Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Electrochemical Aptasensing for Lifestyle and Chronic Disease Management

Author(s): Sayali Upasham, Madhavi Pali, Badrinath Jagannath, Kai-Chun Lin and Shalini Prasad*

Volume 30, Issue 8, 2023

Published on: 21 October, 2022

Page: [895 - 909] Pages: 15

DOI: 10.2174/0929867329666220520111715

Price: $65

Abstract

Over the past decade, researchers have investigated electrochemical sensing for the purpose of fabricating wearable point-of-use platforms. These wearable platforms have the ability to non-invasively track biomarkers that are clinically relevant and provide a comprehensive evaluation of the user’s health. Due to many significant operational advantages, aptamer-based sensing is gaining traction.Aptamer-based sensors have properties like long-term stability, resistance to denaturation, and high sensitivity. Using electrochemical sensing with aptamer-based biorecognition is advantageous because it provides significant benefits like lower detection limits, a wider range of operations, and, most importantly, the ability to detect using a label-free approach. This paper provides an outlook into the current state of electrochemical aptasensing. This review looks into the significance of the detection of biomarkers like glucose, cortisol etc., for the purpose of lifestyle and chronic disease monitoring. Moreover, this review will also provide a comprehensive evaluation of the current challenges and prospects in this field.

Keywords: Electrochemical, aptasensor, biofluid, biosensor, biomarker, chronic diseases.

[1]
Upasham, S.; Tanak, A.; Prasad, S. Cardiac troponin biosensors: where are we now? Adv. Health Care Technol., 2018, 4, 1-13.
[http://dx.doi.org/10.2147/AHCT.S138543]
[2]
Morales, M.A.; Halpern, J.M. Guide to selecting a biorecognition element for biosensors. Bioconjug. Chem., 2018, 29(10), 3231-3239.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00592] [PMID: 30216055]
[3]
Parkhey, P.; Mohan, S.V. Biosensing applications of microbial fuel cell. In: Microbial Electrochemical Technology; Mohan, S.V.; Varjani, S.; Pandey, A.B.T-M.E.T., Eds.; Elsevier, 2019; pp. 977-997.
[http://dx.doi.org/10.1016/B978-0-444-64052-9.00040-6]
[4]
Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev., 2010, 39(5), 1747-1763.
[http://dx.doi.org/10.1039/b714449k] [PMID: 20419217]
[5]
Bandodkar, A.J.; Jeang, W.J.; Ghaffari, R.; Rogers, J.A. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2019, 12(1), 1-22.
[http://dx.doi.org/10.1146/annurev-anchem-061318-114910] [PMID: 30786214]
[6]
Guy, O.J.; Walker, K-A.D. Graphene functionalization for biosensor applications. Silicon Carbide Biotechnol., 2016, 85-141.
[7]
Bard, J. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons Inc.: USA, 2001, p. 96.
[8]
Garrote, B.L.; Santos, A.; Bueno, P.R. Perspectives on and precautions for the uses of electric spectroscopic methods in label-free biosensing applications. ACS Sens., 2019, 4(9), 2216-2227.
[http://dx.doi.org/10.1021/acssensors.9b01177] [PMID: 31394901]
[9]
Bahadır, E.B.; Sezgintürk, M.K. A review on impedimetric biosensors. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 248-262.
[http://dx.doi.org/10.3109/21691401.2014.942456] [PMID: 25211230]
[10]
Shadman, S.M.; Daneshi, M.; Shafiei, F.; Azimimehr, M.; Khorasgani, M.R.; Sadeghian, M.; Motaghi, H.; Mehrgardi, M.A. Aptamer-based electrochemical biosensors. In: Electrochem. Biosens; 2019; 19, p. 5435.
[http://dx.doi.org/10.1016/B978-0-12-816491-4.00008-5]
[11]
Jarczewska, M.; Górski, Ł.; Malinowska, E. Electrochemical aptamer-based biosensors as potential tools for clinical diagnostics. Anal. Methods, 2016, 8(19), 3861-3877.
[http://dx.doi.org/10.1039/C6AY00499G]
[12]
Mairal, T.; Ozalp, V.C.; Lozano Sánchez, P.; Mir, M.; Katakis, I.; O’Sullivan, C.K. Aptamers: molecular tools for analytical applications. Anal. Bioanal. Chem., 2008, 390(4), 989-1007.
[http://dx.doi.org/10.1007/s00216-007-1346-4] [PMID: 17581746]
[13]
Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: Problems, solutions and prospects. Acta Nat. (Engl. Ed.), 2013, 5(4), 34-43.
[http://dx.doi.org/10.32607/20758251-2013-5-4-34-43] [PMID: 24455181]
[14]
Kumar Kulabhusan, P.; Hussain, B.; Yüce, M. Current perspectives on aptamers as diagnostic tools and therapeutic agents. Pharmaceutics, 2020, 12(7), 1-23.
[http://dx.doi.org/10.3390/pharmaceutics12070646] [PMID: 32659966]
[15]
Zhao, K.; Yan, X.; Gu, Y.; Kang, Z.; Bai, Z.; Cao, S.; Liu, Y.; Zhang, X.; Zhang, Y. Self-powered photoelectrochemical biosensor based on CdS/RGO/ZnO nanowire array heterostructure. Small, 2016, 12(2), 245-251.
[http://dx.doi.org/10.1002/smll.201502042] [PMID: 26618499]
[16]
Guo, K.T.; Ziemer, G.; Paul, A.; Wendel, H.P.; Wendel, H.P. CELL-SELEX: Novel perspectives of aptamer-based therapeutics. Int. J. Mol. Sci., 2008, 9(4), 668-678.
[http://dx.doi.org/10.3390/ijms9040668] [PMID: 19325777]
[17]
Shum, K.T.; Zhou, J.; Rossi, J.J. Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel), 2013, 6(12), 1507-1542.
[http://dx.doi.org/10.3390/ph6121507] [PMID: 24287493]
[18]
Kanwar, J.R.; Shankaranarayanan, J.S.; Gurudevan, S.; Kanwar, R.K. Aptamer-based therapeutics of the past, present and future: from the perspective of eye-related diseases. Drug Discov. Today, 2014, 19(9), 1309-1321.
[http://dx.doi.org/10.1016/j.drudis.2014.02.009] [PMID: 24598791]
[19]
Lee, J.F.; Stovall, G.M.; Ellington, A.D. Aptamer therapeutics advance. Curr. Opin. Chem. Biol., 2006, 10(3), 282-289.
[http://dx.doi.org/10.1016/j.cbpa.2006.03.015] [PMID: 16621675]
[20]
Bruno, J.G. Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules, 2015, 20(4), 6866-6887.
[http://dx.doi.org/10.3390/molecules20046866] [PMID: 25913927]
[21]
Chen, C.K.; Kuo, T.L.; Chan, P.C.; Lin, L.Y. Subtractive SELEX against two heterogeneous target samples: numerical simulations and analysis. Comput. Biol. Med., 2007, 37(6), 750-759.
[http://dx.doi.org/10.1016/j.compbiomed.2006.06.015] [PMID: 16920093]
[22]
Cerchia, L.; Ducongé, F.; Pestourie, C.; Boulay, J.; Aissouni, Y.; Gombert, K.; Tavitian, B.; de Franciscis, V.; Libri, D. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol., 2005, 3(4), e123.
[http://dx.doi.org/10.1371/journal.pbio.0030123] [PMID: 15769183]
[23]
Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv., 2019, 37(1), 28-50.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.001] [PMID: 30408510]
[24]
Ohuchi, S.P.; Ohtsu, T.; Nakamura, Y. Selection of RNA aptamers against recombinant transforming growth factor-β type III receptor displayed on cell surface. Biochimie, 2006, 88(7), 897-904.
[http://dx.doi.org/10.1016/j.biochi.2006.02.004] [PMID: 16540230]
[25]
Mayer, G.; Ahmed, M.S.L.; Dolf, A.; Endl, E.; Knolle, P.A.; Famulok, M. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc., 2010, 5(12), 1993-2004.
[http://dx.doi.org/10.1038/nprot.2010.163] [PMID: 21127492]
[26]
Parashar, A. Aptamers in therapeutics. J. Clin. Diagn. Res., 2016, 10(6), BE01-BE06.
[http://dx.doi.org/10.7860/JCDR/2016/18712.7922] [PMID: 27504277]
[27]
Ogawa, N.; Biggin, M.D. High-throughput SELEX determination of DNA sequences bound by transcription factors in vitro. Methods Mol. Biol., 2012, 786, 51-63.
[http://dx.doi.org/10.1007/978-1-61779-292-2_3] [PMID: 21938619]
[28]
Ng, E.W.M.; Shima, D.T.; Calias, P.; Cunningham, E.T., Jr; Guyer, D.R.; Adamis, A.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov., 2006, 5(2), 123-132.
[http://dx.doi.org/10.1038/nrd1955] [PMID: 16518379]
[29]
Alkhamis, O.; Canoura, J.; Yu, H.; Liu, Y.; Xiao, Y. Innovative engineering and sensing strategies for aptamer-based small-molecule detection. Trends Anal. Chem., 2019, 121, 115699.
[http://dx.doi.org/10.1016/j.trac.2019.115699] [PMID: 32863483]
[30]
Yoo, H.; Jo, H.; Oh, S.S. Detection and beyond: Challenges and advances in aptamer-based biosensors. Mater. Adv., 2020, 1(8), 2663-2687.
[http://dx.doi.org/10.1039/D0MA00639D]
[31]
Phopin, K.; Tantimongcolwat, T. Pesticide aptasensors-state of the art and perspectives. Sensors (Basel), 2020, 20(23), E6809.
[http://dx.doi.org/10.3390/s20236809] [PMID: 33260648]
[32]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121]
[33]
Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the therapeutics and diagnostics pipelines. Theranostics, 2018, 8(15), 4016-4032.
[http://dx.doi.org/10.7150/thno.25958] [PMID: 30128033]
[34]
Li, J.; Fu, H-E.; Wu, L-J.; Zheng, A-X.; Chen, G-N.; Yang, H-H. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Anal. Chem., 2012, 84(12), 5309-5315.
[http://dx.doi.org/10.1021/ac3006186] [PMID: 22642720]
[35]
Jiang, B.; Li, F.; Yang, C.; Xie, J.; Xiang, Y.; Yuan, R. Aptamer pseudoknot-functionalized electronic sensor for reagentless and single-step detection of immunoglobulin E in human serum. Anal. Chem., 2015, 87(5), 3094-3098.
[http://dx.doi.org/10.1021/acs.analchem.5b00041] [PMID: 25666563]
[36]
Darfeuille, F.; Reigadas, S.; Hansen, J.B.; Orum, H.; Di Primo, C.; Toulmé, J-J. Aptamers targeted to an RNA hairpin show improved specificity compared to that of complementary oligonucleotides. Biochemistry, 2006, 45(39), 12076-12082.
[http://dx.doi.org/10.1021/bi0606344] [PMID: 17002307]
[37]
Leung, K-H.; He, B.; Yang, C.; Leung, C-H.; Wang, H-M.D.; Ma, D-L. Development of an aptamer-based sensing platform for metal ions, proteins, and small molecules through terminal deoxynucleotidyl transferase induced G-quadruplex formation. ACS Appl. Mater. Interfaces, 2015, 7(43), 24046-24052.
[http://dx.doi.org/10.1021/acsami.5b08314] [PMID: 26449329]
[38]
Chang, A.L.; McKeague, M.; Liang, J.C.; Smolke, C.D. Kinetic and equilibrium binding characterization of aptamers to small molecules using a label-free, sensitive, and scalable platform. Anal. Chem., 2014, 86(7), 3273-3278.
[http://dx.doi.org/10.1021/ac5001527] [PMID: 24548121]
[39]
Esposito, V.; Scuotto, M.; Capuozzo, A.; Santamaria, R.; Varra, M.; Mayol, L.; Virgilio, A.; Galeone, A. A straightforward modification in the thrombin binding aptamer improving the stability, affinity to thrombin and nuclease resistance. Org. Biomol. Chem., 2014, 12(44), 8840-8843.
[http://dx.doi.org/10.1039/C4OB01475H] [PMID: 25296283]
[40]
Deng, B.; Lin, Y.; Wang, C.; Li, F.; Wang, Z.; Zhang, H.; Li, X-F.; Le, X.C. Aptamer binding assays for proteins: the thrombin example--a review. Anal. Chim. Acta, 2014, 837, 1-15.
[http://dx.doi.org/10.1016/j.aca.2014.04.055] [PMID: 25000852]
[41]
Lin, K-C.; Jagannath, B.; Muthukumar, S.; Prasad, S. Sub-picomolar label-free detection of thrombin using electrochemical impedance spectroscopy of aptamer-functionalized MoS2. Analyst (Lond.), 2017, 142(15), 2770-2780.
[http://dx.doi.org/10.1039/C7AN00548B] [PMID: 28650005]
[42]
Zhou, W.; Huang, P.J.; Ding, J.; Liu, J. Aptamer-based biosensors for biomedical diagnostics. Analyst (Lond.), 2014, 139(11), 2627-2640.
[http://dx.doi.org/10.1039/c4an00132j] [PMID: 24733714]
[43]
Bernard, E.D.; Nguyen, K.C.; DeRosa, M.C.; Tayabali, A.F.; Aranda-Rodriguez, R. Development of a bead-based aptamer/antibody detection system for C-reactive protein. Anal. Biochem., 2015, 472, 67-74.
[http://dx.doi.org/10.1016/j.ab.2014.11.017] [PMID: 25481739]
[44]
Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev., 2013, 42(12), 5425-5438.
[http://dx.doi.org/10.1039/c3cs35518g] [PMID: 23508125]
[45]
Lai, R.Y.; Plaxco, K.W.; Heeger, A.J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal. Chem., 2007, 79(1), 229-233.
[http://dx.doi.org/10.1021/ac061592s] [PMID: 17194144]
[46]
Pali, M.; Jagannath, B.; Lin, K-C.; Upasham, S.; Sankhalab, D.; Upashama, S.; Muthukumar, S.; Prasad, S. CATCH (Cortisol Apta WATCH): ‘Bio-Mimic Alarm’ to track anxiety, stress, immunity in human sweat. Electrochim. Acta, 2021, 390, 138834.
[http://dx.doi.org/10.1016/j.electacta.2021.138834]
[47]
Liao, W.; Randall, B.A.; Alba, N.A.; Cui, X.T. Conducting polymer-based impedimetric aptamer biosensor for in situ detection. In: Anal. Bioanal. Chem; , 2008; 392, pp. (5)861-864.
[http://dx.doi.org/10.1007/s00216-008-2354-8]
[48]
Pan, C.; Guo, M.; Nie, Z.; Xiao, X.; Yao, S. Aptamer-based electrochemical sensor for label-free recognition and detection of cancer cells. Electroanalysis, 2009, 21(11), 1321-1326.
[http://dx.doi.org/10.1002/elan.200804563]
[49]
Salek-Maghsoudi, A.; Vakhshiteh, F.; Torabi, R.; Hassani, S.; Ganjali, M.R.; Norouzi, P.; Hosseini, M.; Abdollahi, M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens. Bioelectron., 2018, 99, 122-135.
[http://dx.doi.org/10.1016/j.bios.2017.07.047] [PMID: 28750336]
[50]
Castle, J.R.; Ward, W.K. Amperometric glucose sensors: sources of error and potential benefit of redundancy. J. Diabetes Sci. Technol., 2010, 4(1), 221-225.
[http://dx.doi.org/10.1177/193229681000400127] [PMID: 20167187]
[51]
Kim, S.H.; Nam, O.; Jin, E.; Gu, M.B. A new coccolith modified electrode-based biosensor using a cognate pair of aptamers with sandwich-type binding. Biosens. Bioelectron., 2019, 123, 160-166.
[http://dx.doi.org/10.1016/j.bios.2018.08.021] [PMID: 30139622]
[52]
Arroyo-Currás, N.; Dauphin-Ducharme, P.; Ortega, G.; Ploense, K.L.; Kippin, T.E.; Plaxco, K.W. Subsecond-resolved molecular measurements in the living body using chronoamperometrically interrogated aptamer-based sensors. ACS Sens., 2018, 3(2), 360-366.
[http://dx.doi.org/10.1021/acssensors.7b00787] [PMID: 29124939]
[53]
Jo, H.; Her, J.; Lee, H.; Shim, Y.B.; Ban, C. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta, 2017, 165, 442-448.
[http://dx.doi.org/10.1016/j.talanta.2016.12.091] [PMID: 28153281]
[54]
Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ., 2018, 95(2), 197-206.
[http://dx.doi.org/10.1021/acs.jchemed.7b00361]
[55]
Li, X.; Liu, J.; Zhang, S. Electrochemical analysis of two analytes based on a dual-functional aptamer DNA sequence. Chem. Commun. (Camb.), 2010, 46(4), 595-597.
[http://dx.doi.org/10.1039/B916304B] [PMID: 20062873]
[56]
Pellitero, M.A.; Curtis, S.D.; Arroyo-Currás, N. Interrogation of electrochemical aptamer-based sensors via peak-to-peak separation in cyclic voltammetry improves the temporal stability and batch-to-batch variability in biological fluids. ACS Sens., 2021, 6(3), 1199-1207.
[http://dx.doi.org/10.1021/acssensors.0c02455] [PMID: 33599479]
[57]
Olowu, R.A.; Arotiba, O.; Mailu, S.N.; Waryo, T.T.; Baker, P.; Iwuoha, E. Electrochemical Aptasensor for Endocrine Disrupting 17β-Estradiol Based on a Poly(3,4-Ethylenedioxylthiopene)-Gold Nanocomposite Platform. Sensors, 2010, 10(11), 9872-9890.
[http://dx.doi.org/10.3390/s101109872]
[58]
Bang, G.S.; Cho, S.; Kim, B.G. A novel electrochemical detection method for aptamer biosensors. Biosens. Bioelectron., 2005, 21(6), 863-870.
[http://dx.doi.org/10.1016/j.bios.2005.02.002] [PMID: 16257654]
[59]
Xiao, Y.; Lubin, A.A.; Heeger, A.J.; Plaxco, K.W. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed., 2005, 44(34), 5456-5459.
[http://dx.doi.org/10.1002/anie.200500989] [PMID: 16044476]
[60]
Settu, K.; Liu, J.T.; Chen, C.J.; Tsai, J.Z. Development of carbon-graphene-based aptamer biosensor for EN2 protein detection. Anal. Biochem., 2017, 534, 99-107.
[http://dx.doi.org/10.1016/j.ab.2017.07.012] [PMID: 28709900]
[61]
Nahir, T.M.; Clark, R.A.; Bowden, E.F. Linear-sweep voltammetry of irreversible electron transfer in surface-confined species using the marcus theory. Anal. Chem., 1994, 66(15), 2595-2598.
[http://dx.doi.org/10.1021/ac00087a027]
[62]
Freeman, R.; Li, Y.; Tel-Vered, R.; Sharon, E.; Elbaz, J.; Willner, I. Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst (Lond.), 2009, 134(4), 653-656.
[http://dx.doi.org/10.1039/b822836c] [PMID: 19305912]
[63]
Scott, K. Electrochemical principles and characterization of bioelectrochemical systems. In: Microbial Electrochemical and Fuel Cells: Fundamentals and Applications; Elsevier, 2016; pp. 29-66.
[http://dx.doi.org/10.1016/B978-1-78242-375-1.00002-2]
[64]
Lane, R.F.; Hubbard, A.T. Differential double pulse voltammetry at chemically modified platinum electrodes for in vivo determination of catecholamines. Anal. Chem., 1976, 48(9), 1287-1292.
[http://dx.doi.org/10.1021/ac50003a009] [PMID: 952392]
[65]
Ding, C.; Ge, Y.; Lin, J.M. Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles. Biosens. Bioelectron., 2010, 25(6), 1290-1294.
[http://dx.doi.org/10.1016/j.bios.2009.10.017] [PMID: 19914815]
[66]
Wang, J.; Munir, A.; Li, Z.; Zhou, H.S. Aptamer-Au NPs conjugates-accumulated methylene blue for the sensitive electrochemical immunoassay of protein. Talanta, 2010, 81(1-2), 63-67.
[http://dx.doi.org/10.1016/j.talanta.2009.11.035] [PMID: 20188888]
[67]
Centi, S.; Sanmartin, L.B.; Tombelli, S.; Palchetti, I.; Mascini, M. Detection of C Reactive Protein (CRP) in serum by an electrochemical aptamer-based sandwich assay. Electroanalysis, 2009, 21(11), 1309-1315.
[http://dx.doi.org/10.1002/elan.200804560]
[68]
Du, Y.; Li, B.; Wang, F.; Dong, S. Au nanoparticles grafted sandwich platform used amplified small molecule electrochemical aptasensor. Biosens. Bioelectron., 2009, 24(7), 1979-1983.
[http://dx.doi.org/10.1016/j.bios.2008.10.019] [PMID: 19101135]
[69]
Li, L.; Zhao, H.; Chen, Z.; Mu, X.; Guo, L. Aptamer biosensor for label-free square-wave voltammetry detection of angiogenin. Biosens. Bioelectron., 2011, 30(1), 261-266.
[http://dx.doi.org/10.1016/j.bios.2011.09.022] [PMID: 22018671]
[70]
Noh, S.; Kim, J.; Park, C.; Min, J.; Lee, T. Fabrication of an electrochemical aptasensor composed of multifunctional DNA three-way junction on au microgap electrode for interferon gamma detection in human serum. Biomedicines, 2021, 9(6), 692.
[http://dx.doi.org/10.3390/biomedicines9060692] [PMID: 34207431]
[71]
Biyani, M.; Kawai, K.; Kitamura, K.; Chikae, M.; Biyani, M.; Ushijima, H.; Tamiya, E.; Yoneda, T.; Takamura, Y. PEP-on-DEP: A competitive peptide-based disposable electrochemical aptasensor for renin diagnostics. Biosens. Bioelectron., 2016, 84, 120-125.
[http://dx.doi.org/10.1016/j.bios.2015.12.078] [PMID: 26746799]
[72]
Kim, Y-J.; Kim, Y.S.; Niazi, J.H.; Gu, M.B. Electrochemical aptasensor for tetracycline detection. Bioprocess Biosyst. Eng., 2010, 33(1), 31-37.
[http://dx.doi.org/10.1007/s00449-009-0371-4] [PMID: 19701778]
[73]
Feng, L.; Chen, Y.; Ren, J.; Qu, X. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials, 2011, 32(11), 2930-2937.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.002] [PMID: 21256585]
[74]
Amouzadeh Tabrizi, M.; Shamsipur, M.; Farzin, L. A high sensitive electrochemical aptasensor for the determination of VEGF(165) in serum of lung cancer patient. Biosens. Bioelectron., 2015, 74, 764-769.
[http://dx.doi.org/10.1016/j.bios.2015.07.032] [PMID: 26217879]
[75]
Liu, N.; Song, J.; Lu, Y.; Davis, J.J.; Gao, F.; Luo, X. Electrochemical aptasensor for ultralow fouling cancer cell quantification in complex biological media based on designed branched peptides. Anal. Chem., 2019, 91(13), 8334-8340.
[http://dx.doi.org/10.1021/acs.analchem.9b01129] [PMID: 31121092]
[76]
Hashkavayi, A.B.; Raoof, J.B.; Ojani, R.; Kavoosian, S. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells. Biosens. Bioelectron., 2017, 92, 630-637.
[http://dx.doi.org/10.1016/j.bios.2016.10.042] [PMID: 27829554]
[77]
Ali, M.H.; Elsherbiny, M.E.; Emara, M. Updates on aptamer research. Int. J. Mol. Sci., 2019, 20(10), E2511.
[http://dx.doi.org/10.3390/ijms20102511] [PMID: 31117311]
[78]
Chen, A.; Yang, S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron., 2015, 71, 230-242.
[http://dx.doi.org/10.1016/j.bios.2015.04.041] [PMID: 25912679]
[79]
Shen, Z.; Ni, S.; Yang, W.; Sun, W.; Yang, G.; Liu, G. Redox probes tagged electrochemical aptasensing device for simultaneous detection of multiple cytokines in real time. Sens. Actuators B Chem., 2021, 336, 129747.
[http://dx.doi.org/10.1016/j.snb.2021.129747]
[80]
Ganguly, A.; Lin, K.C.; Muthukumar, S.; Prasad, S. Autonomous, real-time monitoring electrochemical aptasensor for circadian tracking of cortisol hormone in sub-microliter volumes of passively eluted human sweat. ACS Sens., 2021, 6(1), 63-72.
[http://dx.doi.org/10.1021/acssensors.0c01754] [PMID: 33382251]
[81]
Tertiş, M.; Ciui, B.; Suciu, M.; Săndulescu, R.; Cristea, C. Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection. Electrochim. Acta, 2017, 258, 1208-1218.
[http://dx.doi.org/10.1016/j.electacta.2017.11.176]
[82]
Sun, D.; Lin, X.; Lu, J.; Wei, P.; Luo, Z.; Lu, X.; Chen, Z.; Zhang, L. DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme. Biosens. Bioelectron., 2019, 142, 111578.
[http://dx.doi.org/10.1016/j.bios.2019.111578] [PMID: 31422223]
[83]
Liu, Q.; Yue, X.; Li, Y.; Wu, F.; Meng, M.; Yin, Y.; Xi, R. A novel electrochemical aptasensor for exosomes determination and release based on specific host-guest interactions between cucurbit [7]uril and ferrocene. Talanta, 2021, 232, 122451.
[http://dx.doi.org/10.1016/j.talanta.2021.122451] [PMID: 34074435]
[84]
Chekin, F.; Vasilescu, A.; Jijie, R.; Singh, S.K.; Kurungot, S.; Iancu, M.; Badea, G.; Boukherroub, R.; Szunerits, S. Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode. Sens. Actuators B Chem., 2018, 262, 180-187.
[http://dx.doi.org/10.1016/j.snb.2018.01.215]
[85]
Yu, Z.; Sutlief, A.L.; Lai, R.Y. Towards the development of a sensitive and selective electrochemical aptamer-based ampicillin sensor. Sens. Actuators B Chem., 2018, 258, 722-729.
[http://dx.doi.org/10.1016/j.snb.2017.11.193]
[86]
Wu, Y.; Lai, R.Y. Tunable signal-off and signal-on electrochemical cisplatin sensor. Anal. Chem., 2017, 89(18), 9984-9989.
[http://dx.doi.org/10.1021/acs.analchem.7b02353] [PMID: 28799328]
[87]
Rauf, S.; Lahcen, A.A.; Aljedaibi, A.; Beduk, T.; Ilton de Oliveira Filho, J.; Salama, K.N. Gold nanostructured laser-scribed graphene: A new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosens. Bioelectron., 2021, 180, 113116.
[http://dx.doi.org/10.1016/j.bios.2021.113116] [PMID: 33662847]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy