Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Microwave-assisted Synthesis and Characterization of Acrylamide Grafted Copolymer of Okra Gum with the Application of 32 Central Composite Designs (CCD)

Author(s): Anshul Attri, Mohamad Taleuzzaman and Surajpal Verma*

Volume 20, Issue 6, 2023

Published on: 21 October, 2022

Page: [755 - 766] Pages: 12

DOI: 10.2174/1570180819666220517084707

Price: $65

Abstract

Introduction: Modified polymeric materials are nowadays most commonly used for making modified-release pharmaceutical dosage forms.

Methods: In this present research study, a grafted copolymer is synthesized by using acrylamide and okra gum with the help of the redox initiator method. The method was optimized using a 3-factor, 2-level central composite design (CCD). Optimization of the synthetic process was done by the application of QbD; the amount of acrylamide (1-10g), amount of initiator (50-150 mg), and microwave irradiation exposure time (1-5 min) were taken as critical process variables, and response factors were selected as percentage grafting (% grafting) and percentage yield (% yield).

Results: The optimized formulation (F13) exhibited a maximum percentage of grafting of 82.2 and a percentage yield of 12.54 of acrylamide (5.5g), amount of initiator as 100 mg, and microwave irradiation exposure time as 3 min.

Conclusion: The characterization of synthesized grafted copolymer product was performed by using differential scanning calorimetry (DSC), FT-IR spectroscopy, and scanning electron microscopy (SEM).

Keywords: Grafted copolymer, acrylamide, okra gum, analytical technique, CCD, QbD.

Graphical Abstract
[1]
Efentakis, M.; Koutlis, A. Release of furosemide from multiple-unit and single-unit preparations containing different viscosity grades of sodium alginate. Pharm. Dev. Technol., 2001, 6(1), 91-98.
[http://dx.doi.org/10.1081/PDT-100000048] [PMID: 11247279]
[2]
Vijan, V.; Kaity, S.; Biswas, S.; Isaac, J.; Ghosh, A. Microwave assisted synthesis and characterization of acrylamide grafted gellan, application in drug delivery. Carbohydr. Polym., 2012, 90(1), 496-506.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.071] [PMID: 24751070]
[3]
Soppimath, K.S.; Aminabhavi, T.M.; Dave, A.M.; Kumbar, S.G.; Rudzinski, W.E. Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev. Ind. Pharm., 2002, 28(8), 957-974.
[http://dx.doi.org/10.1081/DDC-120006428] [PMID: 12378965]
[4]
Nandi, G.; Patra, P.; Priyadarshini, R.; Kaity, S.; Ghosh, L.K. Synthesis, characterization and evaluation of methacrylamide grafted gellan as sustained release tablet matrix. Int. J. Biol. Macromol., 2015, 72, 965-974.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.052] [PMID: 25316428]
[5]
Bhattacharya, A.; Misra, B.N. Grafting: A versatile means to modify polymers: Techniques, factors and applications. Prog. Polym. Sci., 2004, 29(8), 767-814.
[http://dx.doi.org/10.1016/j.progpolymsci.2004.05.002]
[6]
Kumar, D.; Pandey, J.; Raj, V.; Kumar, P. A review on the modification of polysaccharide through graft copolymerization for various potential applications. Open Med. Chem. J., 2017, 11, 109-126.
[http://dx.doi.org/10.2174/1874104501711010109] [PMID: 29151987]
[7]
Vega-Hernández, M.A.; Cano-Díaz, G.S.; Vivaldo-Lima, E.; Rosas-Aburto, A.; Hernández-Luna, M.G. A review on the synthesis, characterization, and modeling of polymer grafting. modeling of polymer grafting. Processes (Basel), 2021, 9, 37.
[http://dx.doi.org/10.3390/pr9020375]
[8]
Hong, S.C.; Jia, S.; Teodorescu, M.; Kowalewski, T.; Matyjaszewski, K. Polyolefin graft copolymers via living polymerization techniques: Preparation of poly(n-butyl acrylate)-graft-polyethylene through the combination of Pd-mediated living olefin polymerization and atom transfer radical polymerization. Processes (Basel), 2021, 9, 375.
[9]
Chmielarz, P.; Król, P. Chapter 10 - poly(urethane-methacrylate) copolymers prepared by the atom transfer radical polymerization methods as a new material for hydrophobic coatings. In: Polyurethane Polymers; Thomas, Sabu; Datta, Janusz; Haponiuk, Józef T.; Reghunadhan, Arunima , Eds.;Elsevier, 2017; pp. 247-260.
[10]
Slagman, S.; Zuilhof, H.; Franssen, M.C.R. Laccase-mediated grafting on biopolymers and synthetic polymers: A critical review. ChemBioChem, 2018, 19(4), 288-311.
[http://dx.doi.org/10.1002/cbic.201700518] [PMID: 29111574]
[11]
Ashfaq, A.; Clochard, M.C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S. Polymerization reactions and modifications of polymers by ionizing radiation. Polymers (Basel), 2020, 12(12), 2877.
[http://dx.doi.org/10.3390/polym12122877]
[12]
Zhu, J.; Song, X.; Tan, W.K.; Wen, Y.; Gao, Z.; Ong, C.N.; Loh, C.S.; Swarup, S.; Li, J. Chemical modification of biomass okara using poly(acrylic acid) through free radical graft polymerization. J. Agric. Food Chem., 2020, 68(46), 13241-13246.
[http://dx.doi.org/10.1021/acs.jafc.0c01818] [PMID: 32364750]
[13]
Devi, Lalita; Singh, Anirudh P Sharma, Rajeev Kumar Selective sorption of Fe(II) ions over Cu(II) and Cr(VI) ions by cross-linked graft copolymers of chitosan with acrylic acid and binary vinyl monomer mixtures. Int. J. Biol. Macromol., 2017, 105(Pt 1), 1202-1212.
[14]
Bal, T.; Swain, S. Microwave assisted synthesis of polyacrylamide grafted polymeric blend of fenugreek seed mucilage-Polyvinyl alcohol (FSM-PVA-g-PAM) and its characterizations as tissue engineered scaffold and as a drug delivery device. Daru, 2020, 28(1), 33-44.
[http://dx.doi.org/10.1007/s40199-019-00237-8] [PMID: 30712231]
[15]
Jain, P.; Taleuzzaman, M.; Kala, C.; Kumar Gupta, D.; Ali, A. Quality by design (Qbd) assisted the development of phytosomal gel of aloe vera extract for topical delivery. J. Liposome Res., 2020, 19, 1-8.
[PMID: 33183121]
[16]
Ogaji, I.J.; Hoag, S.W. Novel extraction and application of okra gum as a film coating agent using theophylline as a model drug. J. Adv. Pharm. Technol. Res., 2014, 5(2), 70-77.
[http://dx.doi.org/10.4103/2231-4040.133427] [PMID: 24959415]
[17]
Waghmare, R.R.P.; Moses, J.A.; Anandharamakrishnan, C. Mucilages: Sources, extraction methods, and characteristics for their use as encapsulation agents. Crit. Rev. Food Sci. Nutr., 2021, 22, 1-22.
[PMID: 33480265]
[18]
Emeje, M.; Isimi, C.; Byrn, S.; Fortunak, J.; Kunle, O.; Ofoefule, S. Extraction and physicochemical characterization of a new polysaccharide obtained from the fresh fruits of Abelmoschus esculentus. Iran. J. Pharm. Res., 2011, 10(2), 237-246.
[PMID: 24250349]
[19]
Mishra, A.; Clark, J.H.; Pal, S. Modification of Okra mucilage with acrylamide: Synthesis, characterization and swelling behavior. Carbohydr. Polym., 2008, 72(4), 608-615.
[http://dx.doi.org/10.1016/j.carbpol.2007.10.009]
[20]
Kumar, A.; Singh, K.; Ahuja, M. Xanthan-g-poly(acrylamide): Microwave-assisted synthesis, characterization, and in vitro release behavior. Carbohydr. Polym., 2009, 76, 261-267.
[http://dx.doi.org/10.1016/j.carbpol.2008.10.014]
[21]
Mishra, A.; Pal, S. Polyacrylonitrile-grafted Okra mucilage: A renewable reservoir to polymeric materials. Carbohydr. Polym., 2007, 68(1), 95-100.
[http://dx.doi.org/10.1016/j.carbpol.2006.07.014]
[22]
Ahmad, A.; Amir, M.; Alshadidi, A.A.; Hussain, M.D.; Haq, A.; Kazi, M. Central composite design expert-supported development and validation of HPTLC method: Relevance in quantitative evaluation of protopine in Fumaria indica. Saudi Pharm. J., 2020, 28(4), 487-494.
[http://dx.doi.org/10.1016/j.jsps.2020.02.011] [PMID: 32273809]
[23]
Raj, V.; Shim, J.J.; Lee, J. Grafting modification of okra mucilage: Recent findings, applications, and future directions. Carbohydr. Polym., 2020, 246, 116653.
[http://dx.doi.org/10.1016/j.carbpol.2020.116653] [PMID: 32747285]
[24]
Kaur, L.; Singh, I. Microwave grafted, composite and coprocessed materials: Drug delivery applications. Ther. Deliv., 2016, 7(12), 827-842.
[http://dx.doi.org/10.4155/tde-2016-0055] [PMID: 27854180]
[25]
Patra, S.; Bala, N.N.; Nandi, G. Synthesis, characterization and fabrication of sodium carboxymethyl-okra-gum-grafted-polymethacrylamide into sustained release tablet matrix. Int. J. Biol. Macromol., 2020, 164, 3885-3900.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.025] [PMID: 32910964]
[26]
Choudhary, P.D.; Pawar, H.A. Recently investigated natural gums and mucilages as pharmaceutical excipients: An overview. J. Pharm. (Cairo), 2014, 2014, 204849.
[http://dx.doi.org/10.1155/2014/204849] [PMID: 26556189]

© 2024 Bentham Science Publishers | Privacy Policy