[1]
Richardson, P.G.; Sonneveld, P.; Schuster, M.W.; Irwin, D.; Stadtmauer, E.A.; Facon, T. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med., 2005, 352(24), 2487-2498.
[2]
Richardson, P.G.; Sonneveld, P.; Schuster, M.; Irwin, D.; Stadtmauer, E.; Facon, T. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: Final time-to-event results of the APEX trial. Blood, 2007, 110(10), 3557-3560.
[3]
Moreau, P.; Coiteux, V.; Hulin, C.; Leleu, X.; van de Velde, H.; Acharya, M. Prospective comparison of subcutaneous versus intravenous administration of bortezomib in patients with multiple myeloma. Haematologica, 2008, 93(12), 1908-1911.
[4]
Kristinsson, S.Y.; Anderson, W.F.; Landgren, O. Improved long-term survival in multiple myeloma up to the age of 80 years. Leukemia, 2014, 28(6), 1346-1348.
[5]
Richardson, P.G.; Barlogie, B.; Berenson, J.; Singhal, S.; Jagannath, S.; Irwin, D. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med., 2003, 348(26), 2609-2617.
[6]
Cho, J.; Kang, D.; Lee, J.Y.; Kim, K.; Kim, S.J. Impact of dose modification on intravenous bortezomib-induced peripheral neuropathy in multiple myeloma patients. Support. Care Cancer, 2014, 22(10), 2669-2675.
[7]
Pragnya, C.; Linga, V.G.; Thota, N.K.; Gundeti, S.; Digumarti, R. Bortezomib in newly diagnosed patients with multiple myeloma: A retrospective analysis from a tertiary care center in India. Indian J. Cancer, 2015, 52(4), 537-540.
[8]
Ye, Z.; Chen, J.; Xuan, Z.; Yang, W.; Chen, J. Subcutaneous bortezomib might be standard of care for patients with multiple myeloma: A systematic review and meta-analysis. Drug Des. Devel. Ther., 2019, 13, 1707-1716.
[9]
Mohty, B.; El-Cheikh, J.; Yakoub-Agha, I.; Moreau, P.; Harousseau, J.L.; Mohty, M. Peripheral neuropathy and new treatments for multiple myeloma: Background and practical recommendations. Haematologica, 2010, 95(2), 311-319.
[10]
Laforgia, M.; Laface, C.; Calabro, C.; Ferraiuolo, S.; Ungaro, V.; Tricarico, D. Peripheral neuropathy under oncologic therapies: A literature review on pathogenetic mechanisms. Int. J. Mol. Sci., 2021, 22(4), 1980.
[12]
Ellis, A.; Bennett, D.L. Neuroinflammation and the generation of neuropathic pain. Br. J. Anaesth., 2013, 111(1), 26-37.
[13]
Yan, W.; Wu, Z.; Zhang, Y.; Hong, D.; Dong, X.; Liu, L. The molecular and cellular insight into the toxicology of bortezomib-induced peripheral neuropathy. Biomed. Pharmacother., 2021, 142, 112068.
[14]
Yamamoto, S.; Egashira, N. Pathological mechanisms of bortezomib-induced peripheral neuropathy. Int. J. Mol. Sci., 2021, 22(2), 888.
[15]
Zhang, Y.; Mei, H.; Cao, Y.; Yan, X.; Yan, J.; Gao, H. Recent advances and challenges of electrode materials for flexible supercapacitors. Coord. Chem. Rev., 2021, 438, 213910.
[16]
Zhang, Y. Synthesis and electrochemical performance of MnO2/BC composite as active materials for supercapacitors. J. Anal. Appl. Pyrolysis, 2015, 111, 233-237.
[17]
Argyriou, A.A.; Iconomou, G.; Kalofonos, H.P. Bortezomib-induced peripheral neuropathy in multiple myeloma: A comprehensive review of the literature. Blood, 2008, 112(5), 1593-1599.
[18]
Cavaletti, G.; Gilardini, A.; Canta, A.; Rigamonti, L.; Rodriguez-Menendez, V.; Ceresa, C.; Marmiroli, P.; Bossi, M.; Oggioni, N.; D’Incalci, M.; De Coster, R. Bortezomib-induced peripheral neurotoxicity: A neurophysiological and pathological study in the rat. Exp. Neurol., 2007, 204(1), 317-325.
[19]
Bilinska, M.; Usnarska-Zubkiewicz, L.; Pokryszko-Dragan, A. Bortezomib-induced painful neuropathy in patients with multiple myeloma. Contemp. Oncol. (Pozn.), 2013, 17(5), 421-426.
[20]
Tariman, J.D.; Love, G.; McCullagh, E.; Sandifer, S. Peripheral neuropathy associated with novel therapies in patients with multiple myeloma: Consensus statement of the IMF Nurse Leadership Board. Clin. J. Oncol. Nurs., 2008, 12(3)(Suppl.), 29-36.
[21]
Kopito, R.R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol., 2000, 10(12), 524-530.
[22]
Strohm, L.; Behrends, C. Glia-specific autophagy dysfunction in ALS. Semin. Cell Dev. Biol., 2020, 99, 172-182.
[23]
Badros, A.; Goloubeva, O.; Dalal, J.S.; Can, I.; Thompson, J.; Rapoport, A.P. Neurotoxicity of bortezomib therapy in multiple myeloma: A single-center experience and review of the literature. Cancer, 2007, 110(5), 1042-1049.
[24]
Filosto, M.; Rossi, G.; Pelizzari, A.M.; Buzio, S.; Tentorio, M.; Broglio, L. A high-dose bortezomib neuropathy with sensory ataxia and myelin involvement. J. Neurol. Sci., 2007, 263(1-2), 40-43.
[25]
Bruna, J.; Udina, E.; Ale, A.; Vilches, J.J.; Vynckier, A.; Monbaliu, J. Neurophysiological, histological and immunohistochemical characterization of bortezomib-induced neuropathy in mice. Exp. Neurol., 2010, 223(2), 599-608.
[26]
Koksal, A.R.; Verne, G.N.; Zhou, Q. Endoplasmic reticulum stress in biological processing and disease. J. Investig. Med., 2021, 69(2), 309-315.
[27]
Qu, J.; Zou, T.; Lin, Z. The roles of the ubiquitin-proteasome system in the endoplasmic reticulum stress pathway. Int. J. Mol. Sci., 2021, 22(4), 1526.
[28]
Shin, Y.K.; Jang, S.Y.; Lee, H.K.; Jung, J.; Suh, D.J.; Seo, S.Y.; Park, H.T. Pathological adaptive responses of Schwann cells to endoplasmic reticulum stress in bortezomib-induced peripheral neuropathy. Glia, 2010, 58(16), 1961-1976.
[29]
Raasakka, A.; Ruskamo, S.; Kowal, J.; Han, H.; Baumann, A.; Myllykoski, M. Molecular structure and function of myelin protein P0 in membrane stacking. Sci. Rep., 2019, 9(1), 642.
[30]
Robinson, C.R.; Zhang, H.; Dougherty, P.M. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience, 2014, 274, 308-317.
[31]
Palanca, A.; Casafont, I.; Berciano, M.T.; Lafarga, M. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell. Mol. Life Sci., 2014, 71(10), 1961-1975.
[32]
Tomita, S.; Sekiguchi, F.; Deguchi, T.; Miyazaki, T.; Ikeda, Y.; Tsubota, M. Critical role of Cav3.2 T-type calcium channels in the peripheral neuropathy induced by bortezomib, a proteasome-inhibiting chemotherapeutic agent, in mice. Toxicology, 2019, 413, 33-39.
[33]
Candelas, M.; Reynders, A.; Arango-Lievano, M.; Neumayer, C.; Fruquiere, A.; Demes, E. Cav3.2 T-type calcium channels shape electrical firing in mouse Lamina II neurons. Sci. Rep., 2019, 9(1), 3112.
[34]
Trevisan, G.; Materazzi, S.; Fusi, C.; Altomare, A.; Aldini, G.; Lodovici, M. Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res., 2013, 73(10), 3120-3131.
[35]
Xie, J.D.; Chen, S.R.; Chen, H.; Pan, H.L. Bortezomib induces neuropathic pain through protein kinase C-mediated activation of presynaptic NMDA receptors in the spinal cord. Neuropharmacology, 2017, 123, 477-487.
[36]
Maharjan, S.; Oku, M.; Tsuda, M.; Hoseki, J.; Sakai, Y. Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci. Rep., 2014, 4, 5896.
[37]
Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol., 2014, 2, 289-295.
[38]
Napoli, I.; Noon, L.A.; Ribeiro, S.; Kerai, A.P.; Parrinello, S.; Rosenberg, L.H. A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron, 2012, 73(4), 729-742.
[39]
Perkins, N.M.; Tracey, D.J. Hyperalgesia due to nerve injury: Role of neutrophils. Neuroscience, 2000, 101(3), 745-757.
[40]
Kumar, V.; Sharma, A. Neutrophils: Cinderella of innate immune system. Int. Immunopharmacol., 2010, 10(11), 1325-1334.
[41]
Moalem, G.; Xu, K.; Yu, L. T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience, 2004, 129(3), 767-777.
[42]
Sorkin, L.S.; Xiao, W.H.; Wagner, R.; Myers, R.R. Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience, 1997, 81(1), 255-262.
[43]
Morenilla-Palao, C.; Planells-Cases, R.; García-Sanz, N.; Ferrer-Montiel, A. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J. Biol. Chem., 2004, 279(24), 25665-25672.
[44]
Binshtok, A.M.; Wang, H.; Zimmermann, K.; Amaya, F.; Vardeh, D.; Shi, L. Nociceptors are interleukin-1beta sensors. J. Neurosci., 2008, 28(52), 14062-14073.
[45]
Torii, H.; Hosoi, J.; Beissert, S.; Xu, S.; Fox, F.E.; Asahina, A. Regulation of cytokine expression in macrophages and the Langerhans cell-like line XS52 by calcitonin gene-related peptide. J. Leukoc. Biol., 1997, 61(2), 216-223.
[46]
Vellani, V.; Mapplebeck, S.; Moriondo, A.; Davis, J.B.; McNaughton, P.A. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J. Physiol., 2001, 534(Pt 3), 813-825.
[47]
Meregalli, C.; Marjanovic, I.; Scali, C.; Monza, L.; Spinoni, N.; Galliani, C. High-dose intravenous immunoglobulins reduce nerve macrophage infiltration and the severity of bortezomib-induced peripheral neurotoxicity in rats. J. Neuroinflammation, 2018, 15(1), 232.
[48]
Cata, J.P.; Weng, H.R.; Chen, J.H.; Dougherty, P.M. Altered discharges of spinal wide dynamic range neurons and down-regulation of glutamate transporter expression in rats with paclitaxel-induced hyperalgesia. Neuroscience, 2006, 138(1), 329-338.
[49]
Barton, M.J.; John, J.S.; Clarke, M.; Wright, A.; Ekberg, J. The Glia response after peripheral nerve injury: A comparison between schwann cells and olfactory ensheathing cells and their uses for neural regenerative therapies. Int. J. Mol. Sci., 2017, 18(2), 287.
[50]
Jha, M.K.; Jeon, S.; Suk, K. Glia as a link between neuroinflammation and neuropathic pain. Immune Netw., 2012, 12(2), 41-47.
[51]
Stockstill, K.; Doyle, T.M.; Yan, X.; Chen, Z.; Janes, K.; Little, J.W. Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. J. Exp. Med., 2018, 215(5), 1301-1313.
[52]
Watanabe, T.; Nagase, K.; Chosa, M.; Tobinai, K. Schwann cell autophagy induced by SAHA, 17-AAG, or clonazepam can reduce bortezomib-induced peripheral neuropathy. Br. J. Cancer, 2010, 103(10), 1580-1587.
[53]
Bang, Y.; Kang, B.Y.; Choi, H.J. Preconditioning stimulus of proteasome inhibitor enhances aggresome formation and autophagy in differentiated SH-SY5Y cells. Neurosci. Lett., 2014, 566, 263-268.
[54]
Meregalli, C.; Chiorazzi, A.; Carozzi, V.A.; Canta, A.; Sala, B.; Colombo, M. Evaluation of tubulin polymerization and chronic inhibition of proteasome as citotoxicity mechanisms in bortezomib-induced peripheral neuropathy. Cell Cycle, 2014, 13(4), 612-621.
[55]
Gomez-Sanchez, J.A.; Carty, L.; Iruarrizaga-Lejarreta, M.; Palomo-Irigoyen, M.; Varela-Rey, M.; Griffith, M. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J. Cell Biol., 2015, 210(1), 153-168.
[56]
Li, R.; Li, D.; Wu, C.; Ye, L.; Wu, Y.; Yuan, Y. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics, 2020, 10(4), 1649-1677.
[57]
Bouchenaki, H.; Danigo, A.; Sturtz, F.; Hajj, R.; Magy, L.; Demiot, C. An overview of ongoing clinical trials assessing pharmacological therapeutic strategies to manage chemotherapy-induced peripheral neuropathy, based on preclinical studies in rodent models. Fundam. Clin. Pharmacol., 2021, 35(3), 506-523.
[58]
Maschio, M.; Zarabla, A.; Maialetti, A.; Marchesi, F.; Giannarelli, D.; Gumenyuk, S.; Pisani, F.; Renzi, D.; Galiè, E.; Mengarelli, A. Prevention of bortezomib-related peripheral neuropathy with docosahexaenoic acid and α-lipoic acid in patients with multiple myeloma: Preliminary data. Integr. Cancer Ther., 2018, 17(4), 1115-1124.