003, 3(2), 90-105. 51
[http://dx.doi.org/10.1124/mi.3.2.90]] [PMID: 14993430]
[159]
d’Angelo, M.; Castelli, V.; Benedetti, E.; Antonosante, A.; Catanesi, M.; Dominguez-Benot, R.; Pitari, G.; Ippoliti, R.; Cimini, A. Theranostic nanomedicine for malignant gliomas; Frontiers in Bioengineering and Biotechnology. Frontiers Media S.A., 2019, p. 325.
[160]
Cheng, Y.; Meyers, J.D.; Agnes, R.S.; Doane, T.L.; Kenney, M.E.; Broome, A-M.; Burda, C.; Basilion, J.P. Addressing brain tumors with targeted gold nanoparticles: A new gold standard for hydrophobic drug delivery? Small, 2011, 7(16), 2301-2306.
[http://dx.doi.org/10.1002/smll.201100628] [PMID: 21630446]
[161]
Meyers, J.D.; Cheng, Y.; Broome, A-M.; Agnes, R.S.; Schluchter, M.D.; Margevicius, S.; Wang, X.; Kenney, M.E.; Burda, C.; Basilion, J.P. Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part. Part. Syst. Charact., 2015, 32(4), 448-457.
[http://dx.doi.org/10.1002/ppsc.201400119] [PMID: 25999665]
[162]
Dixit, S.; Novak, T.; Miller, K.; Zhu, Y.; Kenney, M.E.; Broome, A.M. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale, 2015, 7(5), 1782-1790.
[http://dx.doi.org/10.1039/C4NR04853A] [PMID: 25519743]
[163]
Cheng, Y.; Dai, Q.; Morshed, R.A.; Fan, X.; Wegscheid, M.L.; Wainwright, D.A.; Han, Y.; Zhang, L.; Auffinger, B.; Tobias, A.L.; Rincón, E.; Thaci, B.; Ahmed, A.U.; Warnke, P.C.; He, C.; Lesniak, M.S. Blood-brain barrier permeable gold nanoparticles: An efficient delivery platform for enhanced malignant glioma therapy and imaging. Small, 2014, 10(24), 5137-5150.
[http://dx.doi.org/10.1002/smll.201400654] [PMID: 25104165]
[164]
Bishop, C.J.; Tzeng, S.Y.; Green, J.J. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater., 2015, 11(1), 393-403.
[http://dx.doi.org/10.1016/j.actbio.2014.09.020] [PMID: 25246314]
[165]
Onoshima, D.; Yukawa, H.; Baba, Y. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Advanced Drug Delivery Reviews. Elsevier B.V., Amsterdam, 2015, 95, 2-14.
[166]
Tian, B.; Al-Jamal, W.T.; Al-Jamal, K.T.; Kostarelos, K. Doxorubicin-loaded lipid-quantum dot hybrids: surface topography and release properties. Int. J. Pharm., 2011, 416(2), 443-447.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.057] [PMID: 21315141]
[167]
Zhang, B.; Yang, C.; Gao, Y.; Wang, Y.; Bu, C.; Hu, S.; Liu, L.; Demir, H.V.; Qu, J.; Yong, K.T. Engineering quantum dots with different emission wavelengths and specific fluorescence lifetimes for spectrally and temporally multiplexed imaging of cells. Nanotheranostics, 2017, 1(1), 131-140.
[http://dx.doi.org/10.7150/ntno.18989] [PMID: 29071182]
[168]
Sonali; Singh, R.P.; Singh, N.; Sharma, G.; Vijayakumar, M.R.; Koch, B.; Singh, S.; Singh, U.; Dash, D.; Pandey, B.L.; Muthu, M.S. Transferrin liposomes of docetaxel for brain-targeted cancer applications: Formulation and brain theranostics. Drug Deliv., 2016, 23(4), 1261-1271.
[http://dx.doi.org/10.3109/10717544.2016.1162878] [PMID: 26961144]
[169]
Sonali; Singh, R.P.; Singh, N.; Sharma, G.; Koch, B.; Singh, S.; Bharti, S.; Rajinikanth, P.S.; Pandey, B.L; Muthu, M.S. RGD-TPGS decorated theranostic liposomes for brain targeted delivery. Colloids Surf. B Biointerfaces, 2016, 147, 129-141.
[170]
Zhang, L.W.; Wen, C.J.; Al-Suwayeh, S.A.; Yen, T.C.; Fang, J.Y. Cisplatin and quantum dots encapsulated in liposomes as multifunctional nanocarriers for theranostic use in brain and skin. J. Nanopart. Res., 2012, 14(7), 882.
[http://dx.doi.org/10.1007/s11051-012-0882-9]
[171]
Wen, C.J.; Zhang, L.W.; Al-Suwayeh, S.A.; Yen, T.C.; Fang, J.Y. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int. J. Nanomedicine, 2012, 7, 1599-1611.
[PMID: 22619515]
[172]
Sonkar, R.; Jha, A.; Viswanadh, M.K.; Burande, A.S.; Pawde, D.M.; Patel, K.K.; Singh, M.; Koch, B.; Muthu, M.S. Gold liposomes for brain-targeted drug delivery: Formulation and brain distribution kinetics. Mater. Sci. Eng. C, 2021, 120, 111652.
[173]
Mehata, A.K.; Viswanadh, M.K.; Sonkar, R.; Pawde, D.M.; Priya, V.; Singh, M.; Koch, B.S.; Muthu, M. Formulation and in vitro evaluation of upconversion nanoparticle-loaded liposomes for brain cancer. Ther. Deliv., 2020, 11(9), 557-571.
[http://dx.doi.org/10.4155/tde-2020-0070] [PMID: 32867624]
[174]
de Oliveira, D.C.S.; de Freitas, C.F.; Calori, I.R.; Goncalves, R.S.; Cardinali, C.A.E.F.; Malacarne, L.C.; Ravanelli, M.I.; de Oliveira, H.P.M.; Tedesco, A.C.; Caetano, W.; Hioka, N.; Tessaro, A.L. Theranostic verteporfin- loaded lipid-polymer liposome for photodynamic applications. J. Photochem. Photobiol. B, 2020, 212, 112039.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.112039] [PMID: 33002779]
[175]
Chen, Q.; Liang, C.; Sun, X.; Chen, J.; Yang, Z.; Zhao, H.; Feng, L.; Liu, Z. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics viain vivo chromogenic assay. Proc. Natl. Acad. Sci. USA, 2017, 114(21), 5343-5348.
[http://dx.doi.org/10.1073/pnas.1701976114] [PMID: 28484000]
[176]
Singh, R.P.; Sharma, G. Sonali; Singh, S.; Kumar, M.; Pandey, B.L.; Koch, B.; Muthu, M.S. Vitamin E TPGS conjugated carbon nanotubes improved efficacy of docetaxel with safety for lung cancer treatment. Colloids Surf. B Biointerfaces, 2016, 141, 429-442.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.011] [PMID: 26895505]
[177]
Ren, J.; Shen, S.; Wang, D.; Xi, Z.; Guo, L.; Pang, Z.; Qian, Y.; Sun, X.; Jiang, X. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials, 2012, 33(11), 3324-3333.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.025] [PMID: 22281423]
[178]
Robinson, J.T.; Welsher, K.; Tabakman, S.M.; Sherlock, S.P.; Wang, H.; Luong, R.; Dai, H. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res., 2010, 3(11), 779-793.
[http://dx.doi.org/10.1007/s12274-010-0045-1] [PMID: 21804931]
[179]
Wang, S.; Li, C.; Qian, M.; Jiang, H.; Shi, W.; Chen, J.; Lächelt, U.; Wagner, E.; Lu, W.; Wang, Y.; Huang, R. Augmented glioma-targeted theranostics using multifunctional polymer-coated carbon nanodots. Biomaterials, 2017, 141, 29-39.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.040] [PMID: 28666100]
[180]
van Vlerken, L.E.; Amiji, M.M. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin. Drug Deliv., 2006, 3(2), 205-216.
[181]
Bernal, G.M.; LaRiviere, M.J.; Mansour, N.; Pytel, P.; Cahill, K.E.; Voce, D.J.; Kang, S.; Spretz, R.; Welp, U.; Noriega, S.E.; Nuñez, L.; Larsen, G.F.; Weichselbaum, R.R.; Yamini, B. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomedicine, 2014, 10(1), 149-157.
[http://dx.doi.org/10.1016/j.nano.2013.07.003] [PMID: 23891990]
[182]
Keyvan Rad, J.; Mahdavian, A.R.; Khoei, S.; Shirvalilou, S. Enhanced photogeneration of reactive oxygen species and targeted photothermal therapy of C6 glioma brain cancer cells by folate-conjugated gold-photoactive polymer nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(23), 19483-19493.
[http://dx.doi.org/10.1021/acsami.8b05252] [PMID: 29787247]
[183]
Xu, H.L.; Mao, K.L.; Huang, Y.P.; Yang, J.J.; Xu, J.; Chen, P.P.; Fan, Z.L.; Zou, S.; Gao, Z.Z.; Yin, J.Y.; Xiao, J.; Lu, C.T.; Zhang, B.L.; Zhao, Y.Z. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. Nanoscale, 2016, 8(29), 14222-14236.
[http://dx.doi.org/10.1039/C6NR02448C] [PMID: 27396404]
[184]
Sun, L.; Joh, D.Y.; Al-Zaki, A.; Stangl, M.; Murty, S.; Davis, J.J.; Baumann, B.C.; Alonso-Basanta, M.; Kaol, G.D.; Tsourkas, A.; Dorsey, J.F. Theranostic application of mixed gold and superparamagnetic iron oxide nanoparticle micelles in glioblastoma multiforme. J. Biomed. Nanotechnol., 2016, 12(2), 347-356.
[http://dx.doi.org/10.1166/jbn.2016.2173] [PMID: 27305768]
[185]
Rajora, M.A.; Ding, L.; Valic, M.; Jiang, W.; Overchuk, M.; Chen, J.; Zheng, G. Tailored theranostic apolipoprotein E3 porphyrin-lipid nanoparticles target glioblastoma. Chem. Sci., 2017, 8(8), 5371-5384.
[http://dx.doi.org/10.1039/C7SC00732A] [PMID: 28970916]
[186]
Jain, A.; Singhai, P.; Gurnany, E.; Updhayay, S.; Mody, N. Transferrin-tailored solid lipid nanoparticles as vectors for site-specific delivery of Temozolomide to brain. J. Nanopart. Res., 2013, 15(3), 1-9.
[http://dx.doi.org/10.1007/s11051-013-1518-4]
[187]
Shu, L.; Fu, F.; Huang, Z.; Huang, Y.; Hu, P.; Pan, X. Nanostructure of DiR-loaded solid lipid nanoparticles with potential bioimaging functions. AAPS PharmSciTech, 2020, 21(8), 321.
[http://dx.doi.org/10.1208/s12249-020-01847-1] [PMID: 33200271]
[188]
Chen, W.; Chan, M.H.; Hsiao, M. Magnetic and ultrasonic guidance of iron–platinum nanoparticles encapsulated in multifunctional lipid bubbles for conquering the blood-brain barrier with improved theranostics. FASEB J., 2020, 34(S1), 1-1.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.03808]
[189]
Dadras, P.; Atyabi, F.; Irani, S.; Ma’mani, L.; Foroumadi, A.; Mirzaie, Z.H.; Ebrahimi, M.; Dinarvand, R. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur. J. Pharm. Sci., 2017, 97, 47-54.
[http://dx.doi.org/10.1016/j.ejps.2016.11.005] [PMID: 27825919]
[190]
Tanaka, T.; Decuzzi, P.; Cristofanilli, M.; Sakamoto, J.H.; Tasciotti, E.; Robertson, F.M.; Ferrari, M. Nanotechnology for breast cancer therapy. Biomed. Microdevices, 2009, 11(1), 49-63.
[http://dx.doi.org/10.1007/s10544-008-9209-0] [PMID: 18663578]
[191]
Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418), 61-70.
[http://dx.doi.org/10.1038/nature11412] [PMID: 23000897]
[192]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A-L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[193]
McAnena, P.F.; Brown, J.A.L.; Ramli, A.; Curran, C.; Malone, C.; McLaughlin, R.; Barry, K. JAL, B.; Kerin, M.J. Breast cancer subtype discordance: Impact on post-recurrence survival and potential treatment options. BMC Cancer, 2018, 18(1), 1-8.
[PMID: 29291726]
[194]
Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers, 2019, 5(1), 66.
[195]
Kaur, N.; Aditya, R.N.; Singh, A.; Kuo, T.R. Biomedical applications for gold nanoclusters: Recent developments and future perspectives. Nanoscale Res. Lett., 2018, 13(1), 302.
[http://dx.doi.org/10.1186/s11671-018-2725-9] [PMID: 30259230]
[196]
Liu, R.; Xiao, W.; Hu, C.; Xie, R.; Gao, H. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J. Control. Release, 2018, 278, 127-139.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.005] [PMID: 29630985]
[197]
Liu, R.; Hu, C.; Yang, Y.; Zhang, J.; Gao, H. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm. Sin. B, 2019, 9(2), 410-420.
[http://dx.doi.org/10.1016/j.apsb.2018.09.001] [PMID: 30976492]
[198]
Peng, J.; Qi, T.; Liao, J.; Chu, B.; Yang, Q.; Qu, Y.; Li, W.; Li, H.; Luo, F.; Qian, Z. Mesoporous magnetic gold “nanoclusters” as theranostic carrier for chemo-photothermal co-therapy of breast cancer. Theranostics, 2014, 4(7), 678-692.
[http://dx.doi.org/10.7150/thno.7869] [PMID: 24883118]
[199]
Wu, Y.; Wang, H.; Gao, F.; Xu, Z.; Dai, F.; Liu, W. An injectable supramolecular polymer nanocomposite hydrogel for prevention of breast cancer recurrence with theranostic and mammoplastic functions. Adv. Funct. Mater., 2018, 28(21), 1801000.
[http://dx.doi.org/10.1002/adfm.201801000]
[200]
Wang, Y.; Wang, Y.; Chen, G.; Li, Y.; Xu, W.; Gong, S. Quantum-dot-based theranostic micelles conjugated with an anti-EGFR nanobody for triple-negative breast cancer therapy. ACS Appl. Mater. Interfaces, 2017, 9(36), 30297-30305.
[http://dx.doi.org/10.1021/acsami.7b05654] [PMID: 28845963]
[201]
Ko, N.R.; Nafiujjaman, M.; Lee, J.S.; Lim, H.N.; Lee, Y.K.; Kwon, I.K. Graphene quantum dot-based theranostic agents for active targeting of breast cancer. RSC Advances, 2017, 7(19), 11420-11427.
[http://dx.doi.org/10.1039/C6RA25949A]
[202]
Diaz-Diestra, D.; Thapa, B.; Badillo-Diaz, D.; Beltran-Huarac, J.; Morell, G.; Weiner, B.R. Graphene Oxide/ZnS:Mn nanocomposite functionalized with folic acid as a nontoxic and effective theranostic platform for breast cancer treatment. Nanomaterials, 2018, 8(7), 484.
[http://dx.doi.org/10.3390/nano8070484] [PMID: 29966355]
[203]
Semkina, A.S.; Abakumov, M.A.; Skorikov, A.S.; Abakumova, T.O.; Melnikov, P.A.; Grinenko, N.F.; Cherepanov, S.A.; Vishnevskiy, D.A.; Naumenko, V.A.; Ionova, K.P.; Majouga, A.G.; Chekhonin, V.P. Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer. Nanomedicine, 2018, 14(5), 1733-1742.
[http://dx.doi.org/10.1016/j.nano.2018.04.019] [PMID: 29730399]
[204]
Guo, Y.; Ran, Y.; Wang, Z.; Cheng, J.; Cao, Y.; Yang, C.; Liu, F.; Ran, H. Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy. Biomaterials, 2019, 219119370.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119370] [PMID: 31357006]
[205]
Dong, Q.; Yang, H.; Wan, C.; Zheng, D.; Zhou, Z.; Xie, S.; Xu, L.; Du, J.; Li, F. Her2-functionalized gold-nanoshelled magnetic hybrid nanoparticles: A theranostic agent for dual-modal imaging and photothermal therapy of breast cancer. Nanoscale Res. Lett., 2019, 14(1), 235.
[http://dx.doi.org/10.1186/s11671-019-3053-4] [PMID: 31448377]
[206]
Pan, C.; Liu, Y.; Zhou, M.; Wang, W.; Shi, M.; Xing, M.; Liao, W. Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment. Int. J. Nanomedicine, 2018, 13, 1119-1137.
[http://dx.doi.org/10.2147/IJN.S147464] [PMID: 29520140]
[207]
Cai, H.; Wang, X.; Zhang, H.; Sun, L.; Pan, D.; Gong, Q.; Gu, Z.; Luo, K. Enzyme-sensitive biodegradable and multifunctional polymeric conjugate as theranostic nanomedicine. Appl. Mater. Today, 2018, 11, 207-218.
[http://dx.doi.org/10.1016/j.apmt.2018.02.003]
[208]
Zhao, Y.; Houston, Z.H.; Simpson, J.D.; Chen, L.; Fletcher, N.L.; Fuchs, A.V.; Blakey, I.; Thurecht, K.J. Using peptide aptamer targeted polymers as a model nanomedicine for investigating drug distribution in cancer nanotheranostics. Mol. Pharm., 2017, 14(10), 3539-3549.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00560] [PMID: 28880092]
[209]
De Los Reyes-Berbel, E.; Salto-Gonzalez, R.; Ortega-Muñoz, M.; Reche-Perez, F.J.; Jodar-Reyes, A.B.; Hernandez-Mateo, F.; Giron-Gonzalez, M.D.; Santoyo-Gonzalez, F. PEI-NIR heptamethine cyanine nanotheranostics for tumor targeted gene delivery. Bioconjug. Chem., 2018, 29(8), 2561-2575.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00262] [PMID: 29953208]
[210]
Shen, J.; Kim, H.C.; Wolfram, J.; Mu, C.; Zhang, W.; Liu, H.; Xie, Y.; Mai, J.; Zhang, H.; Li, Z.; Guevara, M.; Mao, Z.W.; Shen, H. A liposome encapsulated ruthenium polypyridine complex as a theranostic platform for triple-negative breast cancer. Nano Lett., 2017, 17(5), 2913-2920.
[http://dx.doi.org/10.1021/acs.nanolett.7b00132] [PMID: 28418672]
[211]
Muthu, M.S.; Kulkarni, S.A.; Raju, A.; Feng, S.S. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials, 2012, 33(12), 3494-3501.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.036] [PMID: 22306020]
[212]
Parhi, P.; Sahoo, S.K. Trastuzumab guided nanotheranostics: A lipid based multifunctional nanoformulation for targeted drug delivery and imaging in breast cancer therapy. J. Colloid Interface Sci., 2015, 451, 198-211.
[http://dx.doi.org/10.1016/j.jcis.2015.03.049] [PMID: 25897856]
[213]
Kim, M.W.; Jeong, H.Y.; Kang, S.J.; Jeong, I.H.; Choi, M.J.; You, Y.M.; Im, C.S.; Song, I.H.; Lee, T.S.; Lee, J.S.; Lee, A.; Park, Y.S. Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRNAs and quantum dots for theranostics of triple-negative breast cancer. Theranostics, 2019, 9(3), 837-852.
[http://dx.doi.org/10.7150/thno.30228] [PMID: 30809312]
[214]
Liu, Z.; Lin, H.; Zhao, M.; Dai, C.; Zhang, S.; Peng, W.; Chen, Y. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics. Theranostics, 2018, 8(6), 1648-1664.
[http://dx.doi.org/10.7150/thno.23369] [PMID: 29556347]
[215]
Xie, W.; Gao, Q.; Wang, D.; Guo, Z.; Gao, F.; Wang, X.; Cai, Q.; Feng, S.; Fan, H.; Sun, X.; Zhao, L. Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG Nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer. Nano Res., 2018, 11(5), 2470-2487.
[http://dx.doi.org/10.1007/s12274-017-1871-1]
[216]
Kanwar, J.R.; Kamalapuram, S.K.; Krishnakumar, S.; Kanwar, R.K. Multimodal iron oxide (Fe3O4)-saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER(-)/PR(-)/HER2(-)). Nanomedicine, 2016, 11(3), 249-268.
[http://dx.doi.org/10.2217/nnm.15.199] [PMID: 26785603]
[217]
AbdElhamid, A.S.; Helmy, M.W.; Ebrahim, S.M.; Bahey-El-Din, M.; Zayed, D.G.; Zein El Dein, E.A.; El-Gizawy, S.A.; Elzoghby, A.O. Layer-by-layer gelatin/chondroitin quantum dots-based nanotheranostics: Combined rapamycin/celecoxib delivery and cancer imaging. Nanomedicine, 2018, 13(14), 1707-1730.
[http://dx.doi.org/10.2217/nnm-2018-0028] [PMID: 30073915]
[218]
AbdElhamid, A.S.; Zayed, D.G.; Helmy, M.W.; Ebrahim, S.M.; Bahey-El-Din, M.; Zein-El-Dein, E.A.; El-Gizawy, S.A.; Elzoghby, A.O. Lactoferrin-tagged quantum dots-based theranostic nanocapsules for combined COX-2 inhibitor/herbal therapy of breast cancer. Nanomedicine, 2018, 13(20), 2637-2656.
[http://dx.doi.org/10.2217/nnm-2018-0196] [PMID: 30338705]
[219]
Leiter, U.; Eigentler, T.; Garbe, C. Epidemiology of skin cancer; Sunlight, Vitamin D and Skin Cancer, 2014, pp. 120-140.
[http://dx.doi.org/10.1007/978-1-4939-0437-2_7]
[220]
Monshi, B.; Vujic, M.; Kivaranovic, D.; Sesti, A.; Oberaigner, W.; Vujic, I.; Ortiz-Urda, S.; Posch, C.; Feichtinger, H.; Hackl, M.; Rappersberger, K. The burden of malignant melanoma--lessons to be learned from Austria. Eur. J. Cancer, 2016, 56, 45-53.
[http://dx.doi.org/10.1016/j.ejca.2015.11.026] [PMID: 26802530]
[221]
Menge, T.D.; Pellacani, G. Advances in noninvasive imaging of melanoma. Semin. Cutan. Med. Surg., 2016, 35(1), 18-24.
[http://dx.doi.org/10.12788/j.sder.2016.003] [PMID: 26963113]
[222]
Gubarkova, E.V.; Feldchtein, F.I.; Zagaynova, E.V.; Gamayunov, S.V.; Sirotkina, M.A.; Sedova, E.S.; Kuznetsov, S.S.; Moiseev, A.A.; Matveev, L.A.; Zaitsev, V.Y.; Karashtin, D.A.; Gelikonov, G.V.; Pires, L.; Vitkin, A.; Gladkova, N.D. Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: A basal cell carcinoma patient study. Sci. Rep., 2019, 9(1), 18670.
[http://dx.doi.org/10.1038/s41598-019-55215-6] [PMID: 31822752]
[223]
Pratavieira, S.; Santos, P.L.A.; Bagnato, V.S.; Kurachi, C. Development and characterization of a widefield imaging system combining fluorescence and reflectance images for the detection of skin and oral cancer. In: World Congress on Medical Physics and Biomedical Engineering, 2009, pp. 23-26.
[http://dx.doi.org/10.1007/978-3-642-03879-2_8]
[224]
Ahlgrimm-Siess, V.; Laimer, M.; Rabinovitz, H.S.; Oliviero, M.; Hofmann-Wellenhof, R.; Marghoob, A.A.; Scope, A. Confocal microscopy in skin cancer. Curr. Dermatol. Rep., 2018, 7(2), 105-118.
[http://dx.doi.org/10.1007/s13671-018-0218-9] [PMID: 29780659]
[225]
Ferrante di Ruffano, L.; Dinnes, J.; Deeks, J.J.; Chuchu, N.; Bayliss, S.E.; Davenport, C.; Takwoingi, Y.; Godfrey, K.; O’Sullivan, C.; Matin, R.N.; Tehrani, H.; Williams, H.C. Optical coherence tomography for diagnosing skin cancer in adults. Cochrane Database Syst. Rev., 2018. 12CD013189
[http://dx.doi.org/10.1002/14651858.CD013189]] [PMID: 30521690]
[226]
Duan, L.; Marvdashti, T.; Lee, A.; Tang, J.Y.; Ellerbee, A.K. Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography. Biomed. Opt. Express, 2014, 5(10), 3717-3729.
[http://dx.doi.org/10.1364/BOE.5.003717] [PMID: 25360384]
[227]
Shanmugam, P.M.; Konana, V.K.; Ramanjulu, R.; Mishra, K.C.D.; Sagar, P.; Kumar, D. Optical coherence tomography angiography-based analysis of intrinsic vasculature in juxtapapillary melanoma after ruthenium-106 plaque brachytherapy. Indian J. Ophthalmol., 2019, 67(12), 2086-2088.
[http://dx.doi.org/10.4103/ijo.IJO_1928_18] [PMID: 31755470]
[228]
Attia, A.B.E.; Chuah, S.Y.; Razansky, D.; Ho, C.J.H.; Malempati, P.; Dinish, U.S.; Bi, R.; Fu, C.Y.; Ford, S.J.; Lee, J.S.S.; Tan, M.W.P.; Olivo, M.; Thng, S.T.G. Noninvasive real-time characterization of non-melanoma skin cancers with handheld optoacoustic probes. Photoacoustics, 2017, 7, 20-26.
[http://dx.doi.org/10.1016/j.pacs.2017.05.003] [PMID: 28652976]
[229]
Wei, W.; Ehlerding, E.B.; Lan, X.; Luo, Q.; Cai, W. PET and SPECT imaging of melanoma: The state of the art. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(1), 132-150.
[http://dx.doi.org/10.1007/s00259-017-3839-5] [PMID: 29085965]
[230]
Lee, C.N.; Pan, S.C.; Lee, J.Y.Y.; Wong, T.W. Successful treatment of cutaneous squamous cell carcinoma with intralesional cryosurgery. Case Rep. Med., 2016, 95(39), e4991.
[http://dx.doi.org/10.1097/MD.0000000000004991] [PMID: 27684856]
[231]
Chagas, F.S.C.; Santana Silva, B. Mohs micrographic surgery: A study of 83 cases. An. Bras. Dermatol., 2012, 87(2), 228-234.
[http://dx.doi.org/10.1590/S0365-05962012000200006] [PMID: 22570026]
[232]
Akarsu, S.; Kamberoglu, I. Cryotherapy for common premalignant and malignant skin disorders. Dermatologic Surgery and Procedures; InTech, 2018.
[http://dx.doi.org/10.5772/intechopen.70286]
[233]
Pontoriero, A.; Iatì, G.; Pergolizzi, S. A case report of a patient with squamous cell carcinoma of the face irradiated using a stereotactic technique. Radiat. Oncol. J., 2015, 33(3), 261-264.
[http://dx.doi.org/10.3857/roj.2015.33.3.261] [PMID: 26484311]
[234]
Apisarnthanarax, S.; Dhruva, N.; Ardeshirpour, F.; Tepper, J.E.; Shores, C.G.; Rosenman, J.G.; Shockley, W.W.; Hayward, M.C.; Hayes, D.N. Concomitant radiotherapy and chemotherapy for high-risk nonmelanoma skin carcinomas of the head and neck. Int. J. Surg. Oncol., 2011, 2011464829.
[http://dx.doi.org/10.1155/2011/464829] [PMID: 22312508]
[235]
Ma, J.; Wang, X. Photodynamic therapy for squamous cell carcinoma of the index finger: A case report. Photodiagn. Photodyn. Ther., 2020, 29, 101661.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101661] [PMID: 31945547]
[236]
Kamangar, F.; Neuhaus, I.M.; Koo, J.Y.M. An evidence-based review of skin cancer rates on biologic therapies. J. Dermatolog. Treat., 2012, 23(4), 305-315.
[http://dx.doi.org/10.3109/09546634.2011.652064] [PMID: 22188512]
[237]
Blau, R.; Epshtein, Y.; Pisarevsky, E.; Tiram, G. Israeli Dangoor, S.; Yeini, E.; Krivitsky, A.; Eldar-Boock, A.; Ben-Shushan, D.; Gibori, H.; Scomparin, A.; Green, O.; Ben-Nun, Y.; Merquiol, E.; Doron, H.; Blum, G.; Erez, N.; Grossman, R.; Ram, Z.; Shabat, D.; Satchi-Fainaro, R. Image-guided surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of tumor margins. Theranostics, 2018, 8(13), 3437-3460.
[http://dx.doi.org/10.7150/thno.23853] [PMID: 30026858]
[238]
Jung, H.S.; Kong, W.H.; Sung, D.K.; Lee, M-Y.; Beack, S.E.; Keum, D.H.; Kim, K.S.; Yun, S.H.; Hahn, S.K. Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano, 2014, 8(1), 260-268.
[http://dx.doi.org/10.1021/nn405383a] [PMID: 24383990]
[239]
Yang, W.; Guo, W.; Le, W.; Lv, G.; Zhang, F.; Shi, L.; Wang, X.; Wang, J.; Wang, S.; Chang, J.; Zhang, B. Albumin-bioinspired Gd:CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano, 2016, 10(11), 10245-10257.
[http://dx.doi.org/10.1021/acsnano.6b05760] [PMID: 27791364]
[240]
Bajpai, V.K.; Khan, I.; Shukla, S.; Kang, S.M.; Aziz, F.; Tripathi, K.M.; Saini, D.; Cho, H.J.; Su Heo, N.; Sonkar, S.K.; Chen, L.; Suk Huh, Y.; Han, Y.K. Multifunctional N-P-doped carbon dots for regulation of apoptosis and autophagy in B16F10 melanoma cancer cells and in vitro imaging applications. Theranostics, 2020, 10(17), 7841-7856.
[http://dx.doi.org/10.7150/thno.42291] [PMID: 32685024]
[241]
Qin, W.; Quan, G.; Sun, Y.; Chen, M.; Yang, P.; Feng, D.; Wen, T.; Hu, X.; Pan, X.; Wu, C. Dissolving microneedles with spatiotemporally controlled pulsatile release nanosystem for synergistic chemo-photothermal therapy of melanoma. Theranostics, 2020, 10(18), 8179-8196.
[http://dx.doi.org/10.7150/thno.44194] [PMID: 32724465]
[242]
Gorgizadeh, M.; Behzadpour, N.; Salehi, F.; Daneshvar, F.; Vais, R.D.; Nazari-Vanani, R.; Azarpira, N.; Lotfi, M.; Sattarahmady, N.A. MnFe2O4/C nanocomposite as a novel theranostic agent in MRI, sonodynamic therapy and photothermal therapy of a melanoma cancer model. J. Alloys Compd., 2020, 816, 152597.
[http://dx.doi.org/10.1016/j.jallcom.2019.152597]
[243]
Veeranarayanan, S.; Mohamed, M.S.; Poulose, A.C.; Rinya, M.; Sakamoto, Y.; Maekawa, T.; Kumar, D.S. Photodynamic therapy at ultra-low NIR laser power and X-Ray imaging using Cu3BiS3 nanocrystals. Theranostics, 2018, 8(19), 5231-5245.
[http://dx.doi.org/10.7150/thno.25286] [PMID: 30555543]
[244]
Kars, M.D.; Kara, R. Gündoğdu, Y.; Kepceoğlu, A.; Kılıç, H.&#350. Femtosecond laser induced photodynamic therapy on 5-ALA treated SKMEL-30 cells: An efficient theranostic strategy to combat melanoma. Biomed. Pharmacother., 2014, 68(5), 657-662.
[http://dx.doi.org/10.1016/j.biopha.2014.04.001] [PMID: 24835696]
[245]
Zhang, N.; Xu, Y.; Xin, X.; Huo, P.; Zhang, Y.; Chen, H.; Feng, N.; Feng, Q.; Zhang, Z. Dual-modal imaging-guided theranostic nanocarriers based on 2-methoxyestradiol and indocyanine green. Int. J. Pharm., 2021, 592120098.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120098] [PMID: 33220381]
[246]
Rbah-Vidal, L.; Vidal, A.; Billaud, E.M.F.; Besse, S.; Ranchon-Cole, I.; Mishellany, F.; Perrot, Y.; Maigne, L.; Moins, N.; Guerquin-Kern, J.L.; Degoul, F.; Chezal, J.M.; Auzeloux, P.; Miot-Noirault, E. Theranostic approach for metastatic pigmented melanoma using ICF15002, a multimodal radiotracer for both PET imaging and targeted radionuclide therapy. Neoplasia, 2017, 19(1), 17-27.
[http://dx.doi.org/10.1016/j.neo.2016.11.001] [PMID: 27987437]
[247]
Chang, C.C.; Chang, C.H.; Shen, C.C.; Chen, C.L.; Liu, R.S.; Lin, M.H.; Wang, H.E. Synthesis and characterization of a novel radioiodinated phenylacetamide and its homolog as theranostic agents for malignant melanoma. Eur. J. Pharm. Sci., 2016, 81, 201-209.
[http://dx.doi.org/10.1016/j.ejps.2015.10.019] [PMID: 26517961]
[248]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[249]
Chi, Y.H.; Hsiao, J.K.; Lin, M.H.; Chang, C.; Lan, C.H.; Wu, H.C. Lung cancer-targeting peptides with multi-subtype indication for combinational drug delivery and molecular imaging. Theranostics, 2017, 7(6), 1612-1632.
[http://dx.doi.org/10.7150/thno.17573] [PMID: 28529640]
[250]
Mukherjee, A.; Paul, M.; Mukherjee, S. Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers, 2019, 11(5), 597.
[http://dx.doi.org/10.3390/cancers11050597] [PMID: 31035440]
[251]
Karpuz, M.; Silindir-Gunay, M.; Kursunel, M.A.; Esendagli, G.; Dogan, A.; Ozer, A.Y. Design and in vitro evaluation of folate-targeted, co-drug encapsulated theranostic liposomes for non-small cell lung cancer. J. Drug Deliv. Sci. Technol., 2020, 57101707.
[http://dx.doi.org/10.1016/j.jddst.2020.101707]
[252]
Zhang, L.; Cui, H. HAase-sensitive dual-targeting irinotecan liposomes enhance the therapeutic efficacy of lung cancer in animals. Nanotheranostics, 2018, 2(3), 280-294.
[http://dx.doi.org/10.7150/ntno.25555] [PMID: 29977740]
[253]
Prabhakar, A.; Banerjee, R. Nanobubble liposome complexes for diagnostic imaging and ultrasound-triggered drug delivery in cancers: A theranostic approach. ACS Omega, 2019, 4(13), 15567-15580.
[http://dx.doi.org/10.1021/acsomega.9b01924] [PMID: 31572858]
[254]
Lin, C.; Zhang, X.; Chen, H.; Bian, Z.; Zhang, G.; Riaz, M.K.; Tyagi, D.; Lin, G.; Zhang, Y.; Wang, J.; Lu, A.; Yang, Z. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv., 2018, 25(1), 256-266.
[http://dx.doi.org/10.1080/10717544.2018.1425777] [PMID: 29334814]
[255]
Ma, M.; Lei, M.; Tan, X.; Tan, F.; Li, N. Theranostic liposomes containing conjugated polymer dots and doxorubicin for bio-imaging and targeted therapeutic delivery. RSC Advances, 2016, 6(3), 1945-1957.
[http://dx.doi.org/10.1039/C5RA24485D]
[256]
Akbar, M.J.; Lukasewicz Ferreira, P.C.; Giorgetti, M.; Stokes, L.; Morris, C.J. Bombesin receptor-targeted liposomes for enhanced delivery to lung cancer cells. Beilstein J. Nanotechnol., 2019, 10, 2553-2562.
[http://dx.doi.org/10.3762/bjnano.10.246] [PMID: 31921534]
[257]
Liu, B.; Qiao, G.; Han, Y.; Shen, E.; Alfranca, G.; Tan, H.; Wang, L.; Pan, S.; Ma, L.; Xiong, W.; Liu, Y.; Cui, D. Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy. Acta Biomater., 2020, 117, 361-373.
[http://dx.doi.org/10.1016/j.actbio.2020.09.040] [PMID: 33007481]
[258]
Chan, M.H.; Huang, W.T.; Wang, J.; Liu, R.S.; Hsiao, M. Next-generation cancer-specific hybrid theranostic nanomaterials: MAGE-A3 NIR persistent luminescence nanoparticles conjugated to afatinib for in situ suppression of lung adenocarcinoma growth and metastasis. Adv. Sci., 2020, 7(9), 1903741.
[http://dx.doi.org/10.1002/advs.201903741] [PMID: 32382487]
[259]
Guthi, J.S.; Yang, S.G.; Huang, G.; Li, S.; Khemtong, C.; Kessinger, C.W.; Peyton, M.; Minna, J.D.; Brown, K.C.; Gao, J. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol. Pharm., 2010, 7(1), 32-40.
[http://dx.doi.org/10.1021/mp9001393] [PMID: 19708690]
[260]
Wang, S.; Zhang, Q.; Luo, X.F.; Li, J.; He, H.; Yang, F.; Di, Y.; Jin, C.; Jiang, X.G.; Shen, S.; Fu, L. Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer. Biomaterials, 2014, 35(35), 9473-9483.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.064] [PMID: 25175596]
[261]
Nigam Joshi, P.; Agawane, S.; Athalye, M.C.; Jadhav, V.; Sarkar, D.; Prakash, R. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. Mater. Sci. Eng. C, 2017, 78, 1203-1211.
[http://dx.doi.org/10.1016/j.msec.2017.03.176] [PMID: 28575959]
[262]
Malla, R.R.; Kumari, S.; Kgk, D.; Momin, S.; Nagaraju, G.P. Nanotheranostics: Their role in hepatocellular carcinoma. Crit. Rev. Oncol. Hematol., 2020, 151, 102968.
[http://dx.doi.org/10.1016/j.critrevonc.2020.102968] [PMID: 32416345]
[263]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[264]
van Dam, G.M.; Themelis, G.; Crane, L.M.A.; Harlaar, N.J.; Pleijhuis, R.G.; Kelder, W.; Sarantopoulos, A.; de Jong, J.S.; Arts, H.J.G.; van der Zee, A.G.J.; Bart, J.; Low, P.S.; Ntziachristos, V. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nat. Med., 2011, 17(10), 1315-1319.
[http://dx.doi.org/10.1038/nm.2472] [PMID: 21926976]
[265]
Tummers, Q.R.J.; Hoogstins, C.E.S.; Gaarenstroom, K.N.; de Kroon, C.D.; van Poelgeest, M.I.E.; Vuyk, J.; Bosse, T.; Smit, V.T.H.B.; van de Velde, C.J.; Cohen, A.F.; Low, P.S.; Burggraaf, J.; Vahrmeijer, A.L. Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17. Oncotarget, 2016, 7(22), 32144-32155.
[http://dx.doi.org/10.18632/oncotarget.8282] [PMID: 27014973]
[266]
Gao, X.; Wang, B.; Wei, X.; Men, K.; Zheng, F.; Zhou, Y.; Zheng, Y.; Gou, M.; Huang, M.; Guo, G.; Huang, N.; Qian, Z.; Wei, Y. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale, 2012, 4(22), 7021-7030.
[http://dx.doi.org/10.1039/c2nr32181e] [PMID: 23044718]
[267]
Javid, A.; Ahmadian, S.; Saboury, A.A.; Kalantar, S.M.; Rezaei-Zarchi, S.; Shahzad, S. Biocompatible APTES-PEG modified magnetite nanoparticles: Effective carriers of antineoplastic agents to ovarian cancer. Appl. Biochem. Biotechnol., 2014, 173(1), 36-54.
[http://dx.doi.org/10.1007/s12010-014-0740-6] [PMID: 24615524]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy