Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Research Article

Antihyperglycemic and Antidyslipidemic Effect of Moricandia Suffruticosa in Normal and Streptozotocin-induced Diabetic Rats

Author(s): Amine Azzane, Ayoub Amssayef and Mohamed Eddouks*

Volume 22, Issue 1, 2022

Published on: 15 July, 2022

Page: [58 - 66] Pages: 9

DOI: 10.2174/1871529X22666220513124452

Price: $65

Open Access Journals Promotions 2
Abstract

Aims: The present work aimed to assess the antihyperglycemic and antihyperlipidemic effects of Moricandia suffruticosa.

Background: Moricandia suffruticosa (M. suffruticosa) is used in traditional medicine.

Objective: The present study investigated the antihyperglycemic and antidyslipidemic effects of M. suffruticosa and its effect on glycogen content in normoglycemic and hyperglycemic rats. Methods: The effect of the aqueous extract of M. suffruticosa (AEMS) at two doses of 100 and 140 mg/kg on blood glucose levels, lipid, lipoprotein profile, and glycogen content was examined in normal and streptozotocin (STZ)-induced diabetic rats. Moreover, preliminary phytochemical screening and quantification of phenolic, flavonoid, and tannin contents were carried out.

Results: The results demonstrated that AEMS exhibits antihyperglycemic activity in diabetic rats during both acute and subchronic assays. Furthermore, AEMS revealed an antidyslipidemic effect concerning the level of triglycerides, total cholesterol, very-low-density lipoprotein (VLDL), and non-high-density lipoproteins (Non-HDL). In contrast, AEMS has not affected the value of glycemia, lipids, and lipoproteins in normal rats. In addition, AEMS is rich in several phytochemical compounds. Furthermore, AEMS revealed an important in vitro antioxidant activity.

Conclusion: In conclusion, the study demonstrates that M. suffruticosa exhibits an important antihyperglycemic effect in diabetic rats.

Keywords: Diabetes mellitus, antihyperglycemic, Moricandia suffruticosa, glycogen content, streptozotocin, diabetes.

Graphical Abstract
[1]
Sudagani, J.; Hitman, G.A. Diabetes mellitus: Etiology and epidemiology. In: Encyclopedia of Human Nutrition, 2013, pp. 40-46.
[http://dx.doi.org/10.1016/B978-0-12-375083-9.00071-4]
[2]
Chapman, M.J.; Ginsberg, H.N.; Amarenco, P.; Andreotti, F.; Borén, J.; Catapano, A.L.; Descamps, O.S.; Fisher, E.; Kovanen, P.T.; Kuivenhoven, J.A.; Lesnik, P.; Masana, L.; Nordestgaard, B.G.; Ray, K.K.; Reiner, Z.; Taskinen, M.R.; Tokgözoglu, L.; Tybjærg-Hansen, A.; Watts, G.F. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management. Eur. Heart J., 2011, 32(11), 1345-1361.
[http://dx.doi.org/10.1093/eurheartj/ehr112] [PMID: 21531743]
[3]
Strain, W.D.; Paldánius, P.M. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc. Diabetol., 2018, 17(1), 57-57.
[http://dx.doi.org/10.1186/s12933-018-0703-2] [PMID: 29669543]
[4]
Wu, L.; Parhofer, K.G. Diabetic dyslipidemia. Metabolism, 2014, 63(12), 1469-1479.
[http://dx.doi.org/10.1016/j.metabol.2014.08.010] [PMID: 25242435]
[5]
Sagu, S.T.; Nso, E.J.; Homann, T.; Kapseu, C.; Rawel, H.M. Extraction and purification of beta-amylase from stems of Abrus precatorius by three phase partitioning. Food Chem., 2015, 183, 144-153.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.028] [PMID: 25863622]
[6]
Eddouks, M.; Ajebli, M.; Hebi, M. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet region (Province of Errachidia), Morocco. J. Ethnopharmacol., 2017, 198(198), 516-530.
[http://dx.doi.org/10.1016/j.jep.2016.12.017] [PMID: 28003130]
[7]
Azzane, A.; Amssayef, A.; Eddouks, M. Chenopodium quinoa Exhibits Antihyperglycemic Activity in Streptozotocin-Induced Diabetic Rats. Cardiovasc. Hematol. Agents Med. Chem., 2022, 20(2), 125-132.
[PMID: 34387170]
[8]
El hassani M, E., Douiri, E. M., Bammi, J., Zidane, L., Badoc, A., & Douira, A. Plantes médicinales de la Moyenne Moulouya (nordest du Maroc). Ethnopharmacologia, 2013, 50(39)
[9]
Skandrani, I.; Limem, I.; Neffati, A.; Boubaker, J.; Ben Sghaier, M.; Bhouri, W.; Bouhlel, I.; Kilani, S.; Ghedira, K.; Chekir-Ghedira, L. Assessment of phenolic content, free-radical-scavenging capacity genotoxic and anti-genotoxic effect of aqueous extract prepared from Moricandia arvensis leaves. Food Chem. Toxicol., 2010, 48(2), 710-715.
[http://dx.doi.org/10.1016/j.fct.2009.11.053] [PMID: 19951736]
[10]
Chan, P.T.; Fong, W.P.; Cheung, Y.L.; Huang, Y.; Ho, W.K.; Chen, Z.Y. Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. J. Nutr., 1999, 129(6), 1094-1101.
[http://dx.doi.org/10.1093/jn/129.6.1094] [PMID: 10356071]
[11]
Guimarães, P.R.; Galvão, A.M.; Batista, C.M.; Azevedo, G.S.; Oliveira, R.D.; Lamounier, R.P.; Freire, N.; Barros, A.M.; Sakurai, E.; Oliveira, J.P.; Vieira, E.C.; Alvarez-Leite, J.I. Eggplant (Solanum melongena) infusion has a modest and transitory effect on hypercholesterolemic subjects. Braz. J. Med. Biol. Res., 2000, 33(9), 1027-1036.
[http://dx.doi.org/10.1590/S0100-879X2000000900006] [PMID: 10973133]
[12]
Huang, Z.; Baowu, W.; Eaves, D.H.; Shikany, J.M.; Pace, R.D. Phenolic compound profile of selected vegetables frequently consumed by African Americans in the southeast United States. Food Chem., 2007, 103(4), 1395-1402.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.077]
[13]
Salehi, B.; Ata, A. V Anil Kumar, N.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Tsouh Fokou, P.V.; Kobarfard, F.; Amiruddin Zakaria, Z.; Iriti, M.; Taheri, Y.; Martorell, M.; Sureda, A.; Setzer, W.N.; Durazzo, A.; Lucarini, M.; Santini, A.; Capasso, R.; Ostrander, E.A.; Choudhary, M.I.; Cho, W.C.; Sharifi-Rad, J. Antidiabetic potential of medicinal plants and their active components. Biomolecules, 2019, 9(10), 551.
[http://dx.doi.org/10.3390/biom9100551] [PMID: 31575072]
[14]
Hameed, A.; Galli, M.; Adamska-Patruno, E.; Krętowski, A.; Ciborowski, M. Select polyphenol-rich berry consumption to defer or deter diabetes and diabetes-related complications. Nutrients, 2020, 12(9), 2538.
[http://dx.doi.org/10.3390/nu12092538] [PMID: 32825710]
[15]
Ribnicky, D. M.; Roopchand, D. E.; Poulev, A.; Kuhn, P.; Oren, A.; Cefalu, W. T.; Raskin, I. Artemisia dracunculus L. polyphenols complexed to soy protein show enhanced bioavailability and hypoglycemic activity in C57BL/6 mice. Nutrition (Burbank, Los Angeles County, Calif.), 2014, 30(7-8 Suppl), S4-S10.
[16]
Ajebli, M.; Eddouks, M. Buxus sempervirens L Improves Streptozotocin-induced Diabetes Mellitus in Rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[17]
Vohnout, B.; Vachulová, A.; Blazícek, P.; Dukát, A.; Fodor, G.; Lietava, J. Evaluation of alternative calculation methods for determining LDL cholesterol. Vnitr. Lek., 2008, 54(10), 961-964.
[PMID: 19009762]
[18]
Ikewuchi, J.C.; Ikewuchi, C.C.; Ifeanacho, M.O. Attenuation of salt-loading induced cardiomegaly and dyslipidemia in Wistar rats by aqueous leaf extract of Chromolaenaodorata. Pharmacol. Pharm., 2014, 5(2), 160-170.
[http://dx.doi.org/10.4236/pp.2014.52022]
[19]
Carroll, N.V.; Longley, R.W.; Roe, J.H. The determination of glycogen in liver and muscle by use of anthrone reagent. J. Biol. Chem., 1956, 220(2), 583-593.
[http://dx.doi.org/10.1016/S0021-9258(18)65284-6] [PMID: 13331917]
[20]
Chebli, B.; Achouri, M.; Idrissi, H.M.; Hmamouchi, M. Antifungal activity of essential oils from several medicinal plants against four postharvest citrus pathogens. Phytopathol. Mediterr., 2003, 42, 251-256.
[21]
Ahmad, M.; Lim, C.P.; Akowuah, G.A.; Najihah, N.; Mohd, I.; Hashim, A.; Hor, S.Y.; Fung, L.A.; Yam, M.F. Safety assessment of standardised methanol extract of Cinnamomumburmannii. Phytomedicine, 2013, 20(1130)121124
[22]
OECD. OECD guideline 425:. Acute oral toxicity—up-and-down procedure. OECD Guidelines for the Testing of Chemicals; OECD Guidelines for the Testing of Chemicals: Paris, France, 2001.
[23]
Ajebli, M.; Eddouks, M. Pharmacological and Phytochemical Study of MenthasuaveolensEhrh in Normal and Streptozotocin induced Diabetic Rats. Nat. Prod. J., 2018, 8(3), 213-227.
[http://dx.doi.org/10.2174/2210315508666180327120434]
[24]
Bouhlali, E.D.T.; Alem, C.; Zegzouti, Y.F. Antioxidant and anti-hemolytic activities of phenolicconstituents of six moroccan date fruit (Phoenix dactylifera L.) syrups. Indian J. Biotechnol., 2015, 12(1), 45-52.
[25]
Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 2003, 81(3), 321-326.
[http://dx.doi.org/10.1016/S0308-8146(02)00423-5]
[26]
Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. ‎. J. Sci. Food Agric., 1978, 48(3), 788-794.
[http://dx.doi.org/10.1002/jsfa.2740290908]
[27]
Louli, V.; Ragoussis, N.; Magoulas, K. Recovery of phenolic antioxidants from wine industry by-products. Bioresour. Technol., 2004, 92(2), 201-208.
[http://dx.doi.org/10.1016/j.biortech.2003.06.002] [PMID: 14693454]
[28]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[29]
Avato, P.; Argentieri, M.P. Brassicaceae a rich source of health improving phytochemicals. Phytochem. Rev., 2015, 14(6), 1019-1033.
[http://dx.doi.org/10.1007/s11101-015-9414-4]
[30]
Bollen, M.; Keppens, S.; Stalmans, W. Specific features of glycogen metabolism in the liver. Biochem. J., 1998, 336(Pt 1), 19-31.
[http://dx.doi.org/10.1042/bj3360019] [PMID: 9806880]
[31]
Freedman, J.E. High-fat diets and cardiovascular disease: Are nutritional supplements useful? J. Am. Coll. Cardiol., 2003, 41(10), 1750-1752.
[http://dx.doi.org/10.1016/S0735-1097(03)00303-6] [PMID: 12767659]
[32]
Donahue, R.P.; Abbott, R.D.; Bloom, E.; Reed, D.M.; Yano, K. Central obesity and coronary heart disease in men. Lancet, 1987, 1(8537), 821-824.
[http://dx.doi.org/10.1016/S0140-6736(87)91605-9] [PMID: 2882231]
[33]
Zhao, T.; Mao, G.H.; Zhang, M.; Li, F.; Zou, Y.; Zhou, Y.; Zheng, W.; Zheng, D.; Yang, L.; Wu, X. Anti-diabetic effects of polysaccharides from ethanol-insoluble residue of Schisandra chinensis (Turcz.) Baill on alloxan-induced diabetic mice. Chem. Res. Chin. Univ., 2013, 29(1), 99-102.
[http://dx.doi.org/10.1007/s40242-012-2218-9]
[34]
Ahmed, Q.U.; Sarian, M.N.; Mat So’ad, S.Z.; Latip, J.; Arief Ichwan, S.J.; Hussein, N.N.; Taher, M.; Alhassan, A.M.; Hamidon, H.; Fakurazi, S. Methylation and acetylation enhanced the antidiabetic activity of some selected flavonoids: In vitro, molecular modelling and structure activity relationship-based study. Biomolecules, 2018, 8(4), 149.
[http://dx.doi.org/10.3390/biom8040149] [PMID: 30445784]
[35]
Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 2019, 9(9), 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[36]
Rani, V.; Yadav, U.C.S. Free Radicals in Human Health and; Springer: New Delhi, 2015.
[37]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy