Review Article

生活方式和慢性疾病管理的电化学适应

卷 30, 期 8, 2023

发表于: 21 October, 2022

页: [895 - 909] 页: 15

弟呕挨: 10.2174/0929867329666220520111715

价格: $65

摘要

在过去的十年中,研究人员研究了电化学传感技术,目的是制造可穿戴的使用点平台。这些可穿戴平台能够无创跟踪临床相关的生物标志物,并对用户的健康状况进行全面评估。由于许多显著的操作优势,基于适体的传感正在获得关注。基于适体的传感器具有长期稳定性、抗变性和高灵敏度等特性。将电化学传感与基于适体的生物识别结合使用是有优势的,因为它提供了显著的好处,如更低的检出限,更广泛的操作范围,以及最重要的是,使用无标签方法进行检测的能力。本文对电化学吸附的现状进行了展望。这篇综述探讨了葡萄糖、皮质醇等生物标志物检测在生活方式和慢性疾病监测中的意义。此外,本文还将对该领域目前面临的挑战和前景进行全面评估。

关键词: 电化学,感应传感器,生物流体,生物传感器,生物标志物,慢性疾病。

[1]
Upasham, S.; Tanak, A.; Prasad, S. Cardiac troponin biosensors: where are we now? Adv. Health Care Technol., 2018, 4, 1-13.
[http://dx.doi.org/10.2147/AHCT.S138543]
[2]
Morales, M.A.; Halpern, J.M. Guide to selecting a biorecognition element for biosensors. Bioconjug. Chem., 2018, 29(10), 3231-3239.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00592] [PMID: 30216055]
[3]
Parkhey, P.; Mohan, S.V. Biosensing applications of microbial fuel cell. In: Microbial Electrochemical Technology; Mohan, S.V.; Varjani, S.; Pandey, A.B.T-M.E.T., Eds.; Elsevier, 2019; pp. 977-997.
[http://dx.doi.org/10.1016/B978-0-444-64052-9.00040-6]
[4]
Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev., 2010, 39(5), 1747-1763.
[http://dx.doi.org/10.1039/b714449k] [PMID: 20419217]
[5]
Bandodkar, A.J.; Jeang, W.J.; Ghaffari, R.; Rogers, J.A. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2019, 12(1), 1-22.
[http://dx.doi.org/10.1146/annurev-anchem-061318-114910] [PMID: 30786214]
[6]
Guy, O.J.; Walker, K-A.D. Graphene functionalization for biosensor applications. Silicon Carbide Biotechnol., 2016, 85-141.
[7]
Bard, J. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons Inc.: USA, 2001, p. 96.
[8]
Garrote, B.L.; Santos, A.; Bueno, P.R. Perspectives on and precautions for the uses of electric spectroscopic methods in label-free biosensing applications. ACS Sens., 2019, 4(9), 2216-2227.
[http://dx.doi.org/10.1021/acssensors.9b01177] [PMID: 31394901]
[9]
Bahadır, E.B.; Sezgintürk, M.K. A review on impedimetric biosensors. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 248-262.
[http://dx.doi.org/10.3109/21691401.2014.942456] [PMID: 25211230]
[10]
Shadman, S.M.; Daneshi, M.; Shafiei, F.; Azimimehr, M.; Khorasgani, M.R.; Sadeghian, M.; Motaghi, H.; Mehrgardi, M.A. Aptamer-based electrochemical biosensors. In: Electrochem. Biosens; 2019; 19, p. 5435.
[http://dx.doi.org/10.1016/B978-0-12-816491-4.00008-5]
[11]
Jarczewska, M.; Górski, Ł.; Malinowska, E. Electrochemical aptamer-based biosensors as potential tools for clinical diagnostics. Anal. Methods, 2016, 8(19), 3861-3877.
[http://dx.doi.org/10.1039/C6AY00499G]
[12]
Mairal, T.; Ozalp, V.C.; Lozano Sánchez, P.; Mir, M.; Katakis, I.; O’Sullivan, C.K. Aptamers: molecular tools for analytical applications. Anal. Bioanal. Chem., 2008, 390(4), 989-1007.
[http://dx.doi.org/10.1007/s00216-007-1346-4] [PMID: 17581746]
[13]
Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: Problems, solutions and prospects. Acta Nat. (Engl. Ed.), 2013, 5(4), 34-43.
[http://dx.doi.org/10.32607/20758251-2013-5-4-34-43] [PMID: 24455181]
[14]
Kumar Kulabhusan, P.; Hussain, B.; Yüce, M. Current perspectives on aptamers as diagnostic tools and therapeutic agents. Pharmaceutics, 2020, 12(7), 1-23.
[http://dx.doi.org/10.3390/pharmaceutics12070646] [PMID: 32659966]
[15]
Zhao, K.; Yan, X.; Gu, Y.; Kang, Z.; Bai, Z.; Cao, S.; Liu, Y.; Zhang, X.; Zhang, Y. Self-powered photoelectrochemical biosensor based on CdS/RGO/ZnO nanowire array heterostructure. Small, 2016, 12(2), 245-251.
[http://dx.doi.org/10.1002/smll.201502042] [PMID: 26618499]
[16]
Guo, K.T.; Ziemer, G.; Paul, A.; Wendel, H.P.; Wendel, H.P. CELL-SELEX: Novel perspectives of aptamer-based therapeutics. Int. J. Mol. Sci., 2008, 9(4), 668-678.
[http://dx.doi.org/10.3390/ijms9040668] [PMID: 19325777]
[17]
Shum, K.T.; Zhou, J.; Rossi, J.J. Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel), 2013, 6(12), 1507-1542.
[http://dx.doi.org/10.3390/ph6121507] [PMID: 24287493]
[18]
Kanwar, J.R.; Shankaranarayanan, J.S.; Gurudevan, S.; Kanwar, R.K. Aptamer-based therapeutics of the past, present and future: from the perspective of eye-related diseases. Drug Discov. Today, 2014, 19(9), 1309-1321.
[http://dx.doi.org/10.1016/j.drudis.2014.02.009] [PMID: 24598791]
[19]
Lee, J.F.; Stovall, G.M.; Ellington, A.D. Aptamer therapeutics advance. Curr. Opin. Chem. Biol., 2006, 10(3), 282-289.
[http://dx.doi.org/10.1016/j.cbpa.2006.03.015] [PMID: 16621675]
[20]
Bruno, J.G. Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules, 2015, 20(4), 6866-6887.
[http://dx.doi.org/10.3390/molecules20046866] [PMID: 25913927]
[21]
Chen, C.K.; Kuo, T.L.; Chan, P.C.; Lin, L.Y. Subtractive SELEX against two heterogeneous target samples: numerical simulations and analysis. Comput. Biol. Med., 2007, 37(6), 750-759.
[http://dx.doi.org/10.1016/j.compbiomed.2006.06.015] [PMID: 16920093]
[22]
Cerchia, L.; Ducongé, F.; Pestourie, C.; Boulay, J.; Aissouni, Y.; Gombert, K.; Tavitian, B.; de Franciscis, V.; Libri, D. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol., 2005, 3(4), e123.
[http://dx.doi.org/10.1371/journal.pbio.0030123] [PMID: 15769183]
[23]
Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv., 2019, 37(1), 28-50.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.001] [PMID: 30408510]
[24]
Ohuchi, S.P.; Ohtsu, T.; Nakamura, Y. Selection of RNA aptamers against recombinant transforming growth factor-β type III receptor displayed on cell surface. Biochimie, 2006, 88(7), 897-904.
[http://dx.doi.org/10.1016/j.biochi.2006.02.004] [PMID: 16540230]
[25]
Mayer, G.; Ahmed, M.S.L.; Dolf, A.; Endl, E.; Knolle, P.A.; Famulok, M. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc., 2010, 5(12), 1993-2004.
[http://dx.doi.org/10.1038/nprot.2010.163] [PMID: 21127492]
[26]
Parashar, A. Aptamers in therapeutics. J. Clin. Diagn. Res., 2016, 10(6), BE01-BE06.
[http://dx.doi.org/10.7860/JCDR/2016/18712.7922] [PMID: 27504277]
[27]
Ogawa, N.; Biggin, M.D. High-throughput SELEX determination of DNA sequences bound by transcription factors in vitro. Methods Mol. Biol., 2012, 786, 51-63.
[http://dx.doi.org/10.1007/978-1-61779-292-2_3] [PMID: 21938619]
[28]
Ng, E.W.M.; Shima, D.T.; Calias, P.; Cunningham, E.T., Jr; Guyer, D.R.; Adamis, A.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov., 2006, 5(2), 123-132.
[http://dx.doi.org/10.1038/nrd1955] [PMID: 16518379]
[29]
Alkhamis, O.; Canoura, J.; Yu, H.; Liu, Y.; Xiao, Y. Innovative engineering and sensing strategies for aptamer-based small-molecule detection. Trends Anal. Chem., 2019, 121, 115699.
[http://dx.doi.org/10.1016/j.trac.2019.115699] [PMID: 32863483]
[30]
Yoo, H.; Jo, H.; Oh, S.S. Detection and beyond: Challenges and advances in aptamer-based biosensors. Mater. Adv., 2020, 1(8), 2663-2687.
[http://dx.doi.org/10.1039/D0MA00639D]
[31]
Phopin, K.; Tantimongcolwat, T. Pesticide aptasensors-state of the art and perspectives. Sensors (Basel), 2020, 20(23), E6809.
[http://dx.doi.org/10.3390/s20236809] [PMID: 33260648]
[32]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121]
[33]
Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the therapeutics and diagnostics pipelines. Theranostics, 2018, 8(15), 4016-4032.
[http://dx.doi.org/10.7150/thno.25958] [PMID: 30128033]
[34]
Li, J.; Fu, H-E.; Wu, L-J.; Zheng, A-X.; Chen, G-N.; Yang, H-H. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Anal. Chem., 2012, 84(12), 5309-5315.
[http://dx.doi.org/10.1021/ac3006186] [PMID: 22642720]
[35]
Jiang, B.; Li, F.; Yang, C.; Xie, J.; Xiang, Y.; Yuan, R. Aptamer pseudoknot-functionalized electronic sensor for reagentless and single-step detection of immunoglobulin E in human serum. Anal. Chem., 2015, 87(5), 3094-3098.
[http://dx.doi.org/10.1021/acs.analchem.5b00041] [PMID: 25666563]
[36]
Darfeuille, F.; Reigadas, S.; Hansen, J.B.; Orum, H.; Di Primo, C.; Toulmé, J-J. Aptamers targeted to an RNA hairpin show improved specificity compared to that of complementary oligonucleotides. Biochemistry, 2006, 45(39), 12076-12082.
[http://dx.doi.org/10.1021/bi0606344] [PMID: 17002307]
[37]
Leung, K-H.; He, B.; Yang, C.; Leung, C-H.; Wang, H-M.D.; Ma, D-L. Development of an aptamer-based sensing platform for metal ions, proteins, and small molecules through terminal deoxynucleotidyl transferase induced G-quadruplex formation. ACS Appl. Mater. Interfaces, 2015, 7(43), 24046-24052.
[http://dx.doi.org/10.1021/acsami.5b08314] [PMID: 26449329]
[38]
Chang, A.L.; McKeague, M.; Liang, J.C.; Smolke, C.D. Kinetic and equilibrium binding characterization of aptamers to small molecules using a label-free, sensitive, and scalable platform. Anal. Chem., 2014, 86(7), 3273-3278.
[http://dx.doi.org/10.1021/ac5001527] [PMID: 24548121]
[39]
Esposito, V.; Scuotto, M.; Capuozzo, A.; Santamaria, R.; Varra, M.; Mayol, L.; Virgilio, A.; Galeone, A. A straightforward modification in the thrombin binding aptamer improving the stability, affinity to thrombin and nuclease resistance. Org. Biomol. Chem., 2014, 12(44), 8840-8843.
[http://dx.doi.org/10.1039/C4OB01475H] [PMID: 25296283]
[40]
Deng, B.; Lin, Y.; Wang, C.; Li, F.; Wang, Z.; Zhang, H.; Li, X-F.; Le, X.C. Aptamer binding assays for proteins: the thrombin example--a review. Anal. Chim. Acta, 2014, 837, 1-15.
[http://dx.doi.org/10.1016/j.aca.2014.04.055] [PMID: 25000852]
[41]
Lin, K-C.; Jagannath, B.; Muthukumar, S.; Prasad, S. Sub-picomolar label-free detection of thrombin using electrochemical impedance spectroscopy of aptamer-functionalized MoS2. Analyst (Lond.), 2017, 142(15), 2770-2780.
[http://dx.doi.org/10.1039/C7AN00548B] [PMID: 28650005]
[42]
Zhou, W.; Huang, P.J.; Ding, J.; Liu, J. Aptamer-based biosensors for biomedical diagnostics. Analyst (Lond.), 2014, 139(11), 2627-2640.
[http://dx.doi.org/10.1039/c4an00132j] [PMID: 24733714]
[43]
Bernard, E.D.; Nguyen, K.C.; DeRosa, M.C.; Tayabali, A.F.; Aranda-Rodriguez, R. Development of a bead-based aptamer/antibody detection system for C-reactive protein. Anal. Biochem., 2015, 472, 67-74.
[http://dx.doi.org/10.1016/j.ab.2014.11.017] [PMID: 25481739]
[44]
Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev., 2013, 42(12), 5425-5438.
[http://dx.doi.org/10.1039/c3cs35518g] [PMID: 23508125]
[45]
Lai, R.Y.; Plaxco, K.W.; Heeger, A.J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal. Chem., 2007, 79(1), 229-233.
[http://dx.doi.org/10.1021/ac061592s] [PMID: 17194144]
[46]
Pali, M.; Jagannath, B.; Lin, K-C.; Upasham, S.; Sankhalab, D.; Upashama, S.; Muthukumar, S.; Prasad, S. CATCH (Cortisol Apta WATCH): ‘Bio-Mimic Alarm’ to track anxiety, stress, immunity in human sweat. Electrochim. Acta, 2021, 390, 138834.
[http://dx.doi.org/10.1016/j.electacta.2021.138834]
[47]
Liao, W.; Randall, B.A.; Alba, N.A.; Cui, X.T. Conducting polymer-based impedimetric aptamer biosensor for in situ detection. In: Anal. Bioanal. Chem; , 2008; 392, pp. (5)861-864.
[http://dx.doi.org/10.1007/s00216-008-2354-8]
[48]
Pan, C.; Guo, M.; Nie, Z.; Xiao, X.; Yao, S. Aptamer-based electrochemical sensor for label-free recognition and detection of cancer cells. Electroanalysis, 2009, 21(11), 1321-1326.
[http://dx.doi.org/10.1002/elan.200804563]
[49]
Salek-Maghsoudi, A.; Vakhshiteh, F.; Torabi, R.; Hassani, S.; Ganjali, M.R.; Norouzi, P.; Hosseini, M.; Abdollahi, M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens. Bioelectron., 2018, 99, 122-135.
[http://dx.doi.org/10.1016/j.bios.2017.07.047] [PMID: 28750336]
[50]
Castle, J.R.; Ward, W.K. Amperometric glucose sensors: sources of error and potential benefit of redundancy. J. Diabetes Sci. Technol., 2010, 4(1), 221-225.
[http://dx.doi.org/10.1177/193229681000400127] [PMID: 20167187]
[51]
Kim, S.H.; Nam, O.; Jin, E.; Gu, M.B. A new coccolith modified electrode-based biosensor using a cognate pair of aptamers with sandwich-type binding. Biosens. Bioelectron., 2019, 123, 160-166.
[http://dx.doi.org/10.1016/j.bios.2018.08.021] [PMID: 30139622]
[52]
Arroyo-Currás, N.; Dauphin-Ducharme, P.; Ortega, G.; Ploense, K.L.; Kippin, T.E.; Plaxco, K.W. Subsecond-resolved molecular measurements in the living body using chronoamperometrically interrogated aptamer-based sensors. ACS Sens., 2018, 3(2), 360-366.
[http://dx.doi.org/10.1021/acssensors.7b00787] [PMID: 29124939]
[53]
Jo, H.; Her, J.; Lee, H.; Shim, Y.B.; Ban, C. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta, 2017, 165, 442-448.
[http://dx.doi.org/10.1016/j.talanta.2016.12.091] [PMID: 28153281]
[54]
Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ., 2018, 95(2), 197-206.
[http://dx.doi.org/10.1021/acs.jchemed.7b00361]
[55]
Li, X.; Liu, J.; Zhang, S. Electrochemical analysis of two analytes based on a dual-functional aptamer DNA sequence. Chem. Commun. (Camb.), 2010, 46(4), 595-597.
[http://dx.doi.org/10.1039/B916304B] [PMID: 20062873]
[56]
Pellitero, M.A.; Curtis, S.D.; Arroyo-Currás, N. Interrogation of electrochemical aptamer-based sensors via peak-to-peak separation in cyclic voltammetry improves the temporal stability and batch-to-batch variability in biological fluids. ACS Sens., 2021, 6(3), 1199-1207.
[http://dx.doi.org/10.1021/acssensors.0c02455] [PMID: 33599479]
[57]
Olowu, R.A.; Arotiba, O.; Mailu, S.N.; Waryo, T.T.; Baker, P.; Iwuoha, E. Electrochemical Aptasensor for Endocrine Disrupting 17β-Estradiol Based on a Poly(3,4-Ethylenedioxylthiopene)-Gold Nanocomposite Platform. Sensors, 2010, 10(11), 9872-9890.
[http://dx.doi.org/10.3390/s101109872]
[58]
Bang, G.S.; Cho, S.; Kim, B.G. A novel electrochemical detection method for aptamer biosensors. Biosens. Bioelectron., 2005, 21(6), 863-870.
[http://dx.doi.org/10.1016/j.bios.2005.02.002] [PMID: 16257654]
[59]
Xiao, Y.; Lubin, A.A.; Heeger, A.J.; Plaxco, K.W. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed., 2005, 44(34), 5456-5459.
[http://dx.doi.org/10.1002/anie.200500989] [PMID: 16044476]
[60]
Settu, K.; Liu, J.T.; Chen, C.J.; Tsai, J.Z. Development of carbon-graphene-based aptamer biosensor for EN2 protein detection. Anal. Biochem., 2017, 534, 99-107.
[http://dx.doi.org/10.1016/j.ab.2017.07.012] [PMID: 28709900]
[61]
Nahir, T.M.; Clark, R.A.; Bowden, E.F. Linear-sweep voltammetry of irreversible electron transfer in surface-confined species using the marcus theory. Anal. Chem., 1994, 66(15), 2595-2598.
[http://dx.doi.org/10.1021/ac00087a027]
[62]
Freeman, R.; Li, Y.; Tel-Vered, R.; Sharon, E.; Elbaz, J.; Willner, I. Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst (Lond.), 2009, 134(4), 653-656.
[http://dx.doi.org/10.1039/b822836c] [PMID: 19305912]
[63]
Scott, K. Electrochemical principles and characterization of bioelectrochemical systems. In: Microbial Electrochemical and Fuel Cells: Fundamentals and Applications; Elsevier, 2016; pp. 29-66.
[http://dx.doi.org/10.1016/B978-1-78242-375-1.00002-2]
[64]
Lane, R.F.; Hubbard, A.T. Differential double pulse voltammetry at chemically modified platinum electrodes for in vivo determination of catecholamines. Anal. Chem., 1976, 48(9), 1287-1292.
[http://dx.doi.org/10.1021/ac50003a009] [PMID: 952392]
[65]
Ding, C.; Ge, Y.; Lin, J.M. Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles. Biosens. Bioelectron., 2010, 25(6), 1290-1294.
[http://dx.doi.org/10.1016/j.bios.2009.10.017] [PMID: 19914815]
[66]
Wang, J.; Munir, A.; Li, Z.; Zhou, H.S. Aptamer-Au NPs conjugates-accumulated methylene blue for the sensitive electrochemical immunoassay of protein. Talanta, 2010, 81(1-2), 63-67.
[http://dx.doi.org/10.1016/j.talanta.2009.11.035] [PMID: 20188888]
[67]
Centi, S.; Sanmartin, L.B.; Tombelli, S.; Palchetti, I.; Mascini, M. Detection of C Reactive Protein (CRP) in serum by an electrochemical aptamer-based sandwich assay. Electroanalysis, 2009, 21(11), 1309-1315.
[http://dx.doi.org/10.1002/elan.200804560]
[68]
Du, Y.; Li, B.; Wang, F.; Dong, S. Au nanoparticles grafted sandwich platform used amplified small molecule electrochemical aptasensor. Biosens. Bioelectron., 2009, 24(7), 1979-1983.
[http://dx.doi.org/10.1016/j.bios.2008.10.019] [PMID: 19101135]
[69]
Li, L.; Zhao, H.; Chen, Z.; Mu, X.; Guo, L. Aptamer biosensor for label-free square-wave voltammetry detection of angiogenin. Biosens. Bioelectron., 2011, 30(1), 261-266.
[http://dx.doi.org/10.1016/j.bios.2011.09.022] [PMID: 22018671]
[70]
Noh, S.; Kim, J.; Park, C.; Min, J.; Lee, T. Fabrication of an electrochemical aptasensor composed of multifunctional DNA three-way junction on au microgap electrode for interferon gamma detection in human serum. Biomedicines, 2021, 9(6), 692.
[http://dx.doi.org/10.3390/biomedicines9060692] [PMID: 34207431]
[71]
Biyani, M.; Kawai, K.; Kitamura, K.; Chikae, M.; Biyani, M.; Ushijima, H.; Tamiya, E.; Yoneda, T.; Takamura, Y. PEP-on-DEP: A competitive peptide-based disposable electrochemical aptasensor for renin diagnostics. Biosens. Bioelectron., 2016, 84, 120-125.
[http://dx.doi.org/10.1016/j.bios.2015.12.078] [PMID: 26746799]
[72]
Kim, Y-J.; Kim, Y.S.; Niazi, J.H.; Gu, M.B. Electrochemical aptasensor for tetracycline detection. Bioprocess Biosyst. Eng., 2010, 33(1), 31-37.
[http://dx.doi.org/10.1007/s00449-009-0371-4] [PMID: 19701778]
[73]
Feng, L.; Chen, Y.; Ren, J.; Qu, X. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials, 2011, 32(11), 2930-2937.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.002] [PMID: 21256585]
[74]
Amouzadeh Tabrizi, M.; Shamsipur, M.; Farzin, L. A high sensitive electrochemical aptasensor for the determination of VEGF(165) in serum of lung cancer patient. Biosens. Bioelectron., 2015, 74, 764-769.
[http://dx.doi.org/10.1016/j.bios.2015.07.032] [PMID: 26217879]
[75]
Liu, N.; Song, J.; Lu, Y.; Davis, J.J.; Gao, F.; Luo, X. Electrochemical aptasensor for ultralow fouling cancer cell quantification in complex biological media based on designed branched peptides. Anal. Chem., 2019, 91(13), 8334-8340.
[http://dx.doi.org/10.1021/acs.analchem.9b01129] [PMID: 31121092]
[76]
Hashkavayi, A.B.; Raoof, J.B.; Ojani, R.; Kavoosian, S. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells. Biosens. Bioelectron., 2017, 92, 630-637.
[http://dx.doi.org/10.1016/j.bios.2016.10.042] [PMID: 27829554]
[77]
Ali, M.H.; Elsherbiny, M.E.; Emara, M. Updates on aptamer research. Int. J. Mol. Sci., 2019, 20(10), E2511.
[http://dx.doi.org/10.3390/ijms20102511] [PMID: 31117311]
[78]
Chen, A.; Yang, S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron., 2015, 71, 230-242.
[http://dx.doi.org/10.1016/j.bios.2015.04.041] [PMID: 25912679]
[79]
Shen, Z.; Ni, S.; Yang, W.; Sun, W.; Yang, G.; Liu, G. Redox probes tagged electrochemical aptasensing device for simultaneous detection of multiple cytokines in real time. Sens. Actuators B Chem., 2021, 336, 129747.
[http://dx.doi.org/10.1016/j.snb.2021.129747]
[80]
Ganguly, A.; Lin, K.C.; Muthukumar, S.; Prasad, S. Autonomous, real-time monitoring electrochemical aptasensor for circadian tracking of cortisol hormone in sub-microliter volumes of passively eluted human sweat. ACS Sens., 2021, 6(1), 63-72.
[http://dx.doi.org/10.1021/acssensors.0c01754] [PMID: 33382251]
[81]
Tertiş, M.; Ciui, B.; Suciu, M.; Săndulescu, R.; Cristea, C. Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection. Electrochim. Acta, 2017, 258, 1208-1218.
[http://dx.doi.org/10.1016/j.electacta.2017.11.176]
[82]
Sun, D.; Lin, X.; Lu, J.; Wei, P.; Luo, Z.; Lu, X.; Chen, Z.; Zhang, L. DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme. Biosens. Bioelectron., 2019, 142, 111578.
[http://dx.doi.org/10.1016/j.bios.2019.111578] [PMID: 31422223]
[83]
Liu, Q.; Yue, X.; Li, Y.; Wu, F.; Meng, M.; Yin, Y.; Xi, R. A novel electrochemical aptasensor for exosomes determination and release based on specific host-guest interactions between cucurbit [7]uril and ferrocene. Talanta, 2021, 232, 122451.
[http://dx.doi.org/10.1016/j.talanta.2021.122451] [PMID: 34074435]
[84]
Chekin, F.; Vasilescu, A.; Jijie, R.; Singh, S.K.; Kurungot, S.; Iancu, M.; Badea, G.; Boukherroub, R.; Szunerits, S. Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode. Sens. Actuators B Chem., 2018, 262, 180-187.
[http://dx.doi.org/10.1016/j.snb.2018.01.215]
[85]
Yu, Z.; Sutlief, A.L.; Lai, R.Y. Towards the development of a sensitive and selective electrochemical aptamer-based ampicillin sensor. Sens. Actuators B Chem., 2018, 258, 722-729.
[http://dx.doi.org/10.1016/j.snb.2017.11.193]
[86]
Wu, Y.; Lai, R.Y. Tunable signal-off and signal-on electrochemical cisplatin sensor. Anal. Chem., 2017, 89(18), 9984-9989.
[http://dx.doi.org/10.1021/acs.analchem.7b02353] [PMID: 28799328]
[87]
Rauf, S.; Lahcen, A.A.; Aljedaibi, A.; Beduk, T.; Ilton de Oliveira Filho, J.; Salama, K.N. Gold nanostructured laser-scribed graphene: A new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosens. Bioelectron., 2021, 180, 113116.
[http://dx.doi.org/10.1016/j.bios.2021.113116] [PMID: 33662847]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy