Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Effects of Vitamin Therapy on ASD and ADHD: A Narrative Review

Author(s): Mohadeseh Poudineh, Sadaf Parvin, Mehrnia Omidali, Farhad Nikzad, Fatemeh Mohammadyari, Fatemeh Sadeghi Poor Ranjbar, Fayaz Rasouli, Sepehr Nanbakhsh and Sepehr Olangian-Tehrani*

Volume 22, Issue 5, 2023

Published on: 11 August, 2022

Page: [711 - 735] Pages: 25

DOI: 10.2174/1871527321666220517205813

Price: $65

Abstract

The effects of a sufficient amount of vitamins and nutrients on the proper function of the nervous system have always been regarded by scientists. In recent years, many studies have been done on controlling or improving the symptoms of neurological and behavioral disorders created by changes in the level of vitamins and other nutrition, such as omega-3 and iron supplements. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that disrupts individual communication, especially in social interactions. Its symptoms include anxiety, violence, depression, self-injury, trouble with social contact and pervasive, stereotyped, and repetitive behavior. ASD is most noticeable in early childhood. Attention Deficit Hyperactivity Disorder (ADHD) is a lasting pattern of inattention with or without hyperactivity that causes functional disruption in daily life. ADHD symptoms included; impulsivity, hyperactivity, inattention, restlessness, talkativeness, excessive fidgeting in situations such as sitting, meetings, lectures, or at the movies, boredom, inability to make decisions, and procrastination. The exact etiology of ADHD has not yet been found, but several observations have assumed the reduced function of the brain leads to deficits in motor planning and cognitive processing. It has been shown that Pro-inflammatory cytokines and oxidative stress biomarkers could be increased in both ASD and ADHD. Several studies have been done to illustrate if vitamins and other dietary supplements are effective in treating and preventing ASD and ADHD. In this review, we aim to evaluate the effects of vitamins and other dietary supplements (e.g., melatonin, zinc supplements, magnesium supplements) on ASD and ADHD.

Keywords: Autism spectrum disorder, attention deficit hyperactivity disorder, vitamin, omega-3, iron supplements, zinc supplements.

Graphical Abstract
[1]
Bala KA, Doğan M, Kaba S, Mutluer T, Aslan O, Doğan SZ. Hormone disorder and vitamin deficiency in attention deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASDs). J Pediatr Endocrinol Metab 2016; 29(9): 1077-82.
[http://dx.doi.org/10.1515/jpem-2015-0473] [PMID: 27544717]
[2]
Verlaet AAJ, Maasakkers CM, Hermans N, Savelkoul HFJ. Rationale for dietary antioxidant treatment of ADHD. Nutrients 2018; 10(4): E405.
[http://dx.doi.org/10.3390/nu10040405] [PMID: 29587355]
[3]
Bakken TE, Miller JA, Ding S-L, et al. A comprehensive transcriptional map of primate brain development. Nature 2016; 535(7612): 367-75.
[http://dx.doi.org/10.1038/nature18637] [PMID: 27409810]
[4]
Zablotsky B, Black LI, Maenner MJ, Schieve LA, Blumberg SJ. Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 national health interview survey. Natl Health Stat Rep 2015; (87): 1-20.
[PMID: 26632847]
[5]
Jia F, Shan L, Wang B, et al. Bench to bedside review: Possible role of vitamin D in autism spectrum disorder. Psychiatry Res 2018; 260: 360-5.
[http://dx.doi.org/10.1016/j.psychres.2017.12.005] [PMID: 29241119]
[6]
Lange KW. Dietary factors in the etiology and therapy of attention deficit/hyperactivity disorder. Curr Opin Clin Nutr Metab Care 2017; 20(6): 464-9.
[http://dx.doi.org/10.1097/MCO.0000000000000415] [PMID: 28832371]
[7]
Bromley R. The treatment of epilepsy in pregnancy: The neurodevelopmental risks associated with exposure to antiepileptic drugs. Reprod Toxicol 2016; 64: 203-10.
[http://dx.doi.org/10.1016/j.reprotox.2016.06.007] [PMID: 27312074]
[8]
Skalny AV, Mazaletskaya AL, Ajsuvakova OP, et al. Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD). J Trace Elem Med Biol 2020; 58: 126445.
[http://dx.doi.org/10.1016/j.jtemb.2019.126445] [PMID: 31869738]
[9]
Hoebert K, van der Heijden K, van Geijlswijk I, Smits MG. Long-term follow-up of melatonin treatment in children with ADHD and chronic sleep onset insomnia. J Pineal Res 2009; 47(1): 1-7.
[10]
Wong NML, Findon JL, Wichers RH, et al. Serotonin differentially modulates the temporal dynamics of the limbic response to facial emotions in male adults with and without autism spectrum disorder (ASD): A randomised placebo-controlled single-dose crossover trial. Neuropsychopharmacology 2020; 45(13): 2248-56.
[http://dx.doi.org/10.1038/s41386-020-0693-0] [PMID: 32388538]
[11]
Yektaş Ç, Alpay M, Tufan AE. Comparison of serum B12, folate and homocysteine concentrations in children with autism spectrum disorder or attention deficit hyperactivity disorder and healthy controls. Neuropsychiatr Dis Treat 2019; 15: 2213-9.
[http://dx.doi.org/10.2147/NDT.S212361] [PMID: 31496704]
[12]
Mazahery H, Conlon CA, Beck KL, et al. A randomised controlled trial of vitamin D and omega-3 long chain polyunsaturated fatty acids in the treatment of irritability and hyperactivity among children with autism spectrum disorder. J Steroid Biochem Mol Biol 2019; 187: 9-16.
[http://dx.doi.org/10.1016/j.jsbmb.2018.10.017] [PMID: 30744880]
[13]
Li HH, Yue XJ, Wang CX, Feng JY, Wang B, Jia FY. Serum levels of vitamin A and vitamin D and their association with symptoms in children with attention deficit hyperactivity disorder. Front Psychiatry 2020; 11: 599958.
[http://dx.doi.org/10.3389/fpsyt.2020.599958] [PMID: 33329153]
[14]
Curtis LT, Patel K. Nutritional and environmental approaches to preventing and treating autism and attention deficit hyperactivity disorder (ADHD): A review. J Altern Complement Med 2008; 14(1): 79-85.
[http://dx.doi.org/10.1089/acm.2007.0610] [PMID: 18199019]
[15]
Bhandari R, Paliwal JK, Kuhad A. Dietary phytochemicals as neurotherapeutics for autism spectrum disorder: Plausible mechanism and evidence. Adv Neurobiol 2020; 24: 615-46.
[http://dx.doi.org/10.1007/978-3-030-30402-7_23] [PMID: 32006377]
[16]
Dunn GA, Nigg JT, Sullivan EL. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharmacol Biochem Behav 2019; 182: 22-34.
[http://dx.doi.org/10.1016/j.pbb.2019.05.005] [PMID: 31103523]
[17]
Martins IJ. Anti-aging genes improve appetite regulation and reverse cell senescence and apoptosis in global populations. Adv Aging Res 2016; 05(01): 9-26.
[http://dx.doi.org/10.4236/aar.2016.51002]
[18]
Martins IJ. Single gene inactivation with implications to diabetes and multiple organ dysfunction syndrome. J Clin Epigen 2017; 03(03): 24.
[http://dx.doi.org/10.21767/2472-1158.100058]
[19]
Martins I. Nutrition therapy regulates caffeine metabolism with relevance to NAFLD and induction of type 3 diabetes. J Diabetes Metab Disord 2017; 4: 1-9.
[20]
Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry 2017; 81(5): 411-23.
[http://dx.doi.org/10.1016/j.biopsych.2016.08.024] [PMID: 27773355]
[21]
Martins IJ. Increased risk for obesity and diabetes with neurodegeneration in developing countries. J Mol Genet Med 2018.
[22]
Elibol B, Kilic U. High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front Endocrinol (Lausanne) 2018; 9: 614.
[http://dx.doi.org/10.3389/fendo.2018.00614] [PMID: 30374331]
[23]
Uzun Çiçek A, Mercan Işık C, Bakir S, et al. Evidence supporting the role of telomerase, MMP-9, and SIRT1 in attentiondeficit/hyperactivity disorder (ADHD). J Neural Transm (Vienna) 2020; 127(10): 1409-18.
[http://dx.doi.org/10.1007/s00702-020-02231-w] [PMID: 32691156]
[24]
Bu X, Wu D, Lu X, et al. Role of SIRT1/PGC-1α in mitochondrial oxidative stress in autistic spectrum disorder. Neuropsychiatr Dis Treat 2017; 13: 1633-45.
[http://dx.doi.org/10.2147/NDT.S129081] [PMID: 28694700]
[25]
Bhandari R, Paliwal JK, Kuhad A. Neuropsychopathology of autism spectrum disorder: Complex interplay of genetic, epigenetic, and environmental factors. In: Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management;. Springer 2020; pp. 97-141.
[26]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Press 1994.
[27]
Kanner L. Autistic disturbances of affective contact. Nerv Child 1943; 2(3): 217-50.
[28]
Sabbagh HJ, Al-Jabri BA, Alsulami MA, Hashem LA, Aljubour AA, Alamoudi RA. Prevalence and characteristics of autistic children attending autism centres in 2 major cities in Saudi Arabia: A cross-sectional study. Saudi Med J 2021; 42(4): 419-27.
[http://dx.doi.org/10.15537/smj.2021.42.4.20200630] [PMID: 33795498]
[29]
Loomes R, Hull L, Mandy WPL. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry 2017; 56(6): 466-74.
[http://dx.doi.org/10.1016/j.jaac.2017.03.013] [PMID: 28545751]
[30]
Vorstman JA, Breetvelt EJ, Thode KI, Chow EW, Bassett AS. Expression of autism spectrum and schizophrenia in patients with a 22q11.2 deletion. Schizophr Res 2013; 143(1): 55-9.
[http://dx.doi.org/10.1016/j.schres.2012.10.010] [PMID: 23153825]
[31]
Han K, Holder JL Jr, Schaaf CP, et al. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature 2013; 503(7474): 72-7.
[http://dx.doi.org/10.1038/nature12630] [PMID: 24153177]
[32]
Kolevzon A, Angarita B, Bush L, et al. Phelan-McDermid syndrome: A review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord 2014; 6(1): 39.
[http://dx.doi.org/10.1186/1866-1955-6-39] [PMID: 25784960]
[33]
Al-Dewik N, Al-Jurf R, Styles M, et al. Overview and introduction to autism spectrum disorder (ASD). In: Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management;. Springer 2020; pp. 3-42.
[http://dx.doi.org/10.1007/978-3-030-30402-7_1]
[34]
Yenkoyan K, Grigoryan A, Fereshetyan K, Yepremyan D. Advances in understanding the pathophysiology of autism spectrum disorders. Behav Brain Res 2017; 331: 92-101.
[http://dx.doi.org/10.1016/j.bbr.2017.04.038] [PMID: 28499914]
[35]
Steinman G, Mankuta D. Molecular biology of autism’s etiology - An alternative mechanism. Med Hypotheses 2019; 130: 109272.
[http://dx.doi.org/10.1016/j.mehy.2019.109272] [PMID: 31383342]
[36]
Robinson EB, Neale BM, Hyman SE. Genetic research in autism spectrum disorders. Curr Opin Pediatr 2015; 27(6): 685-91.
[http://dx.doi.org/10.1097/MOP.0000000000000278] [PMID: 26371945]
[37]
Fernandez BA, Scherer SW. Syndromic autism spectrum disorders: Moving from a clinically defined to a molecularly defined approach. Dialogues Clin Neurosci 2017; 19(4): 353-71.
[http://dx.doi.org/10.31887/DCNS.2017.19.4/sscherer] [PMID: 29398931]
[38]
Woodbury-Smith M, Scherer SW. Progress in the genetics of autism spectrum disorder. Dev Med Child Neurol 2018; 60(5): 445-51.
[http://dx.doi.org/10.1111/dmcn.13717] [PMID: 29574884]
[39]
Boddaert N, Zilbovicius M, Philipe A, et al. MRI findings in 77 children with non-syndromic autistic disorder. PLoS One 2009; 4(2): e4415.
[http://dx.doi.org/10.1371/journal.pone.0004415] [PMID: 19204795]
[40]
Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet 2014; 383(9920): 896-910.
[http://dx.doi.org/10.1016/S0140-6736(13)61539-1] [PMID: 24074734]
[41]
Bölte S, Girdler S, Marschik PB. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci 2019; 76(7): 1275-97.
[http://dx.doi.org/10.1007/s00018-018-2988-4] [PMID: 30570672]
[42]
Filipek PA, Accardo PJ, Ashwal S, et al. Practice parameter: Screening and diagnosis of autism: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology 2000; 55(4): 468-79.
[http://dx.doi.org/10.1212/WNL.55.4.468] [PMID: 10953176]
[43]
Klin A, Volkmar FR. Asperger syndrome: Diagnosis and external validity. Child Adolesc Psychiatr Clin N Am 2003; 12(1): 1-13.
[http://dx.doi.org/10.1016/S1056-4993(02)00052-4] [PMID: 12512395]
[44]
Dover CJ, Le Couteur A. How to diagnose autism. Arch Dis Child 2007; 92(6): 540-5.
[http://dx.doi.org/10.1136/adc.2005.086280] [PMID: 17515625]
[45]
Al-Dewik N, Alsharshani M. New horizons for molecular genetics diagnostic and research in autism spectrum disorder. Adv Neurobiol 2020; 24: 43-81.
[http://dx.doi.org/10.1007/978-3-030-30402-7_2] [PMID: 32006356]
[46]
Chidambaram SB, Bhat A, Mahalakshmi AM, et al. Protein nutrition in autism. Adv Neurobiol 2020; 24: 573-86.
[http://dx.doi.org/10.1007/978-3-030-30402-7_20] [PMID: 32006374]
[47]
Zalsman G, Shilton T. Adult ADHD: A new disease? Int J Psychiatry Clin Pract 2016; 20(2): 70-6.
[http://dx.doi.org/10.3109/13651501.2016.1149197] [PMID: 27052374]
[48]
Sharma A, Couture J. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Ann Pharmacother 2014; 48(2): 209-25.
[http://dx.doi.org/10.1177/1060028013510699] [PMID: 24259638]
[49]
Tripp G, Wickens JR. Neurobiology of ADHD. Neuropharmacology 2009; 57(7-8): 579-89.
[http://dx.doi.org/10.1016/j.neuropharm.2009.07.026] [PMID: 19627998]
[50]
Thapar A, Cooper M, Eyre O, Langley K. What have we learnt about the causes of ADHD? J Child Psychol Psychiatry 2013; 54(1): 3-16.
[http://dx.doi.org/10.1111/j.1469-7610.2012.02611.x] [PMID: 22963644]
[51]
Caye A, Swanson JM, Coghill D, Rohde LA. Treatment strategies for ADHD: An evidence-based guide to select optimal treatment. Mol Psychiatry 2019; 24(3): 390-408.
[http://dx.doi.org/10.1038/s41380-018-0116-3] [PMID: 29955166]
[52]
Pettersson E, Lichtenstein P, Larsson H, et al. Genetic influences on eight psychiatric disorders based on family data of 4 408 646 full and half-siblings, and genetic data of 333 748 cases and controls. Psychol Med 2019; 49(7): 1166-73.
[http://dx.doi.org/10.1017/S0033291718002039] [PMID: 30221610]
[53]
Polderman TJ, Benyamin B, de Leeuw CA, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet 2015; 47(7): 702-9.
[http://dx.doi.org/10.1038/ng.3285] [PMID: 25985137]
[54]
Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G. Psychiatric disorders in children with autism spectrum disorders: Prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry 2008; 47(8): 921-9.
[http://dx.doi.org/10.1097/CHI.0b013e318179964f] [PMID: 18645422]
[55]
Banerjee E, Nandagopal K. Does serotonin deficit mediate susceptibility to ADHD? Neurochem Int 2015; 82: 52-68.
[http://dx.doi.org/10.1016/j.neuint.2015.02.001] [PMID: 25684070]
[56]
Garbarino VR, Gilman TL, Daws LC, Gould GG. Extreme enhancement or depletion of serotonin transporter function and serotonin availability in autism spectrum disorder. Pharmacol Res 2019; 140: 85-99.
[http://dx.doi.org/10.1016/j.phrs.2018.07.010] [PMID: 30009933]
[57]
Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience 2016; 321: 24-41.
[http://dx.doi.org/10.1016/j.neuroscience.2015.11.010] [PMID: 26577932]
[58]
Murphy DL, Lerner A, Rudnick G, Lesch K-P. Serotonin transporter: Gene, genetic disorders, and pharmacogenetics. Mol Interv 2004; 4(2): 109-23.
[http://dx.doi.org/10.1124/mi.4.2.8] [PMID: 15087484]
[59]
Karalunas SL, Geurts HM, Konrad K, Bender S, Nigg JT. Annual research review: Reaction time variability in ADHD and autism spectrum disorders: Measurement and mechanisms of a proposed trans-diagnostic phenotype. J Child Psychol Psychiatry 2014; 55(6): 685-710.
[http://dx.doi.org/10.1111/jcpp.12217] [PMID: 24628425]
[60]
Seernani D, Damania K, Ioannou C, et al. Visual search in ADHD, ASD and ASD + ADHD: Overlapping or dissociating disorders? Eur Child Adolesc Psychiatry 2021; 30(4): 549-62.
[http://dx.doi.org/10.1007/s00787-020-01535-2] [PMID: 32314021]
[61]
Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci 2008; 31(3): 137-45.
[http://dx.doi.org/10.1016/j.tins.2007.12.005] [PMID: 18258309]
[62]
Bush G. Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder. Biol Psychiatry 2011; 69(12): 1160-7.
[http://dx.doi.org/10.1016/j.biopsych.2011.01.022] [PMID: 21489409]
[63]
Castellanos FX, Kelly C, Milham MP. The restless brain: Attention-deficit hyperactivity disorder, resting-state functional connectivity, and intrasubject variability. Can J Psychiatry 2009; 54(10): 665-72.
[http://dx.doi.org/10.1177/070674370905401003] [PMID: 19835673]
[64]
Durston S, van Belle J, de Zeeuw P. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry 2011; 69(12): 1178-84.
[http://dx.doi.org/10.1016/j.biopsych.2010.07.037] [PMID: 20965496]
[65]
Philip RC, Dauvermann MR, Whalley HC, Baynham K, Lawrie SM, Stanfield AC. A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders. Neurosci Biobehav Rev 2012; 36(2): 901-42.
[http://dx.doi.org/10.1016/j.neubiorev.2011.10.008] [PMID: 22101112]
[66]
Rubia K. “Cool” inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus “hot” ventromedial orbitofrontal-limbic dysfunction in conduct disorder: A review. Biol Psychiatry 2011; 69(12): e69-87.
[http://dx.doi.org/10.1016/j.biopsych.2010.09.023] [PMID: 21094938]
[67]
Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM. Towards a neuroanatomy of autism: A systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry 2008; 23(4): 289-99.
[http://dx.doi.org/10.1016/j.eurpsy.2007.05.006] [PMID: 17765485]
[68]
Dickstein SG, Bannon K, Castellanos FX, Milham MP. The neural correlates of attention deficit hyperactivity disorder: An ALE meta-analysis. J Child Psychol Psychiatry 2006; 47(10): 1051-62.
[http://dx.doi.org/10.1111/j.1469-7610.2006.01671.x] [PMID: 17073984]
[69]
Ros R, Graziano PA. Social functioning in children with or at risk for attention deficit/hyperactivity disorder: A meta-analytic review. J Clin Child Adolesc Psychol 2018; 47(2): 213-35.
[http://dx.doi.org/10.1080/15374416.2016.1266644] [PMID: 28128989]
[70]
Aduen PA, Day TN, Kofler MJ, Harmon SL, Wells EL, Sarver DE. Social problems in ADHD: Is it a skills acquisition or performance problem? J Psychopathol Behav Assess 2018; 40(3): 440-51.
[http://dx.doi.org/10.1007/s10862-018-9649-7] [PMID: 30287981]
[71]
Mendelson JL, Gates JA, Lerner MD. Friendship in school-age boys with autism spectrum disorders: A meta-analytic summary and developmental, process-based model. Psychol Bull 2016; 142(6): 601-22.
[http://dx.doi.org/10.1037/bul0000041] [PMID: 26752425]
[72]
Sasson NJ, Faso DJ, Nugent J, Lovell S, Kennedy DP, Grossman RB. Neurotypical peers are less willing to interact with those with autism based on thin slice judgments. Sci Rep 2017; 7(1): 40700.
[http://dx.doi.org/10.1038/srep40700] [PMID: 28145411]
[73]
Kamimura-Nishimura K, Froehlich T, Chirdkiatgumchai V, Adams R, Fredstrom B, Manning P. Autism spectrum disorders and their treatment with psychotropic medications in a nationally representative outpatient sample: 1994–2009. Ann Epidemiol 2017; 27(7): 448-53.
[74]
Cocco S, Diaz G, Stancampiano R, et al. Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience 2002; 115(2): 475-82.
[http://dx.doi.org/10.1016/S0306-4522(02)00423-2] [PMID: 12421614]
[75]
Evans E, Piccio L, Cross AH. Use of vitamins and dietary supplements by patients with multiple sclerosis: A review. JAMA Neurol 2018; 75(8): 1013-21.
[http://dx.doi.org/10.1001/jamaneurol.2018.0611] [PMID: 29710293]
[76]
Hou N, Ren L, Gong M, et al. Vitamin A deficiency impairs spatial learning and memory: The mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor alpha. Mol Neurobiol 2015; 51(2): 633-47.
[http://dx.doi.org/10.1007/s12035-014-8741-6] [PMID: 24859384]
[77]
Guo M, Zhu J, Yang T, et al. Vitamin A and vitamin D deficiencies exacerbate symptoms in children with autism spectrum disorders. Nutr Neurosci 2019; 22(9): 637-47.
[http://dx.doi.org/10.1080/1028415X.2017.1423268] [PMID: 29338670]
[78]
Guo M, Zhu J, Yang T, et al. Vitamin A improves the symptoms of autism spectrum disorders and decreases 5-hydroxytryptamine (5-HT): A pilot study. Brain Res Bull 2018; 137: 35-40.
[http://dx.doi.org/10.1016/j.brainresbull.2017.11.001] [PMID: 29122693]
[79]
Liu X, Liu J, Xiong X, et al. Correlation between nutrition and symptoms: Nutritional survey of children with autism spectrum disorder in Chongqing, China. Nutrients 2016; 8(5): 294.
[http://dx.doi.org/10.3390/nu8050294] [PMID: 27187463]
[80]
Tan M, Yang T, Zhu J, et al. Maternal folic acid and micronutrient supplementation is associated with vitamin levels and symptoms in children with autism spectrum disorders. Reprod Toxicol 2020; 91: 109-15.
[http://dx.doi.org/10.1016/j.reprotox.2019.11.009] [PMID: 31759952]
[81]
Wen J, Yang T, Zhu J, Guo M, Lai X, Tang T, et al. Vitamin a deficiency and sleep disturbances related to autism symptoms in children with autism spectrum disorder: A cross-sectional study. BMC Pediatr 2021; 21(1): 1-9.
[PMID: 33397296]
[82]
Zhu J, Guo M, Yang T, et al. Nutritional status and symptoms in preschool children with autism spectrum disorder: A two-center comparative study in Chongqing and Hainan Province, China. Front Pediatr 2020; 8: 469.
[http://dx.doi.org/10.3389/fped.2020.00469] [PMID: 33014918]
[83]
Guo M, Li L, Zhang Q, et al. Vitamin and mineral status of children with autism spectrum disorder in Hainan Province of China: Associations with symptoms. Nutr Neurosci 2020; 23(10): 803-10.
[http://dx.doi.org/10.1080/1028415X.2018.1558762] [PMID: 30570388]
[84]
Sweetman DU, O’Donnell SM, Lalor A, Grant T, Greaney H. Zinc and vitamin A deficiency in a cohort of children with autism spectrum disorder. Child Care Health Dev 2019; 45(3): 380-6.
[http://dx.doi.org/10.1111/cch.12655] [PMID: 30821006]
[85]
McCaffery P, Dräger UC. High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc Natl Acad Sci USA 1994; 91(16): 7772-6.
[http://dx.doi.org/10.1073/pnas.91.16.7772] [PMID: 8052659]
[86]
Percudani R, Peracchi A. The B6 database: A tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics 2009; 10(1): 273.
[http://dx.doi.org/10.1186/1471-2105-10-273] [PMID: 19723314]
[87]
Clayton PTB. B6-responsive disorders: A model of vitamin dependency. J Inherit Metab Dis 2006; 29(2-3): 317-26.
[http://dx.doi.org/10.1007/s10545-005-0243-2] [PMID: 16763894]
[88]
Toriumi K, Miyashita M, Suzuki K, et al. Vitamin B6 deficiency hyperactivates the noradrenergic system, leading to social deficits and cognitive impairment. Transl Psychiatry 2021; 11(1): 262.
[http://dx.doi.org/10.1038/s41398-021-01381-z] [PMID: 33941768]
[89]
Bönisch E. Experiences with pyrithioxin in brain-damaged children with autistic syndrome. Prax Kinderpsychol Kinderpsychiatr 1968; 17(8): 308-10.
[PMID: 4387550]
[90]
Barthelemy C, Garreau B, Leddet I, Ernouf D, Muh J, Lelord G. Behavioral and biological effects of oral magnesium, vitamin-B6 and combined magnesium-vitamin-B6 administration in autistic-children. Magnesium-Bull 1981; 3(2): 150-3.
[91]
Barthelemy C, Garreau B, Leddet I, et al. Biological and clinical effects of oral magnesium and associated magnesium-vitamin B6 administration on certain disorders observed in infantile autism (author’s transl). Therapie 1980; 35(5): 627-32.
[PMID: 7010662]
[92]
Jonas C, Etienne T, Barthélemy C, Jouve J, Mariotte N. Clinical and biochemical value of Magnesium + vitamin B6 combination in the treatment of residual autism in adults. Therapie 1984; 39(6): 661-9.
[PMID: 6397868]
[93]
Martineau J, Barthelemy C, Garreau B, Lelord G. Vitamin B6, magnesium, and combined B6-Mg: Therapeutic effects in childhood autism. Biol Psychiatry 1985; 20(5): 467-78.
[http://dx.doi.org/10.1016/0006-3223(85)90019-8] [PMID: 3886023]
[94]
Barthélémy C, Martineau J, Bruneau N, et al. Clinical (items of behavioral scales), electrophysiological (conditioned evoked potentials) and biochemical (urinary homovanillic acid) markers in autism in children. Encephale 1985; 11(3): 101-6.
[95]
Lelord G, Jo A. Urinary homovanilic acid and its modifications by ingestion of vitamin B6. Functional Exploration in Childhood Autism. 1978. Available from: https://www.researchgate.net/scientific-contributions/G-Lelord-38795069
[96]
Martineau J. An open middle-term study of combined vitamin B6-magnesium in a subgroup of autistic children selected on their sensitivity to this treatment. J Autism Dev Disord 1988; 18(3): 435-47.
[http://dx.doi.org/10.1007/BF02212198] [PMID: 3170459]
[97]
Martineau J, Barthelemy C, Roux S, Garreau B, Lelord G. Electrophysiological effects of fenfluramine or combined vitamin B6 and magnesium on children with autistic behaviour. Dev Med Child Neurol 1989; 31(6): 721-7.
[http://dx.doi.org/10.1111/j.1469-8749.1989.tb04067.x] [PMID: 2599266]
[98]
Martineau J, Garreau B, Barthelemy C, Alelord O. Comparative effects of oral B6, B6-Mg, and Mg administration on evoked potentials conditioning in autistic children. Proceedings Symposium on Event-Related Potentials in Children. 11-13 June 1982; Essen, Germany.
[99]
Martineau J, Garreau B, Barthelemy C, Callaway E, Lelord G. Effects of vitamin B6 on averaged evoked potentials in infantile autism. Biol Psychiatry 1981; 16(7): 627-41.
[PMID: 7272379]
[100]
Pfeiffer SI, Norton J, Nelson L, Shott S. Efficacy of vitamin B6 and magnesium in the treatment of autism: A methodology review and summary of outcomes. J Autism Dev Disord 1995; 25(5): 481-93.
[http://dx.doi.org/10.1007/BF02178295] [PMID: 8567594]
[101]
Novell R, Esteba-Castillo S, Rodriguez E. Efficacy and safety of a GABAergic drug (Gamalate® B6): Effects on behavior and cognition in young adults with borderline-to-mild intellectual developmental disabilities and ADHD. Drugs Context 2020; 9: 212601.
[http://dx.doi.org/10.7573/dic.212601] [PMID: 32158489]
[102]
Naderi N, House JD. Recent developments in folate nutrition. Adv Food Nutr Res 2018; 83: 195-213.
[http://dx.doi.org/10.1016/bs.afnr.2017.12.006] [PMID: 29477222]
[103]
Pietrzik K, Bailey L, Shane B. Folic acid and L-5-methyltetrahydrofolate: Comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 2010; 49(8): 535-48.
[http://dx.doi.org/10.2165/11532990-000000000-00000] [PMID: 20608755]
[104]
Degroote S, Hunting D, Takser L. Periconceptional folate deficiency leads to autism-like traits in Wistar rat offspring. Neurotoxicol Teratol 2018; 66: 132-8.
[http://dx.doi.org/10.1016/j.ntt.2017.12.008] [PMID: 29305196]
[105]
Lintas C. Linking genetics to epigenetics: The role of folate and folate-related pathways in neurodevelopmental disorders. Clin Genet 2019; 95(2): 241-52.
[http://dx.doi.org/10.1111/cge.13421] [PMID: 30047142]
[106]
Zeisel SH, Ed. The supply of choline is important for fetal progenitor cells Seminars in cell & developmental biology. Elsevier 2011.
[107]
Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 2003; 26(3): 137-46.
[http://dx.doi.org/10.1016/S0166-2236(03)00032-8] [PMID: 12591216]
[108]
Sobczyńska-Malefora A, Harrington DJ. Laboratory assessment of folate (vitamin B9) status. J Clin Pathol 2018; 71(11): 949-56.
[http://dx.doi.org/10.1136/jclinpath-2018-205048] [PMID: 30228213]
[109]
Wang M, Li K, Zhao D, Li L. The association between maternal use of folic acid supplements during pregnancy and risk of autism spectrum disorders in children: A meta-analysis. Mol Autism 2017; 8(1): 51.
[http://dx.doi.org/10.1186/s13229-017-0170-8] [PMID: 29026508]
[110]
Iglesias Vázquez L, Canals J, Arija V. Review and meta-analysis found that prenatal folic acid was associated with a 58% reduction in autism but had no effect on mental and motor development. Acta Paediatr 2019; 108(4): 600-10.
[PMID: 30466185]
[111]
Liu X, Zou M, Sun C, Wu L, Chen W-X. Prenatal folic acid supplements and offspring’s autism spectrum disorder: A meta-analysis and meta-regression. J Autism Dev Disord 2021; 2021: 1-18.
[PMID: 33743119]
[112]
Wiens D, DeSoto MC. Is high folic acid intake a risk factor for autism?—a review. Brain Sci 2017; 7(11): 149.
[http://dx.doi.org/10.3390/brainsci7110149] [PMID: 29125540]
[113]
Krull KR, Brouwers P, Jain N, et al. Folate pathway genetic polymorphisms are related to attention disorders in childhood leukemia survivors. J Pediatr 2008; 152(1): 101-5.
[http://dx.doi.org/10.1016/j.jpeds.2007.05.047] [PMID: 18154909]
[114]
Wang L-J, Yu Y-H, Fu M-L, et al. Dietary profiles, nutritional biochemistry status, and attention-deficit/hyperactivity disorder: Path analysis for a case-control study. J Clin Med 2019; 8(5): 709.
[http://dx.doi.org/10.3390/jcm8050709] [PMID: 31109092]
[115]
Yamada K. Cobalt: Its role in health and disease. Met Ions Life Sci 2013; 13: 295-320.
[http://dx.doi.org/10.1007/978-94-007-7500-8_9] [PMID: 24470095]
[116]
Butler PA, Kräutler B. Biological Organometallic Chemistry of B 12 Bioorganometallic chemistry. Springer 2006; pp. 1-55.
[117]
Watanabe F, Bito T. Determination of Cobalamin and related compounds in foods. J AOAC Int 2018; 101(5): 1308-13.
[http://dx.doi.org/10.5740/jaoacint.18-0045] [PMID: 29669618]
[118]
Erden S, Akbaş İleri B, Sadıç Çelikkol Ç, Nalbant K, Kılınç İ Yazar A. Serum B12, homocysteine, and anti-parietal cell antibody levels in children with autism. Int J Psychiatry Clin Pract 2021; 2021: 1-6.
[PMID: 33823740]
[119]
Chen L, Shi X-J, Liu H, et al. Oxidative stress marker aberrations in children with autism spectrum disorder: A systematic review and meta-analysis of 87 studies (N = 9109). Transl Psychiatry 2021; 11(1): 15.
[http://dx.doi.org/10.1038/s41398-020-01135-3] [PMID: 33414386]
[120]
Altun H, Şahin N, Belge Kurutaş E, Güngör O. Homocysteine, pyridoxine, folate and vitamin B12 levels in children with attention deficit hyperactivity disorder. Psychiatr Danub 2018; 30(3): 310-6.
[http://dx.doi.org/10.24869/psyd.2018.310] [PMID: 30267523]
[121]
Garipardic M, Doğan M, Bala KA, et al. Association of attention deficit hyperactivity disorder and autism spectrum disorders with mean platelet volume and vitamin D. Med Sci Monit 2017; 23: 1378-84.
[http://dx.doi.org/10.12659/MSM.899976] [PMID: 28319054]
[122]
Travica N, Ried K, Sali A, et al. Vitamin C status and cognitive function: A systematic review. Nutrients 2017; 9(9): E960.
[http://dx.doi.org/10.3390/nu9090960] [PMID: 28867798]
[123]
Harrison FE, May JM. Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 2009; 46(6): 719-30.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.12.018] [PMID: 19162177]
[124]
Hansen SN, Tveden-Nyborg P, Lykkesfeldt J. Does vitamin C deficiency affect cognitive development and function? Nutrients 2014; 6(9): 3818-46.
[http://dx.doi.org/10.3390/nu6093818] [PMID: 25244370]
[125]
Figueroa-Méndez R, Rivas-Arancibia S. Vitamin C in health and disease: Its role in the metabolism of cells and redox state in the brain. Front Physiol 2015; 6(397): 397.
[http://dx.doi.org/10.3389/fphys.2015.00397] [PMID: 26779027]
[126]
Pangrazzi L, Balasco L, Bozzi Y. Natural antioxidants: A novel therapeutic approach to autism spectrum disorders? Antioxidants 2020; 9(12): E1186.
[http://dx.doi.org/10.3390/antiox9121186] [PMID: 33256243]
[127]
Kim Y, Chang H. Correlation between attention deficit hyperactivity disorder and sugar consumption, quality of diet, and dietary behavior in school children. Nutr Res Pract 2011; 5(3): 236-45.
[http://dx.doi.org/10.4162/nrp.2011.5.3.236] [PMID: 21779528]
[128]
Khoshbakht Y, Moghtaderi F, Bidaki R, Hosseinzadeh M, Salehi-Abargouei A. The effect of dietary approaches to stop hypertension (DASH) diet on attention-deficit hyperactivity disorder (ADHD) symptoms: A randomized controlled clinical trial. Eur J Nutr 2021; 60(7): 3647-58.
[http://dx.doi.org/10.1007/s00394-021-02527-x] [PMID: 33715085]
[129]
Kulda V. Vitamin D metabolism. Vnitr Lek 2012; 58(5): 400-4.
[PMID: 22716179]
[130]
Charoenngam N, Shirvani A, Holick MF. Vitamin D for skeletal and non-skeletal health: What we should know. J Clin Orthop Trauma 2019; 10(6): 1082-93.
[http://dx.doi.org/10.1016/j.jcot.2019.07.004] [PMID: 31708633]
[131]
DeLuca HF, Vitamin D. Historical overview. Vitam Horm 2016; 100: 1-20.
[http://dx.doi.org/10.1016/bs.vh.2015.11.001] [PMID: 26827946]
[132]
Wang TJ. Vitamin D and cardiovascular disease. Annu Rev Med 2016; 67(1): 261-72.
[http://dx.doi.org/10.1146/annurev-med-051214-025146] [PMID: 26768241]
[133]
Şengenç E, Kıykım E, Saltik S. Vitamin D levels in children and adolescents with autism. J Int Med Res 2020; 48(7): 300060520934638.
[http://dx.doi.org/10.1177/0300060520934638] [PMID: 32668174]
[134]
Graf-Myles J, Farmer C, Thurm A, et al. Dietary adequacy of children with autism compared with controls and the impact of restricted diet. J Dev Behav Pediatr 2013; 34(7): 449-59.
[http://dx.doi.org/10.1097/DBP.0b013e3182a00d17] [PMID: 24042076]
[135]
Endres D, Dersch R, Stich O, et al. Vitamin D deficiency in adult patients with schizophreniform and autism spectrum syndromes: A one-year cohort study at a german tertiary care hospital. Front Psychiatry 2016; 7: 168.
[http://dx.doi.org/10.3389/fpsyt.2016.00168] [PMID: 27766084]
[136]
Petruzzelli MG, Marzulli L, Margari F, et al. Vitamin D deficiency in autism spectrum disorder: A cross-sectional study. Dis Markers 2020; 2020: 9292560.
[http://dx.doi.org/10.1155/2020/9292560] [PMID: 33014190]
[137]
Riccio MP, Catone G, Siracusano R, et al. Vitamin D deficiency is not related to eating habits in children with Autistic Spectrum Disorder. AIMS Public Health 2020; 7(4): 792-803.
[http://dx.doi.org/10.3934/publichealth.2020061] [PMID: 33294482]
[138]
Moradi H, Sohrabi M, Taheri H, Khodashenas E, Movahedi A. Comparison of the effects of perceptual-motor exercises, vitamin D supplementation and the combination of these interventions on decreasing stereotypical behavior in children with autism disorder. Int J Dev Disabil 2018; 66(2): 122-32.
[http://dx.doi.org/10.1080/20473869.2018.1502068] [PMID: 34141374]
[139]
Lee BK, Eyles DW, Magnusson C, et al. Developmental vitamin D and autism spectrum disorders: Findings from the Stockholm Youth Cohort. Mol Psychiatry 2021; 26(5): 1578-88.
[http://dx.doi.org/10.1038/s41380-019-0578-y] [PMID: 31695167]
[140]
Trudeau MS, Madden RF, Parnell JA, Gibbard WB, Shearer J. Dietary and supplement-based complementary and alternative medicine use in pediatric autism spectrum disorder. Nutrients 2019; 11(8): E1783.
[http://dx.doi.org/10.3390/nu11081783] [PMID: 31375014]
[141]
Mazahery H, Conlon CA, Beck KL, et al. Inflammation (IL-1β) modifies the effect of Vitamin D and Omega-3 long chain polyunsaturated fatty acids on core symptoms of autism spectrum disorder-An exploratory pilot study‡. Nutrients 2020; 12(3): E661.
[http://dx.doi.org/10.3390/nu12030661] [PMID: 32121236]
[142]
Vuillermot S, Luan W, Meyer U, Eyles D. Vitamin D treatment during pregnancy prevents autism-related phenotypes in a mouse model of maternal immune activation. Mol Autism 2017; 8(1): 9.
[http://dx.doi.org/10.1186/s13229-017-0125-0] [PMID: 28316773]
[143]
Stubbs G, Henley K, Green J. Autism: Will vitamin D supplementation during pregnancy and early childhood reduce the recurrence rate of autism in newborn siblings? Med Hypotheses 2016; 88: 74-8.
[http://dx.doi.org/10.1016/j.mehy.2016.01.015] [PMID: 26880644]
[144]
Li Y, Freedman R. Prospects for improving future mental health of children through prenatal maternal micronutrient supplementation in China. Pediatr Investig 2020; 4(2): 118-26.
[http://dx.doi.org/10.1002/ped4.12199] [PMID: 32851355]
[145]
Sharif MR, Madani M, Tabatabaei F. The relationship between serum vitamin D level and attention deficit hyperactivity disorder. Fall 2015; 9(4): 48-53.
[146]
Sahin N, Altun H, Kurutas EB, Balkan D. Vitamin D and vitamin D receptor levels in children with attention-deficit/hyperactivity disorder. Neuropsychiatr Dis Treat 2018; 14: 581-5.
[http://dx.doi.org/10.2147/NDT.S158228] [PMID: 29497301]
[147]
Holton KF, Johnstone JM, Brandley ET, Nigg JT. Evaluation of dietary intake in children and college students with and without attention-deficit/hyperactivity disorder. Nutr Neurosci 2019; 22(9): 664-77.
[http://dx.doi.org/10.1080/1028415X.2018.1427661] [PMID: 29361884]
[148]
Libuda L, Naaresh R, Ludwig C, et al. A mendelian randomization study on causal effects of 25(OH)vitamin D levels on attention deficit/hyperactivity disorder. Eur J Nutr 2021; 60(5): 2581-91.
[http://dx.doi.org/10.1007/s00394-020-02439-2] [PMID: 33245439]
[149]
Beard JL. Why iron deficiency is important in infant development. J Nutr 2008; 138(12): 2534-6.
[http://dx.doi.org/10.1093/jn/138.12.2534] [PMID: 19022985]
[150]
Wigglesworth J. Iron dependent enzymes in the brain. Brain iron: Neurochemical and behavioral aspects. J Neurol Neurosurg Psychiatry 1989; 52(2): 293.
[151]
Baj J, Flieger W, Flieger M, et al. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms. Neurosci Biobehav Rev 2021; 129: 117-32.
[http://dx.doi.org/10.1016/j.neubiorev.2021.07.029] [PMID: 34339708]
[152]
Yazici KU, Yazici IP, Ustundag B. Increased serum hepcidin levels in children and adolescents with attention deficit hyperactivity disorder. Clin Psychopharmacol Neurosci 2019; 17(1): 105-12.
[http://dx.doi.org/10.9758/cpn.2019.17.1.105] [PMID: 30690945]
[153]
Gunes S, Ekinci O, Celik T. Iron deficiency parameters in autism spectrum disorder: Clinical correlates and associated factors. Ital J Pediatr 2017; 43(1): 86.
[http://dx.doi.org/10.1186/s13052-017-0407-3] [PMID: 28934988]
[154]
Altamimi M. Could autism be associated with nutritional status in the palestinian population? The outcomes of the palestinian micronutrient survey. Nutr Metab Insights 2018; 11: 1178638818773078.
[http://dx.doi.org/10.1177/1178638818773078] [PMID: 29773950]
[155]
Schmidt RJ, Tancredi DJ, Krakowiak P, Hansen RL, Ozonoff S. Maternal intake of supplemental iron and risk of autism spectrum disorder. Am J Epidemiol 2014; 180(9): 890-900.
[http://dx.doi.org/10.1093/aje/kwu208] [PMID: 25249546]
[156]
Bener A, Khattab AO, Bhugra D, Hoffmann GF. Iron and vitamin D levels among autism spectrum disorders children. Ann Afr Med 2017; 16(4): 186-91.
[http://dx.doi.org/10.4103/aam.aam_17_17] [PMID: 29063903]
[157]
Tseng P-T, Cheng Y-S, Chen Y-W, et al. Peripheral iron levels in children with autism spectrum disorders vs controls: A systematic review and meta-analysis. Nutr Res 2018; 50: 44-52.
[http://dx.doi.org/10.1016/j.nutres.2017.11.004] [PMID: 29540271]
[158]
Robberecht H, Verlaet AAJ, Breynaert A, De Bruyne T, Hermans N. Magnesium, iron, zinc, copper and selenium status in attention-deficit/hyperactivity disorder (ADHD). Molecules 2020; 25(19): 4440.
[http://dx.doi.org/10.3390/molecules25194440] [PMID: 32992575]
[159]
Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 2006; 64(5 Pt 2) (Suppl. 2): S34-43.
[http://dx.doi.org/10.1301/nr.2006.may.S34-S43] [PMID: 16770951]
[160]
Cortese S, Angriman M, Lecendreux M, Konofal E. Iron and attention deficit/hyperactivity disorder: What is the empirical evidence so far? A systematic review of the literature. Expert Rev Neurother 2012; 12(10): 1227-40.
[http://dx.doi.org/10.1586/ern.12.116] [PMID: 23082739]
[161]
Sever Y, Ashkenazi A, Tyano S, Weizman A. Iron treatment in children with attention deficit hyperactivity disorder. A preliminary report. Neuropsychobiology 1997; 35(4): 178-80.
[http://dx.doi.org/10.1159/000119341] [PMID: 9246217]
[162]
Bloch MH, Mulqueen J. Nutritional supplements for the treatment of ADHD. Child Adolescent Psychiatric Clin 2014; 23(4): 883-97.
[http://dx.doi.org/10.1016/j.chc.2014.05.002] [PMID: 25220092]
[163]
Konofal E, Lecendreux M, Deron J, et al. Effects of iron supplementation on attention deficit hyperactivity disorder in children. Pediatr Neurol 2008; 38(1): 20-6.
[http://dx.doi.org/10.1016/j.pediatrneurol.2007.08.014] [PMID: 18054688]
[164]
Wang Y, Huang L, Zhang L, Qu Y, Mu D. Iron status in attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. PLoS One 2017; 12(1): e0169145.
[http://dx.doi.org/10.1371/journal.pone.0169145] [PMID: 28046016]
[165]
Maret W. Zinc biochemistry: From a single Zinc enzyme to a key element of life. Adv Nutr 2013; 4(1): 82-91.
[http://dx.doi.org/10.3945/an.112.003038] [PMID: 23319127]
[166]
Li SO, Wang JL, Bjørklund G, Zhao WN, Yin CH. Serum copper and zinc levels in individuals with autism spectrum disorders. Neuroreport 2014; 25(15): 1216-20.
[http://dx.doi.org/10.1097/WNR.0000000000000251] [PMID: 25162784]
[167]
Elbaz F, Zahra S, Hanafy H. Magnesium, zinc and copper estimation in children with attention deficit hyperactivity disorder (ADHD). Egypt J Med Hum Genet 2017; 18(2): 153-63.
[http://dx.doi.org/10.1016/j.ejmhg.2016.04.009]
[168]
Yorbik Ö, Akay C, Sayal A, Cansever A, Söhmen T, O. Çavdar A. Zinc status in autistic children. J Trace Elements Exper Med 2004; 17(2): 101-7.
[http://dx.doi.org/10.1002/jtra.20002]
[169]
Yasuda H, Yoshida K, Yasuda Y, Tsutsui T. Infantile zinc deficiency: Association with autism spectrum disorders. Sci Rep 2011; 1(1): 129.
[http://dx.doi.org/10.1038/srep00129] [PMID: 22355646]
[170]
Lakshmi Priya MD, Geetha A. Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol Trace Elem Res 2011; 142(2): 148-58.
[http://dx.doi.org/10.1007/s12011-010-8766-2] [PMID: 20625937]
[171]
Kirsten TB, Chaves-Kirsten GP, Bernardes S, et al. Lipopolysaccharide exposure induces maternal hypozincemia, and prenatal zinc treatment prevents autistic-like behaviors and disturbances in the striatal dopaminergic and mTOR systems of offspring. PLoS One 2015; 10(7): e0134565.
[http://dx.doi.org/10.1371/journal.pone.0134565] [PMID: 26218250]
[172]
Bilici M, Yildirim F, Kandil S, et al. Double-blind, placebo-controlled study of zinc sulfate in the treatment of attention deficit hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28(1): 181-90.
[http://dx.doi.org/10.1016/j.pnpbp.2003.09.034] [PMID: 14687872]
[173]
Akhondzadeh S, Mohammadi M-R, Khademi M. Zinc sulfate as an adjunct to methylphenidate for the treatment of attention deficit hyperactivity disorder in children: A double blind and randomized trial [ISRCTN64132371]. BMC Psychiatry 2004; 4(1): 9.
[http://dx.doi.org/10.1186/1471-244X-4-9] [PMID: 15070418]
[174]
Huss M, Völp A, Stauss-Grabo M. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems - an observational cohort study. Lipids Health Dis 2010; 9(1): 105.
[http://dx.doi.org/10.1186/1476-511X-9-105] [PMID: 20868469]
[175]
DiGirolamo AM, Ramirez-Zea M, Wang M, et al. Randomized trial of the effect of zinc supplementation on the mental health of school-age children in Guatemala. Am J Clin Nutr 2010; 92(5): 1241-50.
[http://dx.doi.org/10.3945/ajcn.2010.29686] [PMID: 20881069]
[176]
Gröber U, Werner T, Vormann J, Kisters K. Myth or reality-transdermal magnesium? Nutrients 2017; 9(8): E813.
[http://dx.doi.org/10.3390/nu9080813] [PMID: 28788060]
[177]
Houston M. The role of magnesium in hypertension and cardiovascular disease. J Clin Hypertens (Greenwich) 2011; 13(11): 843-7.
[http://dx.doi.org/10.1111/j.1751-7176.2011.00538.x] [PMID: 22051430]
[178]
Guerrera MP, Volpe SL, Mao JJ. Therapeutic uses of magnesium. Am Fam Physician 2009; 80(2): 157-62.
[PMID: 19621856]
[179]
Wu LL, Mao SS, Lin X, Yang RW, Zhu ZW. Evaluation of whole blood trace element levels in chinese children with autism spectrum disorder. Biol Trace Elem Res 2019; 191(2): 269-75.
[http://dx.doi.org/10.1007/s12011-018-1615-4] [PMID: 30600499]
[180]
Ma J, Wu J, Li H, Wang J, Han J, Zhang R. Association between essential metal elements and the risk of autism in Chinese han population. Biol Trace Elem Res 2021.
[PMID: 33797704]
[181]
Rashaid AHB, Nusair SD, Alqhazo MT, Adams JB, Abu-Dalo MA, Bashtawi MA. Heavy metals and trace elements in scalp hair samples of children with severe autism spectrum disorder: A case-control study on Jordanian children. J Trace Elem Med Biol 2021; 67: 126790.
[http://dx.doi.org/10.1016/j.jtemb.2021.126790] [PMID: 34022568]
[182]
Skalny AV, Mazaletskaya AL, Ajsuvakova OP, et al. Hair trace element concentrations in autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). J Trace Elem Med Biol 2020; 61: 126539.
[http://dx.doi.org/10.1016/j.jtemb.2020.126539] [PMID: 32438295]
[183]
Tinkov AA, Mazaletskaya AL, Ajsuvakova OP, et al. ICP-MS assessment of hair essential trace elements and minerals in russian preschool and primary school children with Attention-Deficit/Hyperactivity Disorder (ADHD). Biol Trace Elem Res 2020; 196(2): 400-9.
[http://dx.doi.org/10.1007/s12011-019-01947-5] [PMID: 31691190]
[184]
Black LJ, Allen KL, Jacoby P, et al. Low dietary intake of magnesium is associated with increased externalising behaviours in adolescents. Public Health Nutr 2015; 18(10): 1824-30.
[http://dx.doi.org/10.1017/S1368980014002432] [PMID: 25373528]
[185]
Andersen O. Principles and recent developments in chelation treatment of metal intoxication. Chem Rev 1999; 99(9): 2683-710.
[http://dx.doi.org/10.1021/cr980453a] [PMID: 11749497]
[186]
NAS. Chelation therapy. London: National Autistic Society, Available from: www.nas.org.uk/nas/jsp/polopoly.jsp?d=459&a=7733
[187]
Bradstreet J, Geier DA, Kartzinel JJ, Adams JB, Geier MR. A case-control study of mercury burden in children with autistic spectrum disorders. J Am Phys Surg 2003; 8(3): 76-9.
[188]
De Palma G, Catalani S, Franco A, Brighenti M, Apostoli P. Lack of correlation between metallic elements analyzed in hair by ICP-MS and autism. J Autism Dev Disord 2012; 42(3): 342-53.
[http://dx.doi.org/10.1007/s10803-011-1245-6] [PMID: 21503799]
[189]
Eppright TD, Sanfacon JA, Horwitz EA. Attention deficit hyperactivity disorder, infantile autism, and elevated blood-lead: A possible relationship. Mo Med 1996; 93(3): 136-8.
[PMID: 8867271]
[190]
Patel K, Curtis LT. A comprehensive approach to treating autism and attention-deficit hyperactivity disorder: A prepilot study. J Altern Complement Med 2007; 13(10): 1091-7.
[http://dx.doi.org/10.1089/acm.2007.0611] [PMID: 18166120]
[191]
Rogan WJ, Dietrich KN, Ware JH, et al. The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. N Engl J Med 2001; 344(19): 1421-6.
[http://dx.doi.org/10.1056/NEJM200105103441902] [PMID: 11346806]
[192]
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2012; 2012(3): CD007176.
[http://dx.doi.org/10.1002/14651858.CD007176.pub2] [PMID: 22419320]
[193]
Jenkins DJA, Spence JD, Giovannucci EL, et al. Supplemental vitamins and minerals for CVD prevention and treatment. J Am Coll Cardiol 2018; 71(22): 2570-84.
[http://dx.doi.org/10.1016/j.jacc.2018.04.020] [PMID: 29852980]
[194]
Levine SZ, Kodesh A, Viktorin A, et al. Association of maternal use of folic acid and multivitamin supplements in the periods before and during pregnancy with the risk of autism spectrum disorder in offspring. JAMA Psychiatry 2018; 75(2): 176-84.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.4050] [PMID: 29299606]
[195]
Raghavan R, Riley AW, Volk H, et al. Maternal multivitamin intake, plasma folate and vitamin B12 levels and autism spectrum disorder risk in offspring. Paediatr Perinat Epidemiol 2018; 32(1): 100-11.
[http://dx.doi.org/10.1111/ppe.12414] [PMID: 28984369]
[196]
Adams JB, Holloway C. Pilot study of a moderate dose multivitamin/mineral supplement for children with autistic spectrum disorder. J Altern Complement Med 2004; 10(6): 1033-9.
[http://dx.doi.org/10.1089/acm.2004.10.1033] [PMID: 15673999]
[197]
Virk J, Liew Z, Olsen J, Nohr EA, Catov JM, Ritz B. Pre-conceptual and prenatal supplementary folic acid and multivitamin intake, behavioral problems, and hyperkinetic disorders: A study based on the Danish National Birth Cohort (DNBC). Nutr Neurosci 2018; 21(5): 352-60.
[http://dx.doi.org/10.1080/1028415X.2017.1290932] [PMID: 28276257]
[198]
Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med 2009; 60(1): 355-66.
[http://dx.doi.org/10.1146/annurev.med.60.042307.110802] [PMID: 19630576]
[199]
Chugani DC, Muzik O, Behen M, et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 1999; 45(3): 287-95.
[http://dx.doi.org/10.1002/1531-8249(199903)45:3<287::AID-ANA3>3.0.CO;2-9] [PMID: 10072042]
[200]
Janušonis S. Serotonergic paradoxes of autism replicated in a simple mathematical model. Med Hypotheses 2005; 64(4): 742-50.
[http://dx.doi.org/10.1016/j.mehy.2004.09.020] [PMID: 15694691]
[201]
McBride PA, Anderson GM, Hertzig ME, et al. Serotonergic responsivity in male young adults with autistic disorder. Results of a pilot study. Arch Gen Psychiatry 1989; 46(3): 213-21.
[http://dx.doi.org/10.1001/archpsyc.1989.01810030019003] [PMID: 2919950]
[202]
Quist JF, Barr CL, Schachar R, et al. Evidence for the serotonin HTR2A receptor gene as a susceptibility factor in attention deficit hyperactivity disorder (ADHD). Mol Psychiatry 2000; 5(5): 537-41.
[http://dx.doi.org/10.1038/sj.mp.4000779] [PMID: 11032388]
[203]
Retz W, Freitag CM, Retz-Junginger P, et al. A functional serotonin transporter promoter gene polymorphism increases ADHD symptoms in delinquents: Interaction with adverse childhood environment. Psychiatry Res 2008; 158(2): 123-31.
[http://dx.doi.org/10.1016/j.psychres.2007.05.004] [PMID: 18155777]
[204]
Reddihough DS, Marraffa C, Mouti A, et al. Effect of fluoxetine on obsessive-compulsive behaviors in children and adolescents with autism spectrum disorders: A randomized clinical trial. JAMA 2019; 322(16): 1561-9.
[http://dx.doi.org/10.1001/jama.2019.14685] [PMID: 31638682]
[205]
Hollander E, Phillips A, Chaplin W, et al. A placebo controlled crossover trial of liquid fluoxetine on repetitive behaviors in childhood and adolescent autism. Neuropsychopharmacology 2005; 30(3): 582-9.
[http://dx.doi.org/10.1038/sj.npp.1300627] [PMID: 15602505]
[206]
McDougle CJ, Naylor ST, Cohen DJ, Volkmar FR, Heninger GR, Price LH. A double-blind, placebo-controlled study of fluvoxamine in adults with autistic disorder. Arch Gen Psychiatry 1996; 53(11): 1001-8.
[http://dx.doi.org/10.1001/archpsyc.1996.01830110037005] [PMID: 8911223]
[207]
Sugie Y, Sugie H, Fukuda T, et al. Clinical efficacy of fluvoxamine and functional polymorphism in a serotonin transporter gene on childhood autism. J Autism Dev Disord 2005; 35(3): 377-85.
[http://dx.doi.org/10.1007/s10803-005-3305-2] [PMID: 16119478]
[208]
King BH, Hollander E, Sikich L, et al. Lack of efficacy of citalopram in children with autism spectrum disorders and high levels of repetitive behavior: Citalopram ineffective in children with autism. Arch Gen Psychiatry 2009; 66(6): 583-90.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.30] [PMID: 19487623]
[209]
Chugani DC, Chugani HT, Wiznitzer M, et al. Efficacy of low-dose buspirone for restricted and repetitive behavior in young children with autism spectrum disorder: A randomized trial. J Pediatr 2016; 170: 45-53.
[http://dx.doi.org/10.1016/j.jpeds.2015.11.033]
[210]
Kuczenski R, Segal DS. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: Comparison with amphetamine. J Neurochem 1997; 68(5): 2032-7.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68052032.x] [PMID: 9109529]
[211]
Golubchik P, Kodesh A, Weizman A. Attention-deficit/] hyperactivity disorder and comorbid subsyndromal depression: What is the impact of methylphenidate on mood? Clin Neuropharmacol 2013; 36(5): 141-5.
[http://dx.doi.org/10.1097/WNF.0b013e31829eb204] [PMID: 24045603]
[212]
Findling RL, Greenhill LL, McNamara NK, et al. Venlafaxine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2007; 17(4): 433-45.
[http://dx.doi.org/10.1089/cap.2007.0119] [PMID: 17822339]
[213]
Mukaddes NM, Abali O. Venlafaxine in children and adolescents with attention deficit hyperactivity disorder. Psychiatry Clin Neurosci 2004; 58(1): 92-5.
[http://dx.doi.org/10.1111/j.1440-1819.2004.01199.x] [PMID: 14678464]
[214]
Olvera RL, Pliszka SR, Luh J, Tatum R. An open trial of venlafaxine in the treatment of attention-deficit/hyperactivity disorder in children and adolescents. J Child Adolesc Psychopharmacol 1996; 6(4): 241-50.
[http://dx.doi.org/10.1089/cap.1996.6.241] [PMID: 9231317]
[215]
Findling RL, Schwartz MA, Flannery DJ, Manos MJ. Venlafaxine in adults with attention-deficit/hyperactivity disorder: An open clinical trial. J Clin Psychiatry 1996; 57(5): 184-9.
[PMID: 8626348]
[216]
Auld F, Maschauer EL, Morrison I, Skene DJ, Riha RL. Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med Rev 2017; 34: 10-22.
[http://dx.doi.org/10.1016/j.smrv.2016.06.005] [PMID: 28648359]
[217]
Buscemi N, Vandermeer B, Pandya R, et al. Melatonin for treatment of sleep disorders. Evid Rep Technol Assess (Summ) 2004; (108): 1-7.
[PMID: 15635761]
[218]
Boutin JA, Audinot V, Ferry G, Delagrange P. Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci 2005; 26(8): 412-9.
[http://dx.doi.org/10.1016/j.tips.2005.06.006] [PMID: 15992934]
[219]
Van der Heijden KB, Smits MG, Van Someren EJ, Ridderinkhof KR, Gunning WB. Effect of melatonin on sleep, behavior, and cognition in ADHD and chronic sleep-onset insomnia. J Am Acad Child Adolesc Psychiatry 2007; 46(2): 233-41.
[http://dx.doi.org/10.1097/01.chi.0000246055.76167.0d] [PMID: 17242627]
[220]
Andersen IM, Kaczmarska J, McGrew SG, Malow BA. Melatonin for insomnia in children with autism spectrum disorders. J Child Neurol 2008; 23(5): 482-5.
[http://dx.doi.org/10.1177/0883073807309783] [PMID: 18182647]
[221]
Giannotti F, Cortesi F, Cerquiglini A, Bernabei P. An open-label study of controlled-release melatonin in treatment of sleep disorders in children with autism. J Autism Dev Disord 2006; 36(6): 741-52.
[http://dx.doi.org/10.1007/s10803-006-0116-z] [PMID: 16897403]
[222]
Hayashi M, Mishima K, Fukumizu M, et al. Melatonin treatment and adequate sleep hygiene interventions in children with autism spectrum disorder: A randomized controlled trial. J Autism Dev Disord 2021; 2021: 1-10.
[http://dx.doi.org/10.1007/s10803-021-05139-w] [PMID: 34181143]
[223]
van Andel E, Bijlenga D, Vogel SWN, Beekman ATF, Kooij JJS. Effects of chronotherapy on circadian rhythm and ADHD symptoms in adults with attention-deficit/hyperactivity disorder and delayed sleep phase syndrome: A randomized clinical trial. Chronobiol Int 2021; 38(2): 260-9.
[http://dx.doi.org/10.1080/07420528.2020.1835943] [PMID: 33121289]
[224]
Louis-Auguste J, Besa E, Zyambo K, et al. Tryptophan, glutamine, leucine, and micronutrient supplementation improves environmental enteropathy in Zambian adults: A randomized controlled trial. Am J Clin Nutr 2019; 110(5): 1240-52.
[http://dx.doi.org/10.1093/ajcn/nqz189] [PMID: 31504110]
[225]
Bender DA. Biochemistry of tryptophan in health and disease. Mol Aspects Med 1983; 6(2): 101-97.
[http://dx.doi.org/10.1016/0098-2997(83)90005-5] [PMID: 6371429]
[226]
Kałużna-Czaplińska J, Jóźwik-Pruska J, Chirumbolo S, Bjørklund G. Tryptophan status in autism spectrum disorder and the influence of supplementation on its level. Metab Brain Dis 2017; 32(5): 1585-93.
[http://dx.doi.org/10.1007/s11011-017-0045-x] [PMID: 28608247]
[227]
McDougle CJ, Naylor ST, Cohen DJ, Aghajanian GK, Heninger GR, Price LH. Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 1996; 53(11): 993-1000.
[http://dx.doi.org/10.1001/archpsyc.1996.01830110029004] [PMID: 8911222]
[228]
Zimmermann M, Grabemann M, Mette C, et al. The effects of acute tryptophan depletion on reactive aggression in adults with attention-deficit/hyperactivity disorder (ADHD) and healthy controls. PLoS One 2012; 7(3): e32023.
[http://dx.doi.org/10.1371/journal.pone.0032023] [PMID: 22431971]
[229]
Kötting WF, Bubenzer S, Helmbold K, Eisert A, Gaber TJ, Zepf FD. Effects of tryptophan depletion on reactive aggression and aggressive decision-making in young people with ADHD. Acta Psychiatr Scand 2013; 128(2): 114-23.
[http://dx.doi.org/10.1111/acps.12001] [PMID: 22913430]
[230]
Stadler C, Zepf FD, Demisch L, Schmitt M, Landgraf M, Poustka F. Influence of rapid tryptophan depletion on laboratory-provoked aggression in children with ADHD. Neuropsychobiology 2007; 56(2-3): 104-10.
[http://dx.doi.org/10.1159/000112951] [PMID: 18182830]
[231]
Zepf FD, Landgraf M, Biskup CS, et al. No effect of acute tryptophan depletion on verbal declarative memory in young persons with ADHD. Acta Psychiatr Scand 2013; 128(2): 133-41.
[http://dx.doi.org/10.1111/acps.12089] [PMID: 23418985]
[232]
Grabemann M, Mette C, Zimmermann M, et al. No clear effects of acute tryptophan depletion on processing affective prosody in male adults with ADHD. Acta Psychiatr Scand 2013; 128(2): 142-8.
[http://dx.doi.org/10.1111/acps.12130] [PMID: 23581825]
[233]
Bellia F, Vecchio G, Rizzarelli E. Chapter 90 - Carnosine and Cognitive Deficits. In: Diet and Nutrition in Dementia and Cognitive Decline. San Diego: Academic Press 2015; pp. 973-82.
[http://dx.doi.org/10.1016/B978-0-12-407824-6.00090-2]
[234]
Lee B-J, Lin J-S, Lin Y-C, Lin P-T. Anti-inflammation effects of L-carnitine supplementation (1000 mg/d) in coronary artery disease patients. Nutrition 2014; 2014: 31.
[235]
Bonfanti L, Peretto P, De Marchis S, Fasolo A. Carnosine-related dipeptides in the mammalian brain. Prog Neurobiol 1999; 59(4): 333-53.
[http://dx.doi.org/10.1016/S0301-0082(99)00010-6] [PMID: 10501633]
[236]
Chez MG, Buchanan CP, Aimonovitch MC, et al. Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. J Child Neurol 2002; 17(11): 833-7.
[http://dx.doi.org/10.1177/08830738020170111501] [PMID: 12585724]
[237]
Mehrazad-Saber Z, Kheirouri S, Noorazar SG. Effects of l-carnosine supplementation on sleep disorders and disease severity in autistic children: A randomized, controlled clinical trial. Basic Clin Pharmacol Toxicol 2018; 123(1): 72-7.
[http://dx.doi.org/10.1111/bcpt.12979] [PMID: 29430839]
[238]
Hajizadeh-Zaker R, Ghajar A, Mesgarpour B, Afarideh M, Mohammadi MR, Akhondzadeh S. l-carnosine as an adjunctive therapy to risperidone in children with autistic disorder: A randomized, double-blind, placebo-controlled trial. J Child Adolesc Psychopharmacol 2018; 28(1): 74-81.
[http://dx.doi.org/10.1089/cap.2017.0026] [PMID: 29027815]
[239]
Abraham DA, Undela K, Narasimhan U, Rajanandh MG. Effect of L-Carnosine in children with autism spectrum disorders: A systematic review and meta-analysis of randomised controlled trials. Amino Acids 2021; 53(4): 575-85.
[http://dx.doi.org/10.1007/s00726-021-02960-6] [PMID: 33704575]
[240]
Ann Abraham D, Narasimhan U, Christy S, Muhasaparur Ganesan R. Effect of L-Carnosine as adjunctive therapy in the management of children with autism spectrum disorder: A randomized controlled study. Amino Acids 2020; 52(11-12): 1521-8.
[http://dx.doi.org/10.1007/s00726-020-02909-1] [PMID: 33170378]
[241]
Zambrelli E, Lividini A, Spadavecchia S, Turner K, Canevini MP. Effects of supplementation with antioxidant agents on sleep in autism spectrum disorder: A review. Front Psychiatry 2021; 12: 689277.
[http://dx.doi.org/10.3389/fpsyt.2021.689277] [PMID: 34262494]
[242]
Ghajar A, Aghajan-Nashtaei F, Afarideh M, Mohammadi MR, Akhondzadeh S. l-carnosine as adjunctive therapy in children and adolescents with attention-deficit/hyperactivity disorder: A randomized, double-blind, placebo-controlled clinical trial. J Child Adolesc Psychopharmacol 2018; 28(5): 331-8.
[http://dx.doi.org/10.1089/cap.2017.0157] [PMID: 29469593]
[243]
Rajasekaran A. 1.05 - Nutraceuticals. In: Comprehensive Medicinal Chemistry III. Oxford: Elsevier 2017; pp. 107-34.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12287-5]
[244]
Healy-Stoffel M, Levant B. N-3 (Omega-3) fatty acids: Effects on brain dopamine systems and potential role in the etiology and treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 2018; 17(3): 216-32.
[http://dx.doi.org/10.2174/1871527317666180412153612] [PMID: 29651972]
[245]
McNamara RK, Carlson SE. Role of omega-3 fatty acids in brain development and function: Potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fatty Acids 2006; 75(4-5): 329-49.
[http://dx.doi.org/10.1016/j.plefa.2006.07.010] [PMID: 16949263]
[246]
Sheppard KW, Boone KM, Gracious B, et al. Effect of Omega-3 and -6 supplementation on language in preterm toddlers exhibiting autism spectrum disorder symptoms. J Autism Dev Disord 2017; 47(11): 3358-69.
[http://dx.doi.org/10.1007/s10803-017-3249-3] [PMID: 28748334]
[247]
Bent S, Bertoglio K, Ashwood P, Bostrom A, Hendren RL. A pilot randomized controlled trial of omega-3 fatty acids for autism spectrum disorder. J Autism Dev Disord 2011; 41(5): 545-54.
[http://dx.doi.org/10.1007/s10803-010-1078-8] [PMID: 20683766]
[248]
Infante M, Sears B, Rizzo AM, et al. Omega-3 PUFAs and vitamin D co-supplementation as a safe-effective therapeutic approach for core symptoms of autism spectrum disorder: Case report and literature review. Nutr Neurosci 2020; 23(10): 779-90.
[http://dx.doi.org/10.1080/1028415X.2018.1557385] [PMID: 30545280]
[249]
Mazahery H, Conlon CA, Beck KL, et al. A randomised-controlled trial of vitamin D and omega-3 long chain polyunsaturated fatty acids in the treatment of core symptoms of autism spectrum disorder in children. J Autism Dev Disord 2019; 49(5): 1778-94.
[http://dx.doi.org/10.1007/s10803-018-3860-y] [PMID: 30607782]
[250]
Horvath A, Łukasik J, Szajewska H. ω-3 fatty acid supplementation does not affect autism spectrum disorder in children: A systematic review and meta-analysis. J Nutr 2017; 147(3): 367-76.
[http://dx.doi.org/10.3945/jn.116.242354] [PMID: 28077731]
[251]
James SMP, Williams K. Omega-3 fatty acids supplementation for autism spectrum disorders (ASD). Cochrane Database Sys Rev 2011. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD007992.pub2/information#versionTable
[252]
Döpfner M, Dose C, Breuer D, Heintz S, Schiffhauer S, Banaschewski T. Efficacy of omega-3/omega-6 fatty acids in preschool children at risk of ADHD: A randomized placebo-controlled trial. J Atten Disord 2021; 25(8): 1096-106.
[http://dx.doi.org/10.1177/1087054719883023] [PMID: 31680604]
[253]
Bos DJ, Oranje B, Veerhoek ES, et al. Reduced symptoms of inattention after dietary omega-3 fatty acid supplementation in boys with and without attention deficit/hyperactivity disorder. Neuropsychopharmacology 2015; 40(10): 2298-306.
[http://dx.doi.org/10.1038/npp.2015.73] [PMID: 25790022]
[254]
Martins BP, Bandarra NM, Figueiredo-Braga M. The role of marine omega-3 in human neurodevelopment, including Autism Spectrum Disorders and Attention-Deficit/Hyperactivity Disorder - a review. Crit Rev Food Sci Nutr 2020; 60(9): 1431-46.
[http://dx.doi.org/10.1080/10408398.2019.1573800] [PMID: 30880398]
[255]
Buchhorn R, Koenig J, Jarczok MN. A case series on the potential effect of omega-3-fatty acid supplementation on 24-h heart rate variability and its circadian variation in children with attention deficit (hyperactivity) disorder. Atten Defic Hyperact Disord 2018; 10(2): 135-9.
[256]
Chang JP, Su KP, Mondelli V, Pariante CM. Omega-3 polyunsaturated fatty acids in youths with attention deficit hyperactivity disorder: A systematic review and meta-analysis of clinical trials and biological studies. Neuropsychopharmacology 2018; 43(3): 534-45.
[http://dx.doi.org/10.1038/npp.2017.160] [PMID: 28741625]
[257]
Derbyshire E Do. Omega-3/6 fatty acids have a therapeutic role in children and young people with ADHD? J Lipids 2017; 2017: 6285218.
[http://dx.doi.org/10.1155/2017/6285218] [PMID: 28951787]
[258]
Matsudaira T, Gow RV, Kelly J, et al. Biochemical and psychological effects of omega-3/6 supplements in male adolescents with attention-deficit/hyperactivity disorder: A randomized, placebo-controlled, clinical trial. J Child Adolesc Psychopharmacol 2015; 25(10): 775-82.
[http://dx.doi.org/10.1089/cap.2015.0052] [PMID: 26682998]
[259]
Cornu C, Mercier C, Ginhoux T, et al. A double-blind placebo-controlled randomised trial of omega-3 supplementation in children with moderate ADHD symptoms. Eur Child Adolesc Psychiatry 2018; 27(3): 377-84.
[http://dx.doi.org/10.1007/s00787-017-1058-z] [PMID: 28993963]
[260]
Surén P, Roth C, Bresnahan M, et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 2013; 309(6): 570-7.
[http://dx.doi.org/10.1001/jama.2012.155925] [PMID: 23403681]
[261]
Al-Farsi YM, Waly MI, Deth RC, et al. Low folate and vitamin B12 nourishment is common in Omani children with newly diagnosed autism. Nutrition 2013; 29(3): 537-41.
[http://dx.doi.org/10.1016/j.nut.2012.09.014] [PMID: 23287069]
[262]
Batebi N, Moghaddam HS, Hasanzadeh A, Fakour Y, Mohammadi MR, Akhondzadeh S. Folinic acid as adjunctive therapy in treatment of inappropriate speech in children with autism: A double-blind and placebo-controlled randomized trial. Child Psychiatry Hum Dev 2020; 2020: 1-11.
[PMID: 33029705]
[263]
Uğur Ç, Gürkan CK. Serum vitamin D and folate levels in children with autism spectrum disorders. Res Autism Spectr Disord 2014; 8(12): 1641-7.
[http://dx.doi.org/10.1016/j.rasd.2014.09.002]
[264]
Ramaekers VT, Blau N, Sequeira JM, Nassogne M-C, Quadros EV. Folate receptor autoimmunity and cerebral folate deficiency in low-functioning autism with neurological deficits. Neuropediatrics 2007; 38(6): 276-81.
[http://dx.doi.org/10.1055/s-2008-1065354] [PMID: 18461502]
[265]
Sun C, Zou M, Zhao D, Xia W, Wu L. Efficacy of folic acid supplementation in autistic children participating in structured teaching: An open-label trial. Nutrients 2016; 8(6): 337.
[http://dx.doi.org/10.3390/nu8060337] [PMID: 27338456]
[266]
Hollowood-Jones K, Adams JB, Coleman DM, et al. Altered metabolism of mothers of young children with Autism Spectrum Disorder: A case control study. BMC Pediatr 2020; 20(1): 557.
[http://dx.doi.org/10.1186/s12887-020-02437-7] [PMID: 33317469]
[267]
Altun H, Kurutaş EB, Şahin N, Güngör O, Fındıklı E. The levels of vitamin D, vitamin D receptor, homocysteine and complex B vitamin in children with autism spectrum disorders. Clin Psychopharmacol Neurosci 2018; 16(4): 383-90.
[http://dx.doi.org/10.9758/cpn.2018.16.4.383] [PMID: 30466210]
[268]
Zou M, Sun C, Liang S, et al. Fisher discriminant analysis for classification of autism spectrum disorders based on folate-related metabolism markers. J Nutr Biochem 2019; 64: 25-31.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.023] [PMID: 30419423]
[269]
Belardo A, Gevi F, Zolla L. The concomitant lower concentrations of vitamins B6, B9 and B12 may cause methylation deficiency in autistic children. J Nutr Biochem 2019; 70: 38-46.
[http://dx.doi.org/10.1016/j.jnutbio.2019.04.004] [PMID: 31151052]
[270]
Ghanizadeh A, Ayoobzadehshirazi A. A randomized double-blind placebo-controlled clinical trial of adjuvant buspirone for irritability in autism. Pediatr Neurol 2015; 52(1): 77-81.
[http://dx.doi.org/10.1016/j.pediatrneurol.2014.09.017] [PMID: 25451017]
[271]
Akhondzadeh S, Erfani S, Mohammadi MR, et al. Cyproheptadine in the treatment of autistic disorder: A double-blind placebo-controlled trial. J Clin Pharm Ther 2004; 29(2): 145-50.
[http://dx.doi.org/10.1111/j.1365-2710.2004.00546.x] [PMID: 15068403]
[272]
Hergüner S, Keleşoğlu FM, Tanıdır C, Cöpür M. Ferritin and iron levels in children with autistic disorder. Eur J Pediatr 2012; 171(1): 143-6.
[http://dx.doi.org/10.1007/s00431-011-1506-6] [PMID: 21643649]
[273]
Reynolds A, Krebs NF, Stewart PA, et al. Iron status in children with autism spectrum disorder. Pediatrics 2012; 130 (Suppl. 2): S154-9.
[http://dx.doi.org/10.1542/peds.2012-0900M] [PMID: 23118246]
[274]
Karababa İF, Savas SN, Selek S, et al. Homocysteine levels and oxidative stress parameters in patients with adult ADHD. J Atten Disord 2017; 21(6): 487-93.
[http://dx.doi.org/10.1177/1087054714538657] [PMID: 24994877]
[275]
Sourander A, Silwal S, Upadhyaya S, Surcel H-M, Hinkka-Yli-Salomäki S, McKeague IW, et al. Maternal serum Vitamin B12 and offspring attention-deficit/hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry 2020; 2020: 1-14.
[PMID: 32886223]
[276]
Kadkhoda Mezerji F, Moharreri F, Mohammadpour AH, Elyasi S. Preventive effect of cyproheptadine on sleep and appetite disorders induced by methylphenidate: An exploratory randomised, double-blinded, placebo-controlled clinical trial. Int J Psychiatry Clin Pract 2019; 23(1): 72-9.
[http://dx.doi.org/10.1080/13651501.2018.1509095] [PMID: 30261781]
[277]
Berner A, Kamal M, Bener H, Bhugra D. Higher prevalence of iron deficiency as strong predictor of attention deficit hyperactivity disorder in children. Ann Med Health Sci Res 2014; 4(3): 291-7.
[http://dx.doi.org/10.4103/2141-9248.141974] [PMID: 24971197]
[278]
Donfrancesco R, Parisi P, Vanacore N, Martines F, Sargentini V, Cortese S. Iron and ADHD: Time to move beyond serum ferritin levels. J Atten Disord 2013; 17(4): 347-57.
[http://dx.doi.org/10.1177/1087054711430712] [PMID: 22290693]
[279]
Percinel I, Yazici KU, Ustundag B. Iron deficiency parameters in children and adolescents with attention-deficit/hyperactivity disorder. Child Psychiatry Hum Dev 2016; 47(2): 259-69.
[http://dx.doi.org/10.1007/s10578-015-0562-y] [PMID: 26092605]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy