Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

The Importance of Neglected and Underutilized Medicinal Plants from South America in Modern Pharmaceutical Sciences

Author(s): Mohamad Hesam Shahrajabian, Qi Cheng and Wenli Sun*

Volume 20, Issue 11, 2023

Published on: 29 August, 2022

Page: [1688 - 1706] Pages: 19

DOI: 10.2174/1570180819666220512113812

Price: $65

Abstract

The world needs a paradigm change from the current views on many plants to secure future food and nutrition. Many neglected and underutilized plants, specially medicinal and aromatic plants, are nutrient dense, appropriate in diversifying diets, provide enough vitamins and micronutrients for people, high resistant to diseases and pests, and can be adapted in many regions and of course with tremendous pharmaceutical benefits. Many of the medicinal plant species which were common in traditional medicine are still neglected and underutilized, especially in developing and under-developing countries. Lack of attention to these plants means their potential medicinal properties are under exploited and underestimated. The searches focused on publications from 1980 to July 2021 using PubMed, Google Scholar, Science Direct, and Scopus databases. Review of the literature was carried out using the following keywords, "medicinal plants", "neglected plants", "underutilized plants", "aromatic plants", "traditional medicine science", and "South America". In this review article, the authors have focused on medicinal values of Schinusterebinthifolius, Uncaria tomentosa, Phyllanthusamarus, Astrocaryum aculeatum, Croton cajucara, Arrabidaea chica, Bauhinia forticata, Copaifera langsdorffii, Cordia verbenacea, Caesalpinia ferrea, Salix alba L., Casearia sylvestris, Carapa guianensis, Costus spicatus, and Eugenia uniflora L., in both modern and traditional science. Although many studies have evaluated the biological characteristics of these plants, little has been done to identify and characterize its chemical components, which is certainly a niche that requires to be further explored.

Keywords: Medicinal plants, neglected plants, underutilized plants, aromatic plants, traditional medicinal science, amazon region.

[1]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science. Not. Bot. Horti Agrobot. Cluj-Napoca, 2020, 48(4), 1719-1741.
[http://dx.doi.org/10.15835/nbha48412002]
[2]
Shahrajabian, M.H.; Sun, W.; Soleymani, A.; Cheng, Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother. Res., 2020, 2020(1), 1-11.
[PMID: 33350538]
[3]
Shahrajabian, M.H.; Sun, W.; Shen, H.; Cheng, Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric. Scand. B Soil Plant Sci., 2020, 70(5), 437-443.
[http://dx.doi.org/10.1080/09064710.2020.1763448]
[4]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Asafoetida, a natural medicine for a future. Curr. Nutr. Food Sci., 2021, 17, 1-10.
[http://dx.doi.org/10.2174/1573401317666210222161609]
[5]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Spanish chamomile (Anacycluspyrethrum) and pyrethrum (Tanacetumcineraiifolium): Organic and natural pesticides and treasure of medicinal herbs. Not. Sci. Biol., 2021, 13(1), 10816.
[http://dx.doi.org/10.15835/nsb13110816]
[6]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Molecular breeding and the impacts of some important genes families on agronomic traits, a review. Genet. Resour. Crop Evol., 2021, 68, 1709-1730.
[http://dx.doi.org/10.1007/s10722-021-01148-x]
[7]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev. Med. Chem., 2021, 21(6), 724-730.
[http://dx.doi.org/10.2174/1389557520666201127104907] [PMID: 33245271]
[8]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Isr. J. Plant Sci., 2021, 68(1-2), 1-11.
[http://dx.doi.org/10.1163/22238980-bja10019]
[9]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Health benefits of wolfberry (Gou Qi Zi) on the basis of ancient Chinese herbalism and western modern medicine. Avicenna J. Phytomed., 2021, 11(2), 109-119.
[PMID: 33907670]
[10]
Manrique, V.; Cuda, J.P.; Overholt, W.A. Effect of herbivory on growth and biomass allocation of Brazilian peppertree (Sapindales: Anacardiaceae) seedlings in the laboratory. Biocontrol Sci. Technol., 2009, 19(6), 657-667.
[http://dx.doi.org/10.1080/09583150903006939]
[11]
Bhattarai, G.P.; Diaz, R.; Manrique, V.; Turechek, W.W.; Buss, L.; Stange, B.; Overholt, W. Diversity and impact of herbivorous insects on Brazilian peppertree in Florida prior to release of exotic biological control agents. Biocontrol Sci. Technol., 2017, 27(6), 703-722.
[http://dx.doi.org/10.1080/09583157.2017.1329929]
[12]
Tlili, N.; Yahia, Y.; Feriani, A.; Labidi, A.; Ghazouani, L.; Nasri, N.; Saadaoui, E.; Khaldi, A. Schinus terebinthifolius vs Schinus molle: A comparative study of the effect of species and location on the phytochemical content of fruits. Ind. Crops Prod., 2018, 122, 559-565.
[http://dx.doi.org/10.1016/j.indcrop.2018.05.080]
[13]
Dannenberg, G.D.S.; Funck, G.D.; Mattei, F.J.; Silva, W.P.D.; Fiorentini, A.M. Antimicrobial and antioxidant activity of essential oil from pink pepper tree (Schinus terebinthifolius Raddi) in vitro and in cheese experimentally contaminated with Listeria monocytogenes. Innov. Food Sci. Emerg. Technol., 2016, 36, 120-127.
[http://dx.doi.org/10.1016/j.ifset.2016.06.009]
[14]
Uliana, M.P.; Fronza, M.; Silva, A.G.D.; Vargas, T.S.; Andrade, T.U.D.; Scherer, R. Composition and biological activity of Brazilian rose pepper (Schinusterebinthifolius Raddi) leaves. Ind. Crops Prod., 2016, 83, 235-240.
[http://dx.doi.org/10.1016/j.indcrop.2015.11.077]
[15]
Da Silva, M.M.; Iriguchi, E.K.K.; Kassuya, C.A.; Vieira, M.D.C.; Foglio, M.A.; Carvalho, J.E.D.; Ruiz, A.L.T.G.; Souza, K.D.P.; Formagio, A.S.N. Schinus terebinthifolius: Phenolic constituents and in vitro antioxidant, antiproliferative and in vivo anti-inflammatory activities. Rev. Bras. Farmacogn., 2017, 27(4), 445-452.
[http://dx.doi.org/10.1016/j.bjp.2016.12.007]
[16]
Feriani, A.; Tir, M.; Hamed, M.; Sila, A.; Nahdi, S.; Alwasel, S.; Harrath, A.H.; Tlili, N. Multidirectional insights on polysaccharides from Schinus terebinthifolius and Schinus molle fruits: Physicochemical and functional profiles, in vitro antioxidant, antigenotoxicity, antidiabetic, and antihemolytic capacities, and in vivo anti-inflammatory and anti-nociceptive properties. Int J Biol Macromol., 2020, 165(Pt B), 2576-2587.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.123] [PMID: 33096174]
[17]
Feriani, A.; Tir, M.; Arafah, M.; Gómez-Caravaca, A.M.; Contreras, M.D.M.; Nahdi, S.; Taamalli, A.; Allagui, M.S.; Alwasel, S.; Segura-Carretero, A.; Harrath, A.H.; Tlili, N. Schinus terebinthifolius fruits intake ameliorates metabolic disorders, inflammation, oxidative stress, and related vascular dysfunction, in atherogenic diet-induced obese rats. Insight of their chemical characterization using HPLC-ESI-QTOF-MS/MS. J. Ethnopharmacol., 2021, 269, 113701.
[http://dx.doi.org/10.1016/j.jep.2020.113701] [PMID: 33346028]
[18]
Gois, F.D.; Cairo, P.L.G.; Cantarelli, V.D.S.; Costa, L.C.D.B.; Fontana, R.; Allaman, I.B.; Sbardella, M.; Carvalho, F.M.D. Junior; Costa, L.B. Effect of Brazilian red pepper (Schinus terebinthifolius Raddi) essential oil on performance, diarrhea and gut health of weanling pigs. Livest. Sci., 2016, 183, 24-27.
[http://dx.doi.org/10.1016/j.livsci.2015.11.009]
[19]
Prade, P.; Diaz, R.; Vitorino, M.D.; Cuda, J.P.; Kumar, P.; Gruber, B.; Overholt, W.A. Galls induced by Calophya latiforceps (Hemiptera: Calophyidae) reduce leaf performance and growth of Brazilian peppertree. Biocontrol Sci. Technol., 2016, 26(1), 23-34.
[http://dx.doi.org/10.1080/09583157.2015.1072131]
[20]
Manrique, V.; Diaz, R.; Pogue, M.G.; Vitorino, M.D.; Overholt, W.A. Description and biology of Paectes longiformis (Lepidoptera: Euteliidae), a new species from Brazil and potential biological control agent of Brazilian peppertree in Florida. Biocontrol Sci. Technol., 2012, 22(2), 163-185.
[http://dx.doi.org/10.1080/09583157.2011.647761]
[21]
Diaz, R.; Moscoso, D.; Manrique, V.; Williams, D.; Overholt, W.A. Native range density, host utilization and life history of Calophya latiforceps (Hemiptera: Calophyidae): An herbivore of Brazilian Peppertree (Schinus terebinthifolia). Biocontrol Sci. Technol., 2014, 24(5), 536-553.
[http://dx.doi.org/10.1080/09583157.2013.878686]
[22]
Jones, E.; Williams, D.A.; Wheeler, G.S. Life history and host range determination of Paectes n. sp.- a potential classical biological control agent of Brazilian peppertree in the United States. Biocontrol Sci. Technol., 2020, 30(1), 1-18.
[http://dx.doi.org/10.1080/09583157.2019.1679717]
[23]
Dlamini, P.; Zachariades, C.; Downs, C.T. The effect of frugivorous birds on seed dispersal and germination of the invasive Brazilian pepper tree (Schinusterebinthifolius) and Indian laurel (Listea glutinosa). S. Afr. J. Bot., 2018, 114, 61-68.
[http://dx.doi.org/10.1016/j.sajb.2017.10.009]
[24]
Donnelly, M.J.; Green, D.M.; Walters, L.J. Allelopathic effects of fruits of the Brazilian pepper Schinus terebinthifolius on growth, leaf production and biomass of seedlings of the mangrove Rhizophoramangle and the black mangrove Avicenniagerminans. J. Exp. Mar. Biol. Ecol., 2008, 357(2), 149-156.
[http://dx.doi.org/10.1016/j.jembe.2008.01.009]
[25]
Camaroti, J.R.S.L.; Almeida, W.A.D.; Belmonte, B.D.R.; Oliveira, A.P.S.D.; Lima, T.D.A.; Ferreira, M.R.A.; Paiva, P.M.G.; Soares, L.A.L.; Pontual, E.V.; Napoleao, T.H. Sitophilus zeamais adults have survival and nutrition affected by Schinus terebinthifolius leaf extract and its lectin (SteLL). Ind. Crops Prod., 2018, 116, 81-89.
[http://dx.doi.org/10.1016/j.indcrop.2018.02.065]
[26]
Maldaner, J.; Steffen, G.P.K.; Missio, E.L.; Saldanha, C.W.; De Morais, R.M.; Steffen, R.B. Rue and Brazilian peppertree essential oils inhibit the germination and initial development of the invasive plant lovegrass. Int. J. Environ. Stud., 2020, 77(2), 255-263.
[http://dx.doi.org/10.1080/00207233.2020.1723963]
[27]
Rebolledo, V.; Otero, M.C.; Delgado, J.M.; Torres, F.; Herrera, M.; Ríos, M.; Cabañas, M.; Martinez, J.L.; Rodríguez-Díaz, M. Phytochemical profile and antioxidant activity of extracts of the peruvian peppertree Schinus areira L. from Chile. Saudi J. Biol. Sci., 2021, 28(1), 1052-1062.
[http://dx.doi.org/10.1016/j.sjbs.2020.10.043] [PMID: 33424399]
[28]
Patocka, J.; Almeida, J.D.D. Brazilian pepper tree: Review on pharmacology. Mil Med Sci Lett, 2017, 86(1), 32-41.
[http://dx.doi.org/10.31482/mmsl.2017.005]
[29]
Lima, L.B.; Vasconcelos, C.F.B.; Maranhão, H.M.L.; Leite, V.R.; Ferreira, P.A.; Andrade, B.A.; Araújo, E.L.; Xavier, H.S.; Lafayette, S.S.L.; Wanderley, A.G. Acute and subacute toxicity of Schinus terebinthifolius bark extract. J. Ethnopharmacol., 2009, 126(3), 468-473.
[http://dx.doi.org/10.1016/j.jep.2009.09.013] [PMID: 19781616]
[30]
Oliveira, D.C.; Isaias, R.M.S. Redifferentiation of leaflet tissues during midrib gall development in Copaifera langsdorffii (Fabaceae). S. Afr. J. Bot., 2010, 76(2), 239-248.
[http://dx.doi.org/10.1016/j.sajb.2009.10.011]
[31]
Linden, M.; Brinckmann, C.; Feuereisen, M.M. Review; Schieber, A. Effects of structural differences on the antibacterial activity of biflavonoids from fruits of the Brazilian peppertree (Schinus terebinthifolius Raddi). Food Res. Int., 2020, 133, 109134.
[http://dx.doi.org/10.1016/j.foodres.2020.109134] [PMID: 32466911]
[32]
Dannenberg, G.D.S.; Funck, G.D.; Silva, W.P.D.; Fiorentini, A.M. Essential oil from pink pepper (Schinus terebinthifolius Raddi): Chemical composition, antibacterial activity and mechanism of action. Food Control, 2019, 95, 115-120.
[http://dx.doi.org/10.1016/j.foodcont.2018.07.034]
[33]
Cavalcanti, A.D.S.; Alves, M.D.S.; Silva, L.C.P.D.; Patrocinio, D.D.S.; Sanches, M.N.; Chaves, D.S.D.A.; Souza, M.A.A.D. Volatiles composition and extraction kinetics from Schinus terebinthifolius and Schinus molle leaves and fruit. Rev. Bras. Farmacogn., 2015, 25, 356-362.
[http://dx.doi.org/10.1016/j.bjp.2015.07.003]
[34]
Ennigrou, A.; Casabianca, H.; Laarif, A.; Hanchi, B.; Hosni, K. Maturation-related changes in phytochemicals and biological activities of the Brazilian pepper tree (Schinusterebinthifolius Raddi) fruits. S. Afr. J. Bot., 2021, 108, 407-415.
[http://dx.doi.org/10.1016/j.sajb.2016.09.005]
[35]
Carneiro, F.B.; Lopes, P.Q.; Ramalho, R.C.; Scotti, M.T.; Santos, S.G.; Soares, L.A.L. Characterization of leaf extracts of Schinus terebinthifolius Raddi by GC-MS and chemometric analysis. Pharmacogn. Mag., 2017, 13(Suppl. 3), S672-S675.
[http://dx.doi.org/10.4103/pm.pm_555_16] [PMID: 29142431]
[36]
de Oliveira, V.S.; Cháves, D.W.H.; Gamallo, O.D.; Sawaya, A.C.H.F.; Sampaio, G.R.; Castro, R.N.; Torres, E.A.F.D.S.; Saldanha, T. Effect of aroeira (Schinus terebinthifolius Raddi) fruit against polyunsaturated fatty acids and cholesterol thermo-oxidation in model systems containing sardine oil (Sardinella brasiliensis). Food Res. Int., 2020, 132, 109091.
[http://dx.doi.org/10.1016/j.foodres.2020.109091] [PMID: 32331636]
[37]
de Oliveira, V.S.; Augusta, I.M.; Braz, M.V.D.C.; Riger, C.J.; Prudêncio, E.R.; Sawaya, A.C.H.F.; Sampaio, G.R.; Torres, E.A.F.D.S.; Saldanha, T. Aroeira fruit (Schinus terebinthifolius Raddi) as a natural antioxidant: Chemical constituents, bioactive compounds and in vitro and in vivo antioxidant capacity. Food Chem., 2020, 315, 126274.
[http://dx.doi.org/10.1016/j.foodchem.2020.126274] [PMID: 32007814]
[38]
Sereniki, A.; Linard-Mediros, C.F.B.; Silva, S.N.; Silva, J.B.R.; Sobrinho, T.J.S.P.; da Silva, J.R.; Alves, L.D.S.; Smaili, S.S.; Wanderley, A.G.; Lafayette, S.L. Schinus terebinthifolius administration prevented behavioral and biochemical alterations in a rotenone model of Parkinson,s disease. Rev. Bras. Farmacogn., 2016, 26(2), 240-245.
[http://dx.doi.org/10.1016/j.bjp.2015.11.005]
[39]
Salem, M.Z.M.; El-Hefny, M.; Ali, H.M.; Elansary, H.O.; Nasser, R.A.; El-Settawy, A.A.A.; El Shanhorey, N.; Ashmawy, N.A.; Salem, A.Z.M. Antibacterial activity of extracted bioactive molecules of Schinus terebinthifolius ripened fruits against some pathogenic bacteria. Microb. Pathog., 2018, 120, 119-127.
[http://dx.doi.org/10.1016/j.micpath.2018.04.040] [PMID: 29704984]
[40]
Feuereisen, M.M.; Hoppe, J.; Zimmermann, B.F.; Weber, F.; Schulze-Kaysers, N.; Schieber, A. Characterization of phenolic compounds in Brazilian pepper (Schinus terebinthifolius Raddi) exocarp. J. Agric. Food Chem., 2014, 62(26), 6219-6226.
[http://dx.doi.org/10.1021/jf500977d] [PMID: 24881808]
[41]
Barbieri, D.S.V.; Tonial, F.; Lopez, P.V.A.; Sales Maia, B.H.L.N.; Santos, G.D.; Ribas, M.O.; Glienke, C.; Vicente, V.A. Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans. Arch. Oral Biol., 2014, 59(9), 887-896.
[http://dx.doi.org/10.1016/j.archoralbio.2014.05.006] [PMID: 24907518]
[42]
Gomes, R.B.D.A.; de Souza, E.S.; Barraqui, N.S.G.; Tosta, C.L.; Nunes, A.P.F.; Schuenck, R.P.; Ruas, F.G.; Ventura, J.A.; Filgueiras, P.R.; Kuster, R.M. Residues from the Brazilian pepper tree (Schinus terebinthifolia Raddi) processing industry: Chemical profile and antimicrobial activity of extracts against hospital bacteria. Ind. Crops Prod., 2020, 143, 111430.
[http://dx.doi.org/10.1016/j.indcrop.2019.05.079]
[43]
Hussein, H.S.; Salem, M.Z.M.; Soliman, A.M. Repellent, attractive, and insecticidal effects of essential oils from Schinus terebinthifolius fruits and Corymbiacitriodora leaves on two whitefly species, Bemisia tabaci, and Trialeurodes ricini. Sci. Hortic. (Amsterdam), 2017, 216, 111-119.
[http://dx.doi.org/10.1016/j.scienta.2017.01.004]
[44]
Cavalher-Machado, S.C.; Rosas, E.C. Brito, Fde.A.; Heringe, A.P.; de Oliveira, R.R.; Kaplan, M.A.C.; Figueiredo, M.R.; Henriques, Md. The anti-allergic activity of the acetate fraction of Schinus terebinthifolius leaves in IgE induced mice paw edema and pleurisy. Int. Immunopharmacol., 2008, 8(11), 1552-1560.
[http://dx.doi.org/10.1016/j.intimp.2008.06.012] [PMID: 18672096]
[45]
Silva, R.G.D.; Fileti, A.M.F.; Foglio, M.A.; Ruiz, A.L.T.G.; Rosa, P.D.T.V. Supercritical carbon dioxide extraction of compounds from Schinus terebinthifolius Raddi fruits: Effects of operating conditions on global yield, volatile compounds, and antiproliferative activity against human tumor cell lines. J. Supercrit. Fluids, 2017, 130, 10-16.
[http://dx.doi.org/10.1016/j.supflu.2017.07.006]
[46]
Rocha, P.D.S.D.; Boleti, A.P.D.A.; Vieira, M.D.C.; Carollo, C.A.; Silva, D.B.D.; Estevinho, L.M.; Santos, E.L.D.; Souza, K.D.P. Microbiological quality, chemical profile as well as antioxidant and antidiabetic activities of Schinusterebinthifolius Raddi. Comp Biochem Physiol Part C: Toxicol Pharmacol, 2019, 220, 36-46.
[47]
Rosas, E.C.; Correa, L.B. Pádua, Tde.A.; Costa, T.E.M.M.; Mazzei, J.L.; Heringer, A.P.; Bizarro, C.A.; Kaplan, M.A.C.; Figueiredo, M.R.; Henriques, M.G. Anti-inflammatory effect of Schinus terebinthifolius Raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis. J. Ethnopharmacol., 2015, 175, 490-498.
[http://dx.doi.org/10.1016/j.jep.2015.10.014] [PMID: 26453933]
[48]
Fedel-Miyasato, L.E.S.; Kassuya, C.A.L.; Auharek, S.A.; Formagio, A.S.N.; Cardoso, C.A.L.; Mauro, M.O.; Cunha-Laura, A.L.; Monreal, A.C.D.; Vieira, M.C.; Oliveira, R.J. Evaluation of anti-inflammatory, immunomodulatory, chemopreventive and wound healing potentials from Schinusterebinthifolius methanolic extract. Rev. Bras. Farmacogn., 2014, 24, 565-575.
[http://dx.doi.org/10.1016/j.bjp.2014.08.004]
[49]
Santana, J.S.; Sartorelli, P.; Guadagnin, R.C.; Matsuo, A.L.; Figueiredo, C.R.; Soares, M.G.; da Silva, A.M.; Lago, J.H.G. Essential oils from Schinus terebinthifolius leaves - chemical composition and in vitro cytotoxicity evaluation. Pharm. Biol., 2012, 50(10), 1248-1253.
[http://dx.doi.org/10.3109/13880209.2012.666880] [PMID: 22870865]
[50]
Pilarski, R.; Filip, B.; Wietrzyk, J.; Kuraś, M.; Gulewicz, K. Anticancer activity of the Uncaria tomentosa (Willd.) DC. preparations with different oxindole alkaloid composition. Phytomedicine, 2010, 17(14), 1133-1139.
[http://dx.doi.org/10.1016/j.phymed.2010.04.013] [PMID: 20576410]
[51]
Ciani, F.; Tafuri, S.; Troiano, A.; Cimmino, A.; Fioretto, B.S.; Guarino, A.M.; Pollice, A.; Vivo, M.; Evidente, A.; Carotenuto, D.; Calabrò, V. Anti-proliferative and pro-apoptotic effects of Uncaria tomentosa aqueous extract in squamous carcinoma cells. J. Ethnopharmacol., 2018, 211, 285-294.
[http://dx.doi.org/10.1016/j.jep.2017.09.031] [PMID: 28964869]
[52]
Kaiser, S.; Carvalho, A.R.; Pittol, V.; Penaloza, E.M.; Resende, P.E.D.; Soares, F.L.F.; Ortega, G.G. Chemical differentiation between Uncaria tomentosa and Uncaria guianensis by LC-PDA, FT-IR and UV methods coupled to multivariate analysis: A reliable tool for adulteration recognition. Microchem. J., 2020, 152, 104346.
[http://dx.doi.org/10.1016/j.microc.2019.104346]
[53]
Hardin, S.R. Cat’s claw: An Amazonian vine decreases inflammation in osteoarthritis. Complement. Ther. Clin. Pract., 2007, 13(1), 25-28.
[http://dx.doi.org/10.1016/j.ctcp.2006.10.003] [PMID: 17210508]
[54]
Calvo, A.; Devenyi, D.; Koszo, B.; Sanz, S.; Oelbermann, A.L.; Maier, M.; Keve, T.; Komka, K.; Gamse, T.; Weidner, E.; Szekely, E. Controlling concentration of bioactive components in cat,s claw based products with a hybrid separation process. J. Supercrit. Fluids, 2017, 125, 50-55.
[http://dx.doi.org/10.1016/j.supflu.2017.01.018]
[55]
García Prado, E.; García Gimenez, M.D.; De la Puerta Vázquez, R.; Espartero Sánchez, J.L.; Sáenz Rodríguez, M.T. Antiproliferative effects of mitraphylline, a pentacyclic oxindole alkaloid of Uncaria tomentosa on human glioma and neuroblastoma cell lines. Phytomedicine, 2007, 14(4), 280-284.
[http://dx.doi.org/10.1016/j.phymed.2006.12.023] [PMID: 17296291]
[56]
Gonçalves, C.; Dinis, T.; Batista, M.T. Antioxidant properties of proanthocyanidins of Uncaria tomentosa bark decoction: A mechanism for anti-inflammatory activity. Phytochemistry, 2005, 66(1), 89-98.
[http://dx.doi.org/10.1016/j.phytochem.2004.10.025] [PMID: 15649515]
[57]
Lemaire, I.; Assinewe, V.; Cano, P.; Awang, D.V.C.; Arnason, J.T. Stimulation of interleukin-1 and -6 production in alveolar macrophages by the neotropical liana, Uncaria tomentosa (uña de gato). J. Ethnopharmacol., 1999, 64(2), 109-115.
[http://dx.doi.org/10.1016/S0378-8741(98)00113-5] [PMID: 10197746]
[58]
Pilarski, R.; Zieliński, H.; Ciesiołka, D.; Gulewicz, K. Antioxidant activity of ethanolic and aqueous extracts of Uncaria tomentosa (Willd.) DC. J. Ethnopharmacol., 2006, 104(1-2), 18-23.
[http://dx.doi.org/10.1016/j.jep.2005.08.046] [PMID: 16202551]
[59]
Allen-Hall, L.; Cano, P.; Arnason, J.T.; Rojas, R.; Lock, O.; Lafrenie, R.M. Treatment of THP-1 cells with Uncaria tomentosa extracts differentially regulates the expression if IL-1β and TNF-α. J. Ethnopharmacol., 2007, 109(2), 312-317.
[http://dx.doi.org/10.1016/j.jep.2006.07.039] [PMID: 16959454]
[60]
Reis, S.R.I.N.; Valente, L.M.M.; Sampaio, A.L.; Siani, A.C.; Gandini, M.; Azeredo, E.L.; D’Avila, L.A.; Mazzei, J.L.; Henriques, Md.; Kubelka, C.F. Immunomodulating and antiviral activities of Uncaria tomentosa on human monocytes infected with Dengue Virus-2. Int. Immunopharmacol., 2008, 8(3), 468-476.
[http://dx.doi.org/10.1016/j.intimp.2007.11.010] [PMID: 18279801]
[61]
Alvarenga-Venutolo, S.; Rosales-López, C.; Sánchez-Chinchilla, L.; Muñoz-Arrieta, R.; Aguilar-Cascante, F. Seasonality effect on the composition of oxindole alkaloids from distinct organs of Uncaria tomentosa from the Caribbean region of Costa Rica. Phytochemistry, 2018, 151, 26-31.
[http://dx.doi.org/10.1016/j.phytochem.2018.03.008] [PMID: 29631104]
[62]
Kolodziejczyk-Czepas, J.; Ponczek, M.; Sady-Janczak, M.; Pilarski, R.; Bukowska, B. Extracts from Uncaria tomentosa as antiplatelet agents and thrombin inhibitors - The in vitro and in silico study. J. Ethnopharmacol., 2021, 267, 113494.
[http://dx.doi.org/10.1016/j.jep.2020.113494] [PMID: 33091497]
[63]
Pavei, C.; Kaiser, S.; Verza, S.G.; Borre, G.L.; Ortega, G.G. HPLC-PDA method for quinovic acid glycosides assay in Cat’s claw (Uncaria tomentosa) associated with UPLC/Q-TOF-MS analysis. J. Pharm. Biomed. Anal., 2012, 62, 250-257.
[http://dx.doi.org/10.1016/j.jpba.2011.12.031] [PMID: 22296654]
[64]
Sheng, Y.; Akesson, C.; Holmgren, K.; Bryngelsson, C.; Giamapa, V.; Pero, R.W. An active ingredient of Cat’s Claw water extracts identification and efficacy of quinic acid. J. Ethnopharmacol., 2005, 96(3), 577-584.
[http://dx.doi.org/10.1016/j.jep.2004.10.002] [PMID: 15619581]
[65]
Kaiser, S.; Carvalho, A.R.; Pittol, V.; Dietrich, F.; Manica, F.; Machado, M.M.; de Oliveira, L.F.; Oliveira Battastini, A.M.; Ortega, G.G. Genotoxicity and cytotoxicity of oxindole alkaloids from Uncaria tomentosa (cat’s claw): Chemotype relevance. J. Ethnopharmacol., 2016, 189, 90-98.
[http://dx.doi.org/10.1016/j.jep.2016.05.026] [PMID: 27180878]
[66]
Moraes, R.C.; Lana, A.J.D.; Kaiser, S.; Carvalho, A.R.; Oliveira, L.F.S.D.; Fuentefria, A.M.; Ortega, G.G. Antifungal activity of Uncaria tomentosa (Willd.) D.C. against resistant non-albicans Candida isolates. Ind. Crops Prod., 2015, 69, 7-14.
[http://dx.doi.org/10.1016/j.indcrop.2015.01.033]
[67]
Rizzi, R.; Re, F.; Bianchi, A.; De Feo, V.; de Simone, F.; Bianchi, L.; Stivala, L.A. Mutagenic and antimutagenic activities of Uncaria tomentosa and its extracts. J. Ethnopharmacol., 1993, 38(1), 63-77.
[http://dx.doi.org/10.1016/0378-8741(93)90080-O] [PMID: 8479203]
[68]
Aquino, R.; De Tommasi, N.; De Simone, F.; Pizza, C. Triterpenes and quinovic acid glycosides from Uncaria tomentosa. Phytochemistry, 1997, 45(5), 1035-1040.
[http://dx.doi.org/10.1016/S0031-9422(96)00716-9]
[69]
Santa Maria, A.; Lopez, A.; Diaz, M.M.; Albán, J.; Galán de Mera, A.; Vicente Orellana, J.A.; Pozuelo, J.M. Evaluation of the toxicity of Uncaria tomentosa by bioassays in vitro. J. Ethnopharmacol., 1997, 57(3), 183-187.
[http://dx.doi.org/10.1016/S0378-8741(97)00067-6] [PMID: 9292411]
[70]
Kuraś, M.; Pilarski, R.; Nowakowska, J.; Zobel, A.; Brzost, K.; Antosiewicz, J.; Gulewicz, K. Effect of Alkaloid-Free and Alkaloid-Rich preparations from Uncaria tomentosa bark on mitotic activity and chromosome morphology evaluated by Allium Test. J. Ethnopharmacol., 2009, 121(1), 140-147.
[http://dx.doi.org/10.1016/j.jep.2008.10.023] [PMID: 19027059]
[71]
Laus, G.; Brossner, D.; Keplinger, K. Alkaloids of Peruvian Uncariatomentosa. Phytochemistry, 1997, 45(4), 855-860.
[http://dx.doi.org/10.1016/S0031-9422(97)00061-7]
[72]
Cerri, R.; Aquino, R.; De Simone, F.; Pizza, C. New quinovic acid glycosides from Uncaria tomentosa. J. Nat. Prod., 1988, 51(2), 257-261.
[http://dx.doi.org/10.1021/np50056a010]
[73]
Paradowska, K.; Wolniak, M.; Pisklak, M.; Gliński, J.A.; Davey, M.H.; Wawer, I. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat’s Claw (Uncaria tomentosa). Solid State Nucl. Magn. Reson., 2008, 34(4), 202-209.
[http://dx.doi.org/10.1016/j.ssnmr.2008.10.002] [PMID: 19019638]
[74]
Pilarski, R.; Gurrola-Diaz, C.M.; Garcia-Lopez, P.M.; Soldevila, G.; Olejnik, A.; Grajek, W.; Gulewicz, K. Enhanced proapoptotic response of the promyelocytic leukemia HL-60 cells treated with an Uncaria tomentosa alkaloid preparation. J. Herb. Med., 2013, 3(4), 149-156.
[http://dx.doi.org/10.1016/j.hermed.2013.04.002]
[75]
Allen-Hall, L.; Arnason, J.T.; Cano, P.; Lafrenie, R.M. Uncaria tomentosa acts as a potent TNF-α inhibitor through NF-kappaB. J. Ethnopharmacol., 2010, 127(3), 685-693.
[http://dx.doi.org/10.1016/j.jep.2009.12.004] [PMID: 19995599]
[76]
Gurrola-Díaz, C.M.; García-López, P.M.; Gulewicz, K.; Pilarski, R.; Dihlmann, S. Inhibitory mechanisms of two Uncaria tomentosa extracts affecting the Wnt-signaling pathway. Phytomedicine, 2011, 18(8-9), 683-690.
[http://dx.doi.org/10.1016/j.phymed.2010.11.002] [PMID: 21156346]
[77]
Aguilar, J.L.; Rojas, P.; Marcelo, A.; Plaza, A.; Bauer, R.; Reininger, E.; Klaas, C.A.; Merfort, I. Anti-inflammatory activity of two different extracts of Uncaria tomentosa (Rubiaceae). J. Ethnopharmacol., 2002, 81(2), 271-276.
[http://dx.doi.org/10.1016/S0378-8741(02)00093-4] [PMID: 12065162]
[78]
De Martino, L.; Martinot, J.L.S.; Franceschelli, S.; Leone, A.; Pizza, C.; De Feo, V. Proapoptotic effect of Uncaria tomentosa extracts. J. Ethnopharmacol., 2006, 107(1), 91-94.
[http://dx.doi.org/10.1016/j.jep.2006.02.013] [PMID: 16569487]
[79]
Sandoval, M.; Charbonnet, R.M.; Okuhama, N.N.; Roberts, J.; Krenova, Z.; Trentacosti, A.M.; Miller, M.J.S. Cat’s claw inhibits TNFalpha production and scavenges free radicals: Role in cytoprotection. Free Radic. Biol. Med., 2000, 29(1), 71-78.
[http://dx.doi.org/10.1016/S0891-5849(00)00327-0] [PMID: 10962207]
[80]
Rojas-Duran, R.; González-Aspajo, G.; Ruiz-Martel, C.; Bourdy, G.; Doroteo-Ortega, V.H.; Alban-Castillo, J.; Robert, G.; Auberger, P.; Deharo, E. Anti-inflammatory activity of Mitraphylline isolated from Uncaria tomentosa bark. J. Ethnopharmacol., 2012, 143(3), 801-804.
[http://dx.doi.org/10.1016/j.jep.2012.07.015] [PMID: 22846434]
[81]
Cheng, A-C.; Jian, C-B.; Huang, Y-T.; Lai, C-S.; Hsu, P-C.; Pan, M-H. Induction of apoptosis by Uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells. Food Chem. Toxicol., 2007, 45(11), 2206-2218.
[http://dx.doi.org/10.1016/j.fct.2007.05.016] [PMID: 17619071]
[82]
Sandoval, M.; Okuhama, N.N.; Zhang, X-J.; Condezo, L.A.; Lao, J.; Angeles’, F.M.; Musah, R.A.; Bobrowski, P.; Miller, M.J.S. Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine, 2002, 9(4), 325-337.
[http://dx.doi.org/10.1078/0944-7113-00117] [PMID: 12120814]
[83]
Lima, V.; Melo, I.M.; Taira, T.M.; Buitrago, L.Y.W.; Fonteles, C.S.R.; Leal, L.K.A.M.; Souza, A.S.Q.; Almeida, T.S.; Costa Filho, R.N.D.; Moraes, M.O.; Cunha, F.Q.; Fukada, S.Y. Uncaria tomentosa reduces osteoclastic bone loss in vivo. Phytomedicine, 2020, 79, 153327.
[http://dx.doi.org/10.1016/j.phymed.2020.153327] [PMID: 32920290]
[84]
Castilhos, L.G.; Oliveira, J.S.; Adefegha, S.A.; Manzoni, A.G.; Passos, D.F.; Assmann, C.E.; Silveira, L.L.; Trelles, K.B.; Kronbauer, M.; Doleski, P.H.; Bremm, J.M.; Braun, J.; Abdalla, F.H.; Gonçalves, J.F.; Andrade, C.M.; Cruz, I.B.M.; Burger, M.E.; Leal, D.B.R. Uncaria tomentosa improves cognition, memory and learning in middle-aged rats. Exp. Gerontol., 2020, 138, 111016.
[http://dx.doi.org/10.1016/j.exger.2020.111016] [PMID: 32628974]
[85]
Shi, Z.; Lu, Z.; Zhao, Y.; Wang, Y.; Zhao-Wilson, X.; Guan, P.; Duan, X.; Chang, Y-Z.; Zhao, B. Neuroprotective effects of aqueous extracts of Uncaria tomentosa: Insights from 6-OHDA induced cell damage and transgenic Caenorhabditis elegans model. Neurochem. Int., 2013, 62(7), 940-947.
[http://dx.doi.org/10.1016/j.neuint.2013.03.001] [PMID: 23500604]
[86]
Caon, T.; Kaiser, S.; Feltrin, C.; de Carvalho, A.; Sincero, T.C.M.; Ortega, G.G.; Simões, C.M.O. Antimutagenic and antiherpetic activities of different preparations from Uncaria tomentosa (cat’s claw). Food Chem. Toxicol., 2014, 66, 30-35.
[http://dx.doi.org/10.1016/j.fct.2014.01.013] [PMID: 24447975]
[87]
Yunis-Aguinaga, J.; Claudiano, G.S.; Marcusso, P.F.; Manrique, W.G.; de Moraes, J.R.; de Moraes, F.R.; Fernandes, J.B.K. Uncaria tomentosa increases growth and immune activity in Oreochromis niloticus challenged with Streptococcus agalactiae. Fish Shellfish Immunol., 2015, 47(1), 630-638.
[http://dx.doi.org/10.1016/j.fsi.2015.09.051] [PMID: 26434713]
[88]
Dreifuss, A.A.; Bastos-Pereira, A.L.; Avila, T.V. Soley, Bda.S.; Rivero, A.J.; Aguilar, J.L.; Acco, A. Antitumoral and antioxidant effects of a hydroalcoholic extract of cat’s claw (Uncaria tomentosa) (Willd. Ex Roem. & Schult) in an in vivo carcinosarcoma model. J. Ethnopharmacol., 2010, 130(1), 127-133.
[http://dx.doi.org/10.1016/j.jep.2010.04.029] [PMID: 20435132]
[89]
Nogueira Neto, J.; Coelho, T.M.; Aguiar, G.C.; Carvalho, L.R.; de Araújo, A.G.; Girão, M.J.B.C.; Schor, E. Experimental endometriosis reduction in rats treated with Uncaria tomentosa (cat’s claw) extract. Eur. J. Obstet. Gynecol. Reprod. Biol., 2011, 154(2), 205-208.
[http://dx.doi.org/10.1016/j.ejogrb.2010.10.002] [PMID: 21030132]
[90]
Pereira, J.B., Jr; Dantas, K.G.F. Evaluation of inorganic elements in cat’s claw teas using ICP OES and GF AAS. Food Chem., 2016, 196, 331-337.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.057] [PMID: 26593498]
[91]
Azevedo, B.C.; Morel, L.J.F.; Carmona, F.; Cunha, T.M.; Contini, S.H.T.; Delprete, P.G.; Ramalho, F.S.; Crevelin, E.; Bertoni, B.W.; França, S.C.; Borges, M.C.; Pereira, A.M.S. Aqueous extracts from Uncaria tomentosa (Willd. ex Schult.) DC. reduce bronchial hyperresponsiveness and inflammation in a murine model of asthma. J. Ethnopharmacol., 2018, 218, 76-89.
[http://dx.doi.org/10.1016/j.jep.2018.02.013] [PMID: 29432856]
[92]
Lima-Junior, R.S. Mello, Cda.S.; Siani, A.C.; Valente, L.M.; Kubelka, C.F. Uncaria tomentosa alkaloidal fraction reduces paracellular permeability, IL-8 and NS1 production on human microvascular endothelial cells infected with dengue virus. Nat. Prod. Commun., 2013, 8(11), 1547-1550.
[http://dx.doi.org/10.1177/1934578X1300801112] [PMID: 24427938]
[93]
Terlizzi, M.E.; Occhipinti, A.; Luganini, A.; Maffei, M.E.; Gribaudo, G. Inhibition of herpes simplex type 1 and type 2 infections by Oximacro(®), a cranberry extract with a high content of A-type proanthocyanidins (PACs-A). Antiviral Res., 2016, 132, 154-164.
[http://dx.doi.org/10.1016/j.antiviral.2016.06.006] [PMID: 27321663]
[94]
Yepes-Perez, A.F.; Herrera-Calderon, O.; Quintero-Saumeth, J. Uncariatomentosa (cat,s claw): A promising herbal medicine against SARS-CoV-2/ACE-2 junction and SARS-CoV-2 spike protein based on molecular modeling. J. Biomol. Struct. Dyn., 2020, 40(5), 2227-2243.
[http://dx.doi.org/10.1080/07391102.2020.1837676] [PMID: 33118480]
[95]
Santos, K.F.; Gutierres, J.M.; Pillat, M.M.; Rissi, V.B.; Santos Araújo, M.D.; Bertol, G.; Gonçalves, P.B.D.; Schetinger, M.R.C.; Morsch, V.M. Uncaria tomentosa extract alters the catabolism of adenine nucleotides and expression of ecto-5′-nucleotidase/CD73 and P2X7 and A1 receptors in the MDA-MB-231 cell line. J. Ethnopharmacol., 2016, 194, 108-116.
[http://dx.doi.org/10.1016/j.jep.2016.08.051] [PMID: 27590731]
[96]
Akesson, C.; Lindgren, H.; Pero, R.W.; Leanderson, T.; Ivars, F. Quinic acid is a biologically active component of the Uncaria tomentosa extract C-Med 100. Int. Immunopharmacol., 2005, 5(1), 219-229.
[http://dx.doi.org/10.1016/j.intimp.2004.09.028] [PMID: 15589483]
[97]
Akesson, Ch.; Pero, R.W.; Ivars, F. C-Med 100, a hot water extract of Uncaria tomentosa, prolongs lymphocyte survival in vivo. Phytomedicine, 2003, 10(1), 23-33.
[http://dx.doi.org/10.1078/094471103321648629] [PMID: 12622460]
[98]
Montserrat-de la Paz, S.; de la Puerta, R.; Fernandez-Arche, A.; Quilez, A.M.; Muriana, F.J.G.; Garcia-Gimenez, M.D.; Bermudez, B. Pharmacological effects of mitraphylline from Uncaria tomentosa in primary human monocytes: Skew toward M2 macrophages. J. Ethnopharmacol., 2015, 170, 128-135.
[http://dx.doi.org/10.1016/j.jep.2015.05.002] [PMID: 25975515]
[99]
Jürgensen, S.; Dalbó, S.; Angers, P.; Santos, A.R.S.; Ribeiro-do-Valle, R.M. Involvement of 5-HT2 receptors in the antinociceptive effect of Uncaria tomentosa. Pharmacol. Biochem. Behav., 2005, 81(3), 466-477.
[http://dx.doi.org/10.1016/j.pbb.2005.04.004] [PMID: 15907989]
[100]
Paniagua-Pérez, R.; Madrigal-Bujaidar, E.; Molina-Jasso, D.; Reyes-Cadena, S.; Alvarez-González, I.; Sánchez-Chapul, L.; Pérez-Gallaga, J. Antigenotoxic, antioxidant and lymphocyte induction effects produced by pteropodine. Basic Clin. Pharmacol. Toxicol., 2009, 104(3), 222-227.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00366.x] [PMID: 19175366]
[101]
Dreifuss, A.A.; Bastos-Pereira, A.L.; Fabossi, I.A.; Lívero, F.A.; Stolf, A.M.; Alves de Souza, C.E. Gomes, Lde.O.; Constantin, R.P.; Furman, A.E.; Strapasson, R.L.; Teixeira, S.; Zampronio, A.R.; Muscará, M.N.; Stefanello, M.E.; Acco, A. Uncaria tomentosa exerts extensive anti-neoplastic effects against the Walker-256 tumour by modulating oxidative stress and not by alkaloid activity. PLoS One, 2013, 8(2), e54618.
[http://dx.doi.org/10.1371/journal.pone.0054618] [PMID: 23408945]
[102]
Azevedo, B.C.; Roxo, M.; Borges, M.C.; Peixoto, H.; Crevelin, E.J.; Bertoni, B.W.; Contini, S.H.T.; Lopes, A.A.; Franca, S.C.; Pereira, A.M.S. Antioxidant activity of an aqueous leaf extract from Uncaria tomentosa and its major alkaloids mitraphylline and isomitraphylline in Caenorhabditiselegans. Molecules, 2019, 24, 3299.
[http://dx.doi.org/10.3390/molecules24183299]
[103]
Kośmider, A.; Czepielewska, E.; Kuraś, M.; Gulewicz, K.; Pietrzak, W.; Nowak, R.; Nowicka, G. Uncaria tomentosa leaves decoction modulates differently ROS production in cancer and normal cells, and effects cisplating cytotoxicity. Molecules, 2017, 22(4), 620.
[http://dx.doi.org/10.3390/molecules22040620] [PMID: 28417940]
[104]
Bacher, N.; Tiefenthaler, M.; Sturm, S.; Stuppner, H.; Ausserlechner, M.J.; Kofler, R.; Konwalinka, G. Oxindole alkaloids from Uncaria tomentosa induce apoptosis in proliferating, G0/G1-arrested and bcl-2-expressing acute lymphoblastic leukaemia cells. Br. J. Haematol., 2006, 132(5), 615-622.
[http://dx.doi.org/10.1111/j.1365-2141.2005.05907.x] [PMID: 16445836]
[105]
Kim, T.J.; Lee, J.H.; Lee, J.J.; Yu, J.Y.; Hwang, B.Y.; Ye, S.K.; Shujuan, L.; Gao, L.; Pyo, M.Y.; Yun, Y.P. Corynoxeine isolated from the hook of Uncaria rhynchophylla inhibits rat aortic vascular smooth muscle cell proliferation through the blocking of extracellular signal regulated kinase 1/2 phosphorylation. Biol. Pharm. Bull., 2008, 31(11), 2073-2078.
[http://dx.doi.org/10.1248/bpb.31.2073] [PMID: 18981576]
[106]
Edeoga, H.O.; Omosun, G.; Awomukwu, D.A. Tannins and calcium oxalate crystals in lamina of some Phyllanthus species. Int. J. Mol. Med. Adv. Sci., 2006, 2, 326-329.
[107]
Khatoon, S.; Rai, V.; Rawat, A.K.S.; Mehrotra, S. Comparative pharmacognostic studies of three Phyllanthus species. Eur. J. Pharmacol., 2006, 546(1-3), 182-188.
[PMID: 16925995]
[108]
Seyed, M.A. A comprehensive review on Phyllanthus derived natural products as potential chemotherapeutic and immunomodulators for a wide range of human diseases. Biocatal. Agric. Biotechnol., 2019, 17, 529-537.
[http://dx.doi.org/10.1016/j.bcab.2019.01.008]
[109]
Srirama, R.; Senthilkumar, U.; Sreejayan, N.; Ravikanth, G.; Gurumurthy, B.R.; Shivanna, M.B.; Sanjappa, M.; Ganeshaiah, K.N.; Shaanker, R.U. Assessing species admixtures in raw drug trade of Phyllanthus, a hepato-protective plant using molecular tools. J. Ethnopharmacol., 2010, 130(2), 208-215.
[http://dx.doi.org/10.1016/j.jep.2010.04.042] [PMID: 20435119]
[110]
Buddhachat, K.; Osathanunkul, M.; Madesis, P.; Chomdej, S.; Ongchai, S. Authenticity analyses of Phyllanthus amarus using barcoding coupled with HRM analysis to control its quality for medicinal plant product. Gene, 2015, 573(1), 84-90.
[http://dx.doi.org/10.1016/j.gene.2015.07.046] [PMID: 26188160]
[111]
Thakur, J.S.; Agarwal, R.K.; Kharya, M.D. Immobilization mediated enhancement of phyllanthin and hypophyllanthin from Phyllanthus amarus. Chin. J. Nat. Med., 2012, 10(3), 207-212.
[http://dx.doi.org/10.3724/SP.J.1009.2012.00207]
[112]
Pereira, R.G.; Garcia, V.L.; Rodrigues, M.V.N.; Martinez, J. Extraction of lignans from Phyllanthus amarus Schum. & Thonn using pressurized liquids and low pressure methods. Separ. Purif. Tech., 2016, 158, 204-211.
[http://dx.doi.org/10.1016/j.seppur.2015.12.007]
[113]
Gowrishanker, B.; Vivekanandan, O.S. In vivo studies of a crude extract of Phyllanthus amarus L. in modifying the genotoxicity induced in Vicia faba L. by tannery effluents. Mutat. Res., 1994, 322(3), 185-192.
[http://dx.doi.org/10.1016/0165-1218(94)90005-1] [PMID: 7521518]
[114]
Sripanidkulchai, B.; Tattawasart, U.; Laupatarakasem, P.; Vinitketkumneun, U.; Sripanidkulchai, K.; Furihata, C.; Matsushima, T. Antimutagenic and anticarcinogenic effects of Phyllanthus amarus. Phytomedicine, 2002, 9(1), 26-32.
[http://dx.doi.org/10.1078/0944-7113-00092] [PMID: 11924760]
[115]
Raphael, K.R.; Kuttan, R. Inhibition of experimental gastric lesion and inflammation by Phyllanthus amarus extract. J. Ethnopharmacol., 2003, 87(2-3), 193-197.
[http://dx.doi.org/10.1016/S0378-8741(03)00120-X] [PMID: 12860307]
[116]
Adeneye, A.A.; Amole, O.O.; Adeneye, A.K. Hypoglycemic and hypocholesterolemic activities of the aqueous leaf and seed extract of Phyllanthus amarus in mice. Fitoterapia, 2006, 77(7-8), 511-514.
[http://dx.doi.org/10.1016/j.fitote.2006.05.030] [PMID: 16905277]
[117]
Adeneye, A.A. The leaf and seed aqueous extract of Phyllanthus amarus improves insulin resistance diabetes in experimental animal studies. J. Ethnopharmacol., 2012, 144(3), 705-711.
[http://dx.doi.org/10.1016/j.jep.2012.10.017] [PMID: 23085308]
[118]
Joe, M.M.; Devaraj, S.; Benson, A.; Sa, T. Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: Evaluation of plant growth promotion and antioxidant activity under salt stress. J. Appl. Res. Med. Aromat. Plants, 2016, 3(2), 71-77.
[http://dx.doi.org/10.1016/j.jarmap.2016.02.003]
[119]
Matou, M.; Bercion, S.; Marianne-Pepin, T.; Haddad, P.; Merciris, P. Phenolic profiles and biological properties of traditional Phyllanthus amarus aqueous extracts used for diabetes. J. Funct. Foods, 2021, 83, 104571.
[http://dx.doi.org/10.1016/j.jff.2021.104571]
[120]
Kassuya, C.A.L.; Silvestre, A.; Menezes-de-Lima, O., Jr; Marotta, D.M.; Rehder, V.L.G.; Calixto, J.B. Antiinflammatory and antiallodynic actions of the lignan niranthin isolated from Phyllanthus amarus. Evidence for interaction with platelet activating factor receptor. Eur. J. Pharmacol., 2006, 546(1-3), 182-188.
[http://dx.doi.org/10.1016/j.ejphar.2006.07.025] [PMID: 16925995]
[121]
Mali, S.M.; Sinnathambi, A.; Kapase, C.U.; Bodhankar, S.L.; Mahadik, K.R. Anti-arthritic activity of standardized extract of Phyllanthus amarus in Freund,s complete adjuvant induced arthritis. Biomed. Aging Pathol., 2011, 1(3), 185-190.
[http://dx.doi.org/10.1016/j.biomag.2011.09.004]
[122]
Lim, Y.Y.; Murtijaya, J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. Lebensm. Wiss. Technol., 2007, 40(9), 1664-1669.
[http://dx.doi.org/10.1016/j.lwt.2006.12.013]
[123]
Sherif, U.I.; Awwal, Y.A.; Rahmatallah, A.A.; Ifeanyi, O.C.; Mary, O.B.; Moshood, A.O.; Damaola, A.S.; Bashir, L. Phytochemical compositions and biochemical effect of Phyllanthus amarus in albino rat. GSC Biol. Pharm. Sci., 2019, 8(01), 128-133.
[http://dx.doi.org/10.30574/gscbps.2019.8.1.0125]
[124]
Verma, S.; Hooda, R. Microwave assisted extraction of Phyllanthusamarus, Research and Reviews. J. Pharmacogn. Phytochem., 2016, 4(1), 66-77.
[125]
Ahmad, Md. S.; Bano, S.; Anwar, S. Cancer ameliorating potential of Phyllanthusamarus: In vivo and in vitro studies against Aflatoxin B1 toxicity. Egypt. J. Med. Hum. Genet., 2015, 16, 343-353.
[http://dx.doi.org/10.1016/j.ejmhg.2015.05.005]
[126]
Yeh, S-F.; Hong, C-Y.; Huang, Y-L.; Liu, T-Y.; Choo, K-B.; Chou, C-K. Effect of an extract from Phyllanthus amarus on hepatitis B surface antigen gene expression in human hepatoma cells. Antiviral Res., 1993, 20(3), 185-192.
[http://dx.doi.org/10.1016/0166-3542(93)90019-F] [PMID: 8470882]
[127]
Ravikumar, Y.S.; Ray, U.; Nandhitha, M.; Perween, A.; Raja Naika, H.; Khanna, N.; Das, S. Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source. Virus Res., 2011, 158(1-2), 89-97.
[http://dx.doi.org/10.1016/j.virusres.2011.03.014] [PMID: 21440018]
[128]
Woottisin, S.; Hossain, R.Z.; Yachantha, C.; Sriboonlue, P.; Ogawa, Y.; Saito, S. Effects of Orthosiphon grandiflorus, Hibiscus sabdariffa and Phyllanthus amarus extracts on risk factors for urinary calcium oxalate stones in rats. J. Urol., 2011, 185(1), 323-328.
[http://dx.doi.org/10.1016/j.juro.2010.09.003] [PMID: 21075390]
[129]
Abhyankar, G.; Suprasanna, P.; Pandey, B.N.; Mishra, K.P.; Rao, K.V.; Reddy, V.D. Hairy root extract of Phyllanthus amarus induces apoptotic cell death in human breast cancer cells. Innov. Food Sci. Emerg. Technol., 2010, 11(3), 526-532.
[http://dx.doi.org/10.1016/j.ifset.2010.02.005]
[130]
Naaz, F.; Javed, S.; Abdin, M.Z. Hepatoprotective effect of ethanolic extract of Phyllanthus amarus Schum. et Thonn. on aflatoxin B1-induced liver damage in mice. J. Ethnopharmacol., 2007, 113(3), 503-509.
[http://dx.doi.org/10.1016/j.jep.2007.07.017] [PMID: 17720339]
[131]
Ilangkovan, M.; Jantan, I.; Bukhari, S.N.A. Phyllanthin from Phyllanthus amarus inhibits cellular and humoral immune responses in Balb/C mice. Phytomedicine, 2016, 23(12), 1441-1450.
[http://dx.doi.org/10.1016/j.phymed.2016.08.002] [PMID: 27765364]
[132]
Notka, F.; Meier, G.; Wagner, R. Concerted inhibitory activities of Phyllanthus amarus on HIV replication in vitro and ex vivo. Antiviral Res., 2004, 64(2), 93-102.
[http://dx.doi.org/10.1016/S0166-3542(04)00129-9] [PMID: 15498604]
[133]
de Oliveira, C.N.F.; Frezza, T.F.; Garcia, V.L.; Figueira, G.M.; Mendes, T.M.F.; Allegretti, S.M. Schistosoma mansoni: In vivo evaluation of Phyllanthus amarus hexanic and ethanolic extracts. Exp. Parasitol., 2017, 183, 56-63.
[http://dx.doi.org/10.1016/j.exppara.2017.10.008] [PMID: 29074138]
[134]
Londhe, J.S.; Devasagayam, T.P.A.; Foo, L.Y.; Shastry, P.; Ghaskadbi, S.S. Geraniin and amariin, ellagitannins from Phyllanthus amarus, protect liver cells against ethanol induced cytotoxicity. Fitoterapia, 2012, 83(8), 1562-1568.
[http://dx.doi.org/10.1016/j.fitote.2012.09.003] [PMID: 22982332]
[135]
Adeneye, A.A.; Benebo, A.S. Protective effect of the aqueous leaf and seed extract of Phyllanthus amarus on gentamicin and acetaminophen-induced nephrotoxic rats. J. Ethnopharmacol., 2008, 118(2), 318-323.
[http://dx.doi.org/10.1016/j.jep.2008.04.025] [PMID: 18554830]
[136]
Ali, H.; Houghton, P.J.; Soumyanath, A. alpha-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J. Ethnopharmacol., 2006, 107(3), 449-455.
[http://dx.doi.org/10.1016/j.jep.2006.04.004] [PMID: 16678367]
[137]
Kandhare, A.D.; Ghosh, P.; Ghule, A.E.; Zambare, G.N.; Bodhankar, S.L. Protective effect of Phyllanthus amarus by modulation of endogenous biomarkers and DNA damage in acetic acid induced ulcerative colitis: Role of phyllanthin and hypophyllanthin. Apollo Med., 2013, 10(1), 87-97.
[http://dx.doi.org/10.1016/j.apme.2013.01.006]
[138]
Ajitha, B.; Reddy, A.K.; Jeon, H-J.; Ahn, C.W. Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity. Adv. Powder Technol., 2018, 29(1), 86-93.
[http://dx.doi.org/10.1016/j.apt.2017.10.015]
[139]
Nhu, T.Q.; Dam, N.P. hang, B.T.B.; Bach, L.T.; Huong, D.T.T.; Hue, B.T.B.; Scippo, M.-L.; Phuong, N.T.; Quetin-Leclercq, J.; Kestemont, P. Immunomodulatory potential of extracts, fractions and pure compounds from Phyllanthusamarus and Psidium guajava on striped catfish (Pangasianodonhypophthalmus) head kidney leukocytes. Fish Shellfish Immunol., 2020, 104, 289-303.
[http://dx.doi.org/10.1016/j.fsi.2020.05.051] [PMID: 32544554]
[140]
Pinkaew, D.; Kiattisin, K.; Wonglangka, K.; Awoot, P. Phonophoresis of Phyllanthus amarus nanoparticle gel improves functional capacity in individuals with knee osteoarthritis: A randomized controlled trial. J. Bodyw. Mov. Ther., 2020, 24(1), 15-18.
[http://dx.doi.org/10.1016/j.jbmt.2019.04.013] [PMID: 31987536]
[141]
Ngo, H.-V.-T.; Huang, H.-T.; Lee, P.-T.; Liao, Z.-H.; Chen, H.-Y.; Nan, F.-H. Effects of Phyllanthus amarus extract on nonspecific immune responses, growth, and resistance to Vibrio alginolyticus in white shrimp Litopenaeus vannamei. Fish Shellfish Immunol., 2020, 107(Part A), 1-8.
[http://dx.doi.org/10.1016/j.fsi.2020.09.016]
[142]
Kumar, K.B.H.; Kuttan, R. Chemoprotective activity of an extract of Phyllanthus amarus against cyclophosphamide induced toxicity in mice. Phytomedicine, 2005, 12(6-7), 494-500.
[http://dx.doi.org/10.1016/j.phymed.2004.03.009] [PMID: 16008127]
[143]
Krithika, R.; Verma, R.J.; Shrivastav, P.S.; Suguna, L. Phyllanthin of standardized Phyllanthus amarus extract attenuates liver oxidative stress n mice and exerts cytoprotective activity on human hepatoma cell lines. J. Clin. Exp. Hepatol., 2011, 1(2), 57-67.
[http://dx.doi.org/10.1016/S0973-6883(11)60123-0] [PMID: 25755316]
[144]
Chopade, A.R.; Sayyad, F.J. Antifibromyalgic activity of standardized extract of Phyllanthus amarus and Phyllanthus fraternus in acidic saline induced chronic muscle pain. Biomed. Aging Pathol., 2014, 4(2), 123-130.
[http://dx.doi.org/10.1016/j.biomag.2014.01.005]
[145]
Yao, A.N.; Rasul, Z.; Najmanova, I.; Kamagate, M.; Said, A.; Chabert, P.; Auger, C.; Die-Kakou, H.; Schini-Kerth, V. O10 beneficial effect of Phyllanthus amarus (Euphorbiaceae) on DOCA-salt-induced left ventricle cardiac hypertrophy and endothelial dysfunction in rats. Biochem. Pharmacol., 2017, 139, 112-113.
[http://dx.doi.org/10.1016/j.bcp.2017.06.075]
[146]
Lira, D.N.; Uddin, Md. A.; Uddin, M.; Rouf, A.S.S. Assessment of cytotoxic activities of Phyllanthus amarus and Monstera deliciosa. J. Appl. Pharm. Sci., 2014, 4(07), 110-113.
[147]
Ajala, T.O.; Igwilo, C.I.; Oreagba, I.A.; Odeku, O.A. The antiplasmodial effect of the extracts and formulated capsules of Phyllanthus amarus on Plasmodium yoelii infection in mice. Asian Pac. J. Trop. Med., 2011, 4(4), 283-287.
[http://dx.doi.org/10.1016/S1995-7645(11)60087-4] [PMID: 21771471]
[148]
Lee, S.H.; Jaganath, I.B.; Atiya, N.; Manikam, R.; Sekaran, S.D. Suppression of ERK1/2 and hypoxia pathways by four Phyllanthus species inhibits metastasis of human breast cancer cells. J. Food Drug Anal., 2016, 24(4), 855-865.
[http://dx.doi.org/10.1016/j.jfda.2016.03.010] [PMID: 28911625]
[149]
Silva, R.S.; Santos, C.D.L.; Mar, J.M.; Kluczkovski, A.M.; Figueiredo, J.D.A.; Borges, S.V.; Bakry, A.M.; Sanches, E.A.; Campelo, P.H. Physicochemical properties of tucuma (Astrocaryum aculeatum) powders with different carbohydrate biopolymers. Lebensm. Wiss. Technol., 2018, 94, 79-86.
[http://dx.doi.org/10.1016/j.lwt.2018.04.047]
[150]
Sagrillo, M.R.; Garcia, L.F.M.; de Souza Filho, O.C.; Duarte, M.M.M.F.; Ribeiro, E.E.; Cadoná, F.C.; da Cruz, I.B. Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chem., 2015, 173, 741-748.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.067] [PMID: 25466084]
[151]
Noronha Matos, K.A.; Praia Lima, D.; Pereira Barbosa, A.P.; Zerlotti Mercadante, A.; Campos Chisté, R. Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chem., 2019, 272, 216-221.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.053] [PMID: 30309535]
[152]
Santos, P.D.D.F.; Rubio, F.T.V.; Balieiro, J.C.D.C.; Thomazini, M.; Favaro-Trindade, C.S. Application of spray drying for production of microparticles containing the carotenoid-rich tucuma oil (Astrocaryum vulgare Mart.). Lebensm. Wiss. Technol., 2021, 143, 111106.
[http://dx.doi.org/10.1016/j.lwt.2021.111106]
[153]
Pérez-Mora, W.; Jorrin-Novo, J.V.; Melgarejo, L.M. Substantial equivalence analysis in fruits from three Theobroma species through chemical composition and protein profiling. Food Chem., 2018, 240, 496-504.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.128] [PMID: 28946303]
[154]
de Santana Lopes, A.; Gomes Pacheco, T.; Nascimento da Silva, O.; Magalhães Cruz, L.; Balsanelli, E.; Maltempi de Souza, E.; de Oliveira Pedrosa, F.; Rogalski, M. The plastomes of Astrocaryum aculeatum G. Mey. and A. murumuru Mart. show a flip-flop recombination between two short inverted repeats. Planta, 2019, 250(4), 1229-1246.
[http://dx.doi.org/10.1007/s00425-019-03217-z] [PMID: 31222493]
[155]
Cantu-Jungles, T.M.; Iacomini, M.; Cipriani, T.R.; Cordeiro, L.M.C. Structural diversity of alkali-soluble polysaccharides from the fruit cell walls of tucumã (Astrocaryum aculeatum), a commelinid monocotyledon from the family Arecaceae. Plant Physiol. Biochem., 2017, 118, 356-361.
[http://dx.doi.org/10.1016/j.plaphy.2017.07.002] [PMID: 28697470]
[156]
Oliveira, T.B.D.; Rogero, M.M.; Genovese, M.I. Poliphenolic-rich extracts from cocoa (Theobroma cacao L.) and cupuassu (Theobroma grandiflorum Willd. Ex Spreng. K. Shum) liquors: A comparison of metabolic effects in high-fat fed rats. PharmaNutrition, 2015, 3(2), 20-28.
[http://dx.doi.org/10.1016/j.phanu.2015.01.002]
[157]
Cabral, F.L.; Bernardes, V.M.; Passos, D.F.; de Oliveira, J.S.; Doleski, P.H.; Silveira, K.L.; Horvarth, M.C.; Bremm, J.M.; Barbisan, F.; Azzolin, V.F.; Teixeira, C.F.; de Andrade, C.M.; da Cruz, I.B.M.; Ribeiro, E.E.; Leal, D.B.R. Astrocaryum aculeatum fruit improves inflammation and redox balance in phytohemagglutinin-stimulated macrophages. J. Ethnopharmacol., 2020, 247, 112274.
[http://dx.doi.org/10.1016/j.jep.2019.112274] [PMID: 31589969]
[158]
Lira, C.S.; Berruti, F.M.; Palmisano, P.; Berruti, F.; Briens, C.; Pecora, A.A.B. Fast pyrolysis of Amazon tucuma (Astrocaryum aculeatum) seeds in a bubbling fluidized bed reactor. J. Anal. Appl. Pyrolysis, 2013, 99, 23-31.
[http://dx.doi.org/10.1016/j.jaap.2012.11.005]
[159]
Jobim, M.L.; Santos, R.C.V.; dos Santos Alves, C.F.; Oliveira, R.M.; Mostardeiro, C.P.; Sagrillo, M.R.; de Souza Filho, O.C.; Garcia, L.F.M.; Manica-Cattani, M.F.; Ribeiro, E.E.; da Cruz, I.B. Antimicrobial activity of Amazon Astrocaryum aculeatum extracts and its association to oxidative metabolism. Microbiol. Res., 2014, 169(4), 314-323.
[http://dx.doi.org/10.1016/j.micres.2013.06.006] [PMID: 23870852]
[160]
Mendonca, I.M.; Paes, O.A.R.L.; Maia, P.J.S.; Souza, M.P.; Almeida, R.A.; Silva, C.C.; Duvoisin, S.; Freitas, F.A.D. New heterogenous catalyst for biodiesel production from waste tucuma peels (Astrocaryum aculeatum Meyer): Parameters optimization study. Renew. Energy, 2019, 130, 103-110.
[http://dx.doi.org/10.1016/j.renene.2018.06.059]
[161]
Atoche-Medrano, J.J.; Leon-Felix, L.; Faria, F.S.E.D.V.; Rodriguez, A.F.R.; Cunha, R.M.; Aragon, F.H.; Sousa, M.H.; Coaquira, J.A.H.; Azevedo, R.B.; Morais, P.C. Magnetite-based nanobioplatform for site delivering Croton cajucara Benth essential oil. Mater. Chem. Phys., 2018, 207, 243-252.
[http://dx.doi.org/10.1016/j.matchemphys.2017.12.058]
[162]
Hiruma-Lima, C.A.; Gracioso, J.S.; Bighetti, E.J.B.; Grassi-Kassisse, D.M.; Nunes, D.S.; Brito, A.R. Effect of essential oil obtained from Croton cajucara Benth. on gastric ulcer healing and protective factors of the gastric mucosa. Phytomedicine, 2002, 9(6), 523-529.
[http://dx.doi.org/10.1078/09447110260573155] [PMID: 12403161]
[163]
Silva, F.R.D.; Wisniewski, A. Junior; Filho, V.C.; Nunes, D.S. Chemical composition of essential oil from the bark of Croton cajucara Bentham. Acta Scientiarum, 2012, 34(3), 325-329.
[http://dx.doi.org/10.4025/actascitechnol.v34i3.11712]
[164]
Nascimento, A.M.; Maria-Ferreira, D.; Dal Lin, F.T.; Kimura, A.; de Santana-Filho, A.P.; Werner, M.F.P.; Iacomini, M.; Sassaki, G.L.; Cipriani, T.R.; de Souza, L.M. Phytochemical analysis and anti-inflammatory evaluation of compounds from an aqueous extract of Croton cajucara Benth. J. Pharm. Biomed. Anal., 2017, 145, 821-830.
[http://dx.doi.org/10.1016/j.jpba.2017.07.032] [PMID: 28826140]
[165]
Maciel, M.A.M.; Pinto, A.C.; Arruda, A.C.; Pamplona, S.G.S.R.; Vanderlinde, F.A.; Lapa, A.J.; Echevarria, A.; Grynberg, N.F.; Côlus, I.M.S.; Farias, R.A.F.; Luna Costa, A.M.; Rao, V.S.N. Ethnopharmacology, phytochemistry and pharmacology: a successful combination in the study of Croton cajucara. J. Ethnopharmacol., 2000, 70(1), 41-55.
[http://dx.doi.org/10.1016/S0378-8741(99)00159-2] [PMID: 10720788]
[166]
Lemos, T.L.G.; Machado, M.I.I.; de Menezes, J.E.S.A.; de Sousa, C.R. Essential oil of Croton cajucara Benth. J. Essent. Oil Res., 1999, 11(4), 411-412.
[http://dx.doi.org/10.1080/10412905.1999.9701171]
[167]
Albino de Almeida, A.B.; Melo, P.S.; Hiruma-Lima, C.A.; Gracioso, J.S.; Carli, L.; Nunes, D.S.; Haun, M.; Souza Brito, A.R.M. Antiulcerogenic effect and cytotoxic activity of semi-synthetic crotonin obtained from Croton cajucara Benth. Eur. J. Pharmacol., 2003, 472(3), 205-212.
[http://dx.doi.org/10.1016/S0014-2999(03)01909-5] [PMID: 12871755]
[168]
De Paula, A.C.B.; Gracioso, J.S.; Toma, W.; Hiruma-Lima, C.A.; Carneiro, E.M.; Brito, A.R. The antiulcer effect of Croton cajucara Benth in normoproteic and malnourished rats. Phytomedicine, 2008, 15(10), 815-825.
[http://dx.doi.org/10.1016/j.phymed.2008.02.024] [PMID: 18434121]
[169]
Lima, G.S.; Castro-Pinto, D.B.; Machado, G.C.; Maciel, M.A.M.; Echevarria, A. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae). Phytomedicine, 2015, 22(12), 1133-1137.
[http://dx.doi.org/10.1016/j.phymed.2015.08.012] [PMID: 26547537]
[170]
Zorn, B.; García-Piñeres, A.J.; Castro, V.; Murillo, R.; Mora, G.; Merfort, I. 3-Desoxyanthocyanidins from Arrabidaea chica. Phytochemistry, 2001, 56(8), 831-835.
[http://dx.doi.org/10.1016/S0031-9422(01)00038-3] [PMID: 11324913]
[171]
Mafioleti, L.; da Silva, Junior I.F.; Colodel, E.M.; Flach, A.; Martins, D.T.D.O. Evaluation of the toxicity and antimicrobial activity of hydroethanolic extract of Arrabidaea chica (Humb. & Bonpl.). B. Verl. J. Ethnopharmacol., 2013, 150(2), 576-582.
[http://dx.doi.org/10.1016/j.jep.2013.09.008] [PMID: 24070833]
[172]
Martins, F.J.; Caneschi, C.A.; Vieira, J.L.F.; Barbosa, W.; Raposo, N.R. Antioxidant activity and potential photoprotective from amazon native flora extracts. J. Photochem. Photobiol. B, 2016, 161, 34-39.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.05.012] [PMID: 27208744]
[173]
Michel, A.F.R.M.; Melo, M.M.; Campos, P.P.; Oliveira, M.S.; Oliveira, F.A.S.; Cassali, G.D.; Ferraz, V.P.; Cota, B.B.; Andrade, S.P.; Souza-Fagundes, E.M. Evaluation of anti-inflammatory, antiangiogenic and antiproliferative activities of Arrabidaea chica crude extracts. J. Ethnopharmacol., 2015, 165, 29-38.
[http://dx.doi.org/10.1016/j.jep.2015.02.011] [PMID: 25683298]
[174]
Moragas-Tellis, C.J.; Almeida-Souza, F.; Chagas, M.D.S.D.S.; Souza, P.V.R.; Silva-Silva, J.V.; Ramos, Y.J.; Moreira, D.L.; Calabrese, K.D.S.; Behrens, M.D. The influence of anthocyanidin profile on antileishmanial activity of Arrabidaea chica morphotypes. Molecules, 2020, 25(15), 3547.
[http://dx.doi.org/10.3390/molecules25153547] [PMID: 32756445]
[175]
Vasconcelos, F.; Sampaio, S.V.; Garófalo, M.A.R.; Guimarães, L.F.L.; Giglio, J.R.; Arantes, E.C. Insulin-like effects of Bauhinia forficata aqueous extract upon Tityus serrulatus scorpion envenoming. J. Ethnopharmacol., 2004, 95(2-3), 385-392.
[http://dx.doi.org/10.1016/j.jep.2004.08.006] [PMID: 15507364]
[176]
Pinheiro, T.S.D.B.; Johansson, L.A.P.; Pizzolatti, M.G.; Biavatti, M.W. Comparative assessment of kaempferitrin from medicinal extracts of Bauhinia forficata link. J. Pharm. Biomed. Anal., 2006, 41(2), 431-436.
[http://dx.doi.org/10.1016/j.jpba.2005.12.010] [PMID: 16423486]
[177]
Silva, M.C.C.; Santana, L.A.; Mentele, R.; Ferreira, R.S.; Miranda, A.D.; Silva-Lucca, R.A.; Sampaio, M.U.; Correia, M.T.S.; Oliva, M.L.V. Purification, primary structure and potential functions of a novel lectin from Bauhiniaforficata seeds. Process Biochem., 2012, 47(7), 1049-1059.
[http://dx.doi.org/10.1016/j.procbio.2012.03.008]
[178]
da Cunha, A.M.; Menon, S.; Menon, R.; Couto, A.G.; Bürger, C.; Biavatti, M.W. Hypoglycemic activity of dried extracts of Bauhinia forficata Link. Phytomedicine, 2010, 17(1), 37-41.
[http://dx.doi.org/10.1016/j.phymed.2009.06.007] [PMID: 19577450]
[179]
Cagliari, R.; Kremer, F.S.; Pinto, L.D.S. Bauhinia lectins: Biochemical properties and biotechnological applications. Int. J. Biol. Macromol., 2018, 119, 811-820.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.156] [PMID: 30071232]
[180]
Pepato, M.T.; Keller, E.H.; Baviera, A.M.; Kettelhut, I.C.; Vendramini, R.C.; Brunetti, I.L. Anti-diabetic activity of Bauhinia forficata decoction in streptozotocin-diabetic rats. J. Ethnopharmacol., 2002, 81(2), 191-197.
[http://dx.doi.org/10.1016/S0378-8741(02)00075-2] [PMID: 12065150]
[181]
Ecker, A.; Gonzaga, T.K.S.D.N.; Seeger, R.L.; Santos, M.M.D.; Loreto, J.S.; Boligon, A.A.; Meinerz, D.F.; Lugokenski, T.H.; Rocha, J.B.T.D.; Barbosa, N.V. High-sucrose diet induces diabetic-like phenotypes and oxidative stress in Drosophila melanogaster: Protective role of Syzygium cumini and Bauhinia forficata. Biomed. Pharmacother., 2017, 89, 605-616.
[http://dx.doi.org/10.1016/j.biopha.2017.02.076] [PMID: 28267671]
[182]
Damasceno, D.C.; Volpato, G.T. Calderon, Ide.M.; Aguilar, R.; Rudge, M.V.C. Effect of Bauhinia forficata extract in diabetic pregnant rats: maternal repercussions. Phytomedicine, 2004, 11(2-3), 196-201.
[http://dx.doi.org/10.1078/0944-7113-00348] [PMID: 15070172]
[183]
Volpato, G.T.; Damasceno, D.C.; Rudge, M.V.C.; Padovani, C.R.; Calderon, I.M.P. Effect of Bauhinia forficata aqueous extract on the maternal-fetal outcome and oxidative stress biomarkers of streptozotocin-induced diabetic rats. J. Ethnopharmacol., 2008, 116(1), 131-137.
[http://dx.doi.org/10.1016/j.jep.2007.11.013] [PMID: 18155864]
[184]
Palsikowski, P.A.; Besen, L.M.; Santos, K.A.; Silva, C.D.; Silva, E.A.D. Supercritical CO2 oil extraction from Bauhiniaforficata Link subsp. pruinosa leaves: Composition, antioxidant activity and mathematical modeling. J. Supercrit. Fluids, 2019, 153, 104588.
[http://dx.doi.org/10.1016/j.supflu.2019.104588]
[185]
Franco, R.R.; Mota Alves, V.H.; Ribeiro Zabisky, L.F.; Justino, A.B.; Martins, M.M.; Saraiva, A.L.; Goulart, L.R.; Espindola, F.S. Antidiabetic potential of Bauhinia forficata Link leaves: a non-cytotoxic source of lipase and glycoside hydrolases inhibitors and molecules with antioxidant and antiglycation properties. Biomed. Pharmacother., 2020, 123, 109798.
[http://dx.doi.org/10.1016/j.biopha.2019.109798] [PMID: 31877553]
[186]
Pinafo, M.S.; Benedetti, P.R.; Gaiotte, L.B.; Costa, F.G.; Schoffen, J.P.F.; Fernandes, G.S.A.; Chuffa, L.G.A.; Seiva, F.R.F. Effects of Bauhinia forficata on glycaemia, lipid profile, hepatic glycogen content and oxidative stress in rats exposed to Bisphenol A. Toxicol. Rep., 2019, 6, 244-252.
[http://dx.doi.org/10.1016/j.toxrep.2019.03.001] [PMID: 30911467]
[187]
Jung, E.P.; Thomaz, G.F.C.; Brito, M.O.D.; Figueiredo, N.G.D.; Kunigami, C.N.; Ribeiro, L.D.O.; Moreira, R.F.A. Thernal-assisted recovery of antioxidant compounds from Bauhiniaforficata leaves: Effect of operational conditions. J. Appl. Res. Med. Aromat. Plants, 2021, 22, 100303.
[http://dx.doi.org/10.1016/j.jarmap.2021.100303]
[188]
Cechinel-Zanchett, C.C.; da Silva, R.C.M.V.A.F.; Tenfen, A.; Siebert, D.A.; Micke, G.; Vitali, L.; Cechinel-Filho, V.; Faloni de Andrade, S.; de Souza, P. Bauhinia forficata link, a Brazilian medicinal plant traditionally used to treat cardiovascular disorders, exerts endothelium-dependent and independent vasorelaxation in thoracic aorta of normotensive and hypertensive rats. J. Ethnopharmacol., 2019, 243, 112118.
[http://dx.doi.org/10.1016/j.jep.2019.112118] [PMID: 31351191]
[189]
Silva, F.R.M.B.; Szpoganicz, B.; Pizzolatti, M.G.; Willrich, M.A.V.; de Sousa, E. Acute effect of Bauhinia forficata on serum glucose levels in normal and alloxan-induced diabetic rats. J. Ethnopharmacol., 2002, 83(1-2), 33-37.
[http://dx.doi.org/10.1016/S0378-8741(02)00193-9] [PMID: 12413705]
[190]
Silva, M.C.C.; Paula, C.A.A.D.; Ferreira, J.G.; Paredes-Gamero, E.J.; Vaz, A.M.S.F.; Sampaio, M.U.; Correira, M.T.S.; Oliva, M.L.V. Bauhiniaforficata lectin (BfL) induces cell death and inhibits integrin-mediated adhesion on MCF7 human breast cancer cells. Biochim Biophys Acta (BBA)-. Gen Subj, 2014, 1840(7), 2262-2271.
[http://dx.doi.org/10.1016/j.bbagen.2014.03.009] [PMID: 24641823]
[191]
Borges, M.A.; Sousa, F.S.S.; Paschoal, J.D.; Lopes, I.A.R. da S Feijó, A.L.; Seixas Neto, A.C.P.; da Silva Pinto, L.; Seixas, F.K.; Collares, T. Effect of supplementation of medium with Bauhinia forficata recombinant lectins on expression of oxidative stress genes during in vitro maturation of bovine oocytes. Reprod. Toxicol., 2021, 103, 64-70.
[http://dx.doi.org/10.1016/j.reprotox.2021.05.012] [PMID: 34098044]
[192]
Salgueiro, A.C.F.; Leal, C.Q.; Bianchini, M.C.; Prado, I.O.; Mendez, A.S.L.; Puntel, R.L.; Folmer, V.; Soares, F.A.; Avila, D.S.; Puntel, G.O. The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations. J. Ethnopharmacol., 2013, 148(1), 81-87.
[http://dx.doi.org/10.1016/j.jep.2013.03.070] [PMID: 23567030]
[193]
Rosa, D.B.C.J.; Scalon, S.D.P.Q.; Dresch, D.M. Shading for water stress mitigation in Copaifera langsdorffii Desf. seedlings. S. Afr. J. Bot., 2021, 140, 240-248.
[http://dx.doi.org/10.1016/j.sajb.2021.04.020]
[194]
Campos, J.L.A.; Albuquerque, U.P. Indicators of conservation priorities for medicinal plants from seasonal dry forests of northeastern Brazil. Ecol. Indic., 2021, 121, 106993.
[http://dx.doi.org/10.1016/j.ecolind.2020.106993]
[195]
Paiva, L.A.F.; Gurgel, L.A.; Campos, A.R.; Silveira, E.R.; Rao, V.S.N. Attenuation of ischemia/reperfusion-induced intestinal injury by oleo-resin from Copaifera langsdorffii in rats. Life Sci., 2004, 75(16), 1979-1987.
[http://dx.doi.org/10.1016/j.lfs.2004.05.011] [PMID: 15306165]
[196]
Gelmini, F.; Beretta, G.; Anselmi, C.; Centini, M.; Magni, P.; Ruscica, M.; Cavalchini, A.; Maffei Facino, R. GC-MS profiling of the phytochemical constituents of the oleoresin from Copaifera langsdorffii Desf. and a preliminary in vivo evaluation of its antipsoriatic effect. Int. J. Pharm., 2013, 440(2), 170-178.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.021] [PMID: 22939967]
[197]
Paiva, L.A.F.; Rao, V.S.N.; Gramosa, N.V.; Silveira, E.R. Gastroprotective effect of Copaifera langsdorffii oleo-resin on experimental gastric ulcer models in rats. J. Ethnopharmacol., 1998, 62(1), 73-78.
[http://dx.doi.org/10.1016/S0378-8741(98)00058-0] [PMID: 9720615]
[198]
Lemos, M.; Santin, J.R.; Mizuno, C.S.; Boeing, T.; Sousa, J.P.B.D.; Nanayakkara, D.; Bastos, J.K.; Andrade, S.F.D. Copaifera langsdorffii: evaluation of potential gastroprotective of extract and isolated compounds obtained from leaves. Rev. Bras. Farmacogn., 2015, 25(3), 238-245.
[http://dx.doi.org/10.1016/j.bjp.2015.05.005]
[199]
Costa-Machado, A.R.M.; Bastos, J.K.; Freitas, L.A.P.D. Dynamic maceration of Copaifera langsdorffii leaves: a technological study using fractional factorial design. Rev. Bras. Farmacogn., 2013, 23(1), 79-85.
[http://dx.doi.org/10.1590/S0102-695X2012005000116]
[200]
Governa, P.; Biagi, M. Copaifera langsdorffii Desf.: in vitro investigation on anti-Helicobacter pylori and anti-inflammatory activities of oleoresin and fruit methanolic extract. Plant Biosyst- Int J Deal Asp. Plant Biol., 2020, 154(1), 117-124.
[201]
Oliveira, L.G.S.D.; Ribeiro, D.A.; Saraiva, M.E.; Macedo, D.G.D.; Macedo, J.G.F.; Pinheiro, P.G.; Costa, J.G.M.D.; Souza, M.M.D.A.; Menezes, I.R.A.D. Chemical variability of essential oils of Copaifera langsdorffii Desf. in different phonological phases on a savannah in the Northeast, Ceara, Brazil. Ind. Crops Prod., 2017, 97, 455-464.
[http://dx.doi.org/10.1016/j.indcrop.2016.12.031]
[202]
Costa, A.R.M.; Freitas, L.A.P.; Mendiola, J.; Ibanez, E. Copaifera langsdorffii supercritical fluid extraction: Chemical and functional characterization by LC/MS and in vitro assays. J. Supercrit. Fluids, 2015, 100, 86-96.
[http://dx.doi.org/10.1016/j.supflu.2015.02.028]
[203]
Motta, E.V.S.; Lemos, M.; Costa, J.C.; Banderó-Filho, V.C.; Sasse, A.; Sheridan, H.; Bastos, J.K. Galloylquinic acid derivatives from Copaifera langsdorffii leaves display gastroprotective activity. Chem. Biol. Interact., 2017, 261, 145-155.
[http://dx.doi.org/10.1016/j.cbi.2016.11.028] [PMID: 27894855]
[204]
Esteves, E.A.; Oliveira, L.G.; Pires, S.T.; Batista, A.G.; Dessimoni-Pinto, N.A.V.; Santana, R.C. Nutritional composition of Copaifera langsdorffii Desf. aril flour and its effects on serum lipids and glucose in rats. Food Res. Int., 2011, 44(7), 2357-2361.
[http://dx.doi.org/10.1016/j.foodres.2010.12.005]
[205]
Paiva, L.A.F.; Gurgel, L.A.; Silva, R.M.; Tomé, A.R.; Gramosa, N.V.; Silveira, E.R.; Santos, F.A.; Rao, V.S.N. Anti-inflammatory effect of kaurenoic acid, a diterpene from Copaifera langsdorffi on acetic acid-induced colitis in rats. Vascul. Pharmacol., 2002, 39(6), 303-307.
[http://dx.doi.org/10.1016/S1537-1891(03)00028-4] [PMID: 14567068]
[206]
Sertié, J.A.A.; Basile, A.C.; Panizza, S.; Oshiro, T.T.; Azzolini, C.P.; Penna, S.C. Pharmacological assay of Cordia verbenacea. III: Oral and topical antiinflammatory activity and gastrotoxicity of a crude leaf extract. J. Ethnopharmacol., 1991, 31(2), 239-247.
[http://dx.doi.org/10.1016/0378-8741(91)90008-2] [PMID: 2023431]
[207]
Roldão, Ede.F.; Witaicenis, A.; Seito, L.N.; Hiruma-Lima, C.A.; Di Stasi, L.C. Evaluation of the antiulcerogenic and analgesic activities of Cordia verbenacea DC. (Boraginaceae). J. Ethnopharmacol., 2008, 119(1), 94-98.
[http://dx.doi.org/10.1016/j.jep.2008.06.001] [PMID: 18588967]
[208]
Michielin, E.M.Z.; Wiese, L.P.D.L.; Ferreira, E.A.; Pedrosa, R.C.; Ferreira, S.R.S. Radical-scavenging activity of extracts from Cordia verbenacea DC obtained by different methods. J. Supercrit. Fluids, 2011, 56(1), 89-96.
[http://dx.doi.org/10.1016/j.supflu.2010.11.006]
[209]
Matias, E.F.F.; Alves, E.F.; Silva, M.K.N.; Carvalho, V.R.A.; Medeiros, C.R.; Santos, F.A.V.; Bitu, V.C.N.; Souza, C.E.S.; Figueredo, F.G.; Boligon, A.A.; Athayde, M.L.; Costa, J.G.M.; Coutinho, H.D.M. Potentiation of antibiotic activity of aminoglycosides by natural products from Cordia verbenacea DC. Microb. Pathog., 2016, 95, 111-116.
[http://dx.doi.org/10.1016/j.micpath.2016.03.009] [PMID: 27033000]
[210]
Bodini, R.B.; Pugine, S.M.P.; de Melo, M.P.; de Carvalho, R.A. Antioxidant and anti-inflammatory properties of orally disintegrating films based on starch and hydroxypropyl methylcellulose incorporated with Cordia verbenacea (erva baleeira) extract. Int. J. Biol. Macromol., 2020, 159, 714-724.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.075] [PMID: 32416298]
[211]
Martim, J.K.P.; Maranho, L.T.; Costa-Casagrande, T.A. Review: Role of the chemical compounds present in the essential oil and in the extract of Cordia verbenacea DC as an anti-inflammatory, antimicrobial and healing product. J. Ethnopharmacol., 2021, 265, 113300.
[http://dx.doi.org/10.1016/j.jep.2020.113300] [PMID: 32871237]
[212]
Sciarrone, D.; Giuffrida, D.; Rotondo, A.; Micalizzi, G.; Zoccali, M.; Pantò, S.; Donato, P.; Rodrigues-das-Dores, R.G.; Mondello, L. Quali-quantitative characterization of the volatile constituents in Cordia verbenacea D.C. essential oil exploiting advanced chromatographic approaches and nuclear magnetic resonance analysis. J. Chromatogr. A, 2017, 1524, 246-253.
[http://dx.doi.org/10.1016/j.chroma.2017.10.007] [PMID: 29030035]
[213]
Seigler, D.S.; Mikolajczak, K.L.; Smith, C.R.; Wolff, I.A.; Bates, R.B. Strcuture and reactions of a cyanogenetic lipids from Cordia verbenacea DC. Seed oil. Chem. Phys. Lipids, 1970, 4(2), 147-161.
[http://dx.doi.org/10.1016/0009-3084(70)90045-9]
[214]
Sertié, J.A.A.; Woisky, R.G.; Wiezel, G.; Rodrigues, M. Pharmacological assay of Cordia verbenacea V: oral and topical anti-inflammatory activity, analgesic effect and fetus toxicity of a crude leaf extract. Phytomedicine, 2005, 12(5), 338-344.
[http://dx.doi.org/10.1016/j.phymed.2003.09.013] [PMID: 15957367]
[215]
Fernandes, E.S.; Passos, G.F.; Medeiros, R.; da Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-inflammatory effects of compounds alpha-humulene and (-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol., 2007, 569(3), 228-236.
[http://dx.doi.org/10.1016/j.ejphar.2007.04.059] [PMID: 17559833]
[216]
Quispe-Condori, S.; Foglio, M.A.; Rosa, P.T.V.; Meireles, M.A.A. Obtaining β-caryophyllene from Cordia verbenacea de Candolle by supercritical fluid extraction. J. Supercrit. Fluids, 2008, 46(1), 27-32.
[http://dx.doi.org/10.1016/j.supflu.2008.02.015]
[217]
Michielin, E.M.Z.; Salvador, A.A.; Riehl, C.A.S.; Smânia, A., Jr; Smânia, E.F.A.; Ferreira, S.R. Chemical composition and antibacterial activity of Cordia verbenacea extracts obtained by different methods. Bioresour. Technol., 2009, 100(24), 6615-6623.
[http://dx.doi.org/10.1016/j.biortech.2009.07.061] [PMID: 19683436]
[218]
Meccia, G.; Rojas, L.B.; Velasco, J.; Díaz, T.; Usubillaga, A.; Arzola, J.C.; Ramos, S. Chemical composition and antibacterial activity of the essential oil of Cordia verbenacea from the Venezuelan Andes. Nat. Prod. Commun., 2009, 4(8), 1119-1122.
[http://dx.doi.org/10.1177/1934578X0900400821] [PMID: 19768996]
[219]
Parisotto, E.B.; Michielin, M.Z.; Biscaro, F.; Ferreira, S.R.S.; Filho, D.W.; Pedrosa, R.C. The antitumor activity of extracts from Cordia verbenacea D.C. obtained by supercritical fluid extraction. J. Supercrit. Fluids, 2012, 61, 101-107.
[http://dx.doi.org/10.1016/j.supflu.2011.08.016]
[220]
Passos, G.F.; Fernandes, E.S.; da Cunha, F.M.; Ferreira, J.; Pianowski, L.F.; Campos, M.M.; Calixto, J.B. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. J. Ethnopharmacol., 2007, 110(2), 323-333.
[http://dx.doi.org/10.1016/j.jep.2006.09.032] [PMID: 17084568]
[221]
Gomes, M.V.D.S.; Silva, J.D.D.; Ribeiro, A.F.; Cabral, L.M.; Sousa, V.P.D. Development and validation of a quantification method for α-humulene and trans-caryophyllene in Cordia verbenacea by high performance liquid chromatography. Rev. Bras. Farmacogn., 2019, 29(2), 182-190.
[http://dx.doi.org/10.1016/j.bjp.2019.01.009]
[222]
Melo, C.P.B.; Saito, P.; Vale, D.L.; Rodrigues, C.C.A.; Pinto, I.C.; Martinez, R.M.; Bezerra, J.R.; Baracat, M.M.; Verri, W.A., Jr; Fonseca-Bazzo, Y.M.; Georgetti, S.R.; Casagrande, R. Protective effect of oral treatment with Cordia verbenacea extract against UVB irradiation deleterious effects in the skin of hairless mouse. J. Photochem. Photobiol. B, 2021, 216, 112151.
[http://dx.doi.org/10.1016/j.jphotobiol.2021.112151] [PMID: 33581679]
[223]
Rodrigues, F.F.G.; Oliveira, L.G.S.; Rodrigues, F.F.G.; Saraiva, M.E.; Almeida, S.C.X.; Cabral, M.E.S.; Campos, A.R.; Costa, J.G.M. Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves. Pharmacognosy Res., 2012, 4(3), 161-165.
[http://dx.doi.org/10.4103/0974-8490.99080] [PMID: 22923954]
[224]
Lopes, N.; Faccin-Galhardi, L.C.; Espada, S.F.; Pacheco, A.C.; Ricardo, N.M.P.S.; Linhares, R.E.C.; Nozawa, C. Sulfated polysaccharide of Caesalpinia ferrea inhibits herpes simplex virus and poliovirus. Int. J. Biol. Macromol., 2013, 60, 93-99.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.05.015] [PMID: 23707733]
[225]
Pereira, L. P.; da Silva, R.O.; Bringel, P.H.D.S.F.; da Silva, K.E.; Assreuy, A.M.S.; Pereira, M.G. Polysaccharide fractions of Caesalpinia ferrea pods: potential anti-inflammatory usage. J. Ethnopharmacol., 2012, 139(2), 642-648.
[http://dx.doi.org/10.1016/j.jep.2011.12.012] [PMID: 22178173]
[226]
Pereira, L. P.; Mota, M.R.L.; Brizeno, L.A.C.; Nogueira, F.C.; Ferreira, E.G.M.; Pereira, M.G.; Assreuy, A.M.S. Modulator effect of a polysaccharide-rich extract from Caesalpinia ferrea stem barks in rat cutaneous wound healing: Role of TNF-α, IL-1β, NO, TGF-β. J. Ethnopharmacol., 2016, 187, 213-223.
[http://dx.doi.org/10.1016/j.jep.2016.04.043] [PMID: 27125588]
[227]
Menezes, I.A.C.; Moreira, I.J.A.; Carvalho, A.A.; Antoniolli, A.R.; Santos, M.R.V. Cardiovascular effects of the aqueous extract from Caesalpinia ferrea: involvement of ATP-sensitive potassium channels. Vascul. Pharmacol., 2007, 47(1), 41-47.
[http://dx.doi.org/10.1016/j.vph.2007.03.005] [PMID: 17481959]
[228]
Pournaghi, N.; Khalighi-sigaroodi, F.; Safari, E.; Hajiaghaee, R. A review of the genus Caesalpinia L.: emphasis on the cassane and norcassane compounds and cytotoxicity effects. Faslnamah-i Giyahan-i Daruyi, 2020, 19(76), 1-20.
[http://dx.doi.org/10.29252/jmp.19.76.1]
[229]
Macêdo, N.S.; Silveira, Z.S.; Bezerra, A.H.; Costa, J.G.M.D.; Coutinho, H.D.M.; Romano, B.; Capasso, R.; Cunha, F.A.B.D.; da Silva, M.V. Caesalpinia ferrea C. Mart. (Fabaceae) phytochemistry, ethnobotany, and bioactivities: A review. Molecules, 2020, 25(17), 1-33.
[http://dx.doi.org/10.3390/molecules25173831] [PMID: 32842529]
[230]
Vasconcelos, C.F.B.; Maranhão, H.M.L.; Batista, T.M.; Carneiro, E.M.; Ferreira, F.; Costa, J.; Soares, L.A.L.; Sá, M.D.C.; Souza, T.P.; Wanderley, A.G. Hypoglycaemic activity and molecular mechanisms of Caesalpinia ferrea Martius bark extract on streptozotocin-induced diabetes in Wistar rats. J. Ethnopharmacol., 2011, 137(3), 1533-1541.
[http://dx.doi.org/10.1016/j.jep.2011.08.059] [PMID: 21911047]
[231]
Gallao, M.I.; Normando, L.D.O.; Vieira, I.G.P.; Mendes, F.N.P.; Ricardo, N.M.P.S.; Brito, E.S.D. Morphological, chemical and rheological properties of the main seed polysaccharide from Caesalpinia ferrea Mart. Ind. Crops Prod., 2013, 47, 58-62.
[http://dx.doi.org/10.1016/j.indcrop.2013.02.035]
[232]
de Araujo, D.F.; Madeira, J.D.C.; Cunha, A.P.; Ricardo, N.M.P.S.; Bezerra, F.F.; Mourão, P.A.S.; Assreuy, A.M.S.; Pereira, M.G. Structural characterization of anticoagulant and antithrombotic polysaccharides isolated from Caesalpinia ferrea stem barks. Int. J. Biol. Macromol., 2021, 175, 147-155.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.177] [PMID: 33524486]
[233]
Cunha, A.P.; Ribeiro, A.C.B.; Ricardo, N.M.P.S.; Oliveira, A.C.; Davila, L.S.P.; Cardoso, J.H.L.; Rodrigues, D.C.; Azeredo, H.M.C.; Silva, L.M.A.; Brito, E.S.; Filho, J.M.; Rocha, T.M.; Leal, L.K.A.M.; Ricardo, N.M.P.S. Polysaccharide from Caesalpinia ferrea seeds-Chemical characterization and anti-diabetic effects in Wistar rats. Food Hydrocoll., 2017, 65, 68-76.
[http://dx.doi.org/10.1016/j.foodhyd.2016.10.039]
[234]
Nozaki, H.; Hayashi, K-I.; Kido, M.; Kakumoto, K.; Ikeda, S.; Matsuura, N.; Tani, H.; Takaoka, D.; Iinuma, M.; Akao, Y. Pauferrol A, a novel chalcone trimer with a cyclobutane ring from Caesalpinia ferrea mart exhibiting DNA topoisomerase II inhibition and apoptosis-inducing activity. Tetrahedron Lett., 2007, 48(47), 8290-8292.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.130]
[235]
Kasperiski, F.M.; Lima, E.C.; Umpierres, C.S.; Reis, G.S.D.; Thue, P.S.; Lima, D.R.; Dias, S.L.P.; Saucier, C.; Costa, J.B.D. Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions. J. Clean. Prod., 2018, 197(1), 919-929.
[http://dx.doi.org/10.1016/j.jclepro.2018.06.146]
[236]
Sampaio, F.C. Pereira, Mdo.S.; Dias, C.S.; Costa, V.C.O.; Conde, N.C.O.; Buzalaf, M.A.R. In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens. J. Ethnopharmacol., 2009, 124(2), 289-294.
[http://dx.doi.org/10.1016/j.jep.2009.04.034] [PMID: 19397986]
[237]
Silva, I.D.D.L.; Filho, L.E.P.T.D.M.; Caetano, V.F.; Andrade, M.F.D.; Hallwass, F.; Brito, A.M.S.S.; Vinhas, G.M. Development of antioxidant active PVA films with plant extract of Caesalpinia ferrea Martius. Lebensm. Wiss. Technol., 2021, 144, 111215.
[http://dx.doi.org/10.1016/j.lwt.2021.111215]
[238]
Hassan, S.K.; El-Sammad, N.M.; Mousa, A.M.; Mohammed, M.H.; Farrag, A.E.R.H.; Hashim, A.N.E.; Werner, V.; Lindequist, U.; Nawwar, M.A.E-M. Hypoglycemic and antioxidant activities of Caesalpinia ferrea Martius leaf extract in streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Biomed., 2015, 5(6), 462-471.
[http://dx.doi.org/10.1016/j.apjtb.2015.03.004]
[239]
Islam, N.U.; Jalil, K.; Shahid, M.; Rauf, A.; Muhammad, N.; Khan, A.; Shah, M.R.; Khan, M.A. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab. J. Chem., 2019, 12(8), 2914-2925.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.025]
[240]
Zaiter, A.; Becker, L.; Petit, J.; Zimmer, D.; Karam, M-C.; Baudelaire, E.; Scher, J.; Dicko, A. Antioxidant and antiacetylcholinesterase activities of different granulometric classes of Salix alba (L.) bark powders. Powder Technol., 2016, 301, 649-656.
[http://dx.doi.org/10.1016/j.powtec.2016.07.014]
[241]
Javed, B.; Nawaz, K.; Munazir, M. Phytochemical analysis and antibacterial activity of tannins extracted from Salix alba L. against different gram-positive and gram-negative bacterial strains. Iran. J. Sci. Technol. Trans. A Sci., 2020, 44, 1303-1314.
[http://dx.doi.org/10.1007/s40995-020-00937-w]
[242]
Toman, R.; Karacsonyi, S.; Kubackova, M. Studies on the pectin present in the bark of white willow (Salix alba L.): Fractionation and acidic depolymerization of the water-soluble pectin. Carbohydr. Res., 1975, 43(1), 111-116.
[http://dx.doi.org/10.1016/S0008-6215(00)83977-4] [PMID: 1125946]
[243]
Harbourne, N.; Marete, E.; Jacquier, J.C.O.; Riordan, D. Effect of drying methods on the phenolic constituents of meadowsweet (Filipendula ulmaria) and willow (Salix alba). Lebensm. Wiss. Technol., 2009, 42(9), 1468-1473.
[http://dx.doi.org/10.1016/j.lwt.2009.05.005]
[244]
Benelli, P.; Comim, S.R.R.; Oliveira, J.V.; Pedrosa, R.C.; Ferreira, S.R.S. Phase equilibrium data of guacatonga (Casearia sylvestris) extract + ethanol + CO2 system and encapsulation using a supercritical anti-solvent process. J. Supercrit. Fluids, 2014, 93, 103-111.
[http://dx.doi.org/10.1016/j.supflu.2014.02.007]
[245]
Da Silva, S.L.; Calgarotto, A.K.; Chaar, J.S.; Marangoni, S. Isolation and characterization of ellagic acid derivatives isolated from Casearia sylvestris SW aqueous extract with anti-PLA(2) activity. Toxicon, 2008, 52(6), 655-666.
[http://dx.doi.org/10.1016/j.toxicon.2008.07.011] [PMID: 18718481]
[246]
Albano, M.N.; da Silveira, M.R.; Danielski, L.G.; Florentino, D.; Petronilho, F.; Piovezan, A.P. Anti-inflammatory and antioxidant properties of hydroalcoholic crude extract from Casearia sylvestris Sw. (Salicaceae). J. Ethnopharmacol., 2013, 147(3), 612-617.
[http://dx.doi.org/10.1016/j.jep.2013.03.049] [PMID: 23542040]
[247]
Ferreira, P.M.P.; Bezerra, D.P.; Silva, J.D.N.; da Costa, M.P.; Ferreira, J.R.O.; Alencar, N.M.N.; Figueiredo, I.S.T.; Cavalheiro, A.J.; Machado, C.M.L.; Chammas, R.; Alves, A.P.N.N.; Moraes, M.O.D.; Pessoa, C. Preclinical anticancer effectiveness of a fraction from Casearia sylvestris and its component Casearin X: in vivo and ex vivo methods and microscopy examinations. J. Ethnopharmacol., 2016, 186, 270-279.
[http://dx.doi.org/10.1016/j.jep.2016.04.011] [PMID: 27067367]
[248]
Maistro, E.L.; Carvalho, J.C.T.; Mantovani, M.S. Evaluation of the genotoxic potential of the Casearia sylvestris extract on HTC and V79 cells by the comet assay. Toxicol. In Vitro, 2004, 18(3), 337-342.
[http://dx.doi.org/10.1016/j.tiv.2003.10.002] [PMID: 15046781]
[249]
Cavalcante, W.L.G.; Campos, T.O.; Dal Pai-Silva, M.; Pereira, P.S.; Oliveira, C.Z.; Soares, A.M.; Gallacci, M. Neutralization of snake venom phospholipase A2 toxins by aqueous extract of Casearia sylvestris (Flacourtiaceae) in mouse neuromuscular preparation. J. Ethnopharmacol., 2007, 112(3), 490-497.
[http://dx.doi.org/10.1016/j.jep.2007.04.002] [PMID: 17540522]
[250]
Basile, A.C.; Sertié, J.A.A.; Panizza, S.; Oshiro, T.T.; Azzolini, C.A. Pharmacological assay of Casearia sylvestris. I: Preventive anti-ulcer activity and toxicity of the leaf crude extract. J. Ethnopharmacol., 1990, 30(2), 185-197.
[http://dx.doi.org/10.1016/0378-8741(90)90007-G] [PMID: 2255209]
[251]
Schoenfelder, T.; Pich, C.T.; Geremias, R.; Avila, S.; Daminelli, E.N.; Pedrosa, R.C.; Bettiol, J. Antihyperlipidemic effect of Casearia sylvestris methanolic extract. Fitoterapia, 2008, 79(6), 465-467.
[http://dx.doi.org/10.1016/j.fitote.2008.03.008] [PMID: 18538508]
[252]
Da Silva, S.L. Chaar, Jda.S.; Yano, T. Chemotherapeutic potential of two gallic acid derivative compounds from leaves of Casearia sylvestris Sw (Flacourtiaceae). Eur. J. Pharmacol., 2009, 608(1-3), 76-83.
[http://dx.doi.org/10.1016/j.ejphar.2009.02.004] [PMID: 19222998]
[253]
Felipe, K.B.; Kviecinski, M.R.; da Silva, F.O.; Bücker, N.F.; Farias, M.S.; Castro, L.S.E.P.W.; de Souza Grinevicius, V.M.; Motta, N.S.M.; Correia, J.F.G.; Rossi, M.H.; Pedrosa, R.C. Inhibition of tumor proliferation associated with cell cycle arrest caused by extract and fraction from Casearia sylvestris (Salicaceae). J. Ethnopharmacol., 2014, 155(3), 1492-1499.
[http://dx.doi.org/10.1016/j.jep.2014.07.040] [PMID: 25077466]
[254]
Pierri, E.G.; Castro, R.C.; Vizioli, E.O.; Ferreira, C.M.R.; Cavalheiro, A.J.; Tininis, A.G.; Chin, C.M.; Santos, A.G. Anti-inflammatory action of ethanolic extract and clerodane diterpenes from Casearia sylvestris. Rev. Bras. Farmacogn., 2017, 27(4), 495-501.
[http://dx.doi.org/10.1016/j.bjp.2016.12.008]
[255]
Heymanns, A.C.; Albano, M.N.; da Silveira, M.R.; Muller, S.D.; Petronilho, F.C.; Gainski, L.D.; Cargnin-Ferreira, E.; Piovezan, A.P. Macroscopic, biochemical and hystological evaluation of topical anti-inflammatory activity of Casearia sylvestris (Flacourtiaceae) in mice. J. Ethnopharmacol., 2021, 264, 113139.
[http://dx.doi.org/10.1016/j.jep.2020.113139] [PMID: 32726679]
[256]
Klimas, C.A.; Kainer, K.A.; Wadt, L.H.O. Population structure of Carapa guianensis in two forest types in the southwestern Brazilian Amazon. For. Ecol. Manage., 2007, 250(3), 256-265.
[http://dx.doi.org/10.1016/j.foreco.2007.05.025]
[257]
Klimas, C.A.; Kainer, K.A.; Wadt, L.H.D.O. The economic value of sustainable seed and timber harvests of multi-use species: An example using Carapa guianensis. For. Ecol. Manage., 2012, 268, 81-91.
[http://dx.doi.org/10.1016/j.foreco.2011.03.006]
[258]
Soares, A.D.S.; Wanzeler, A.M.V.; Cavalcante, G.H.S.; Barros, E.M.D.S.; Carneiro, R.C.M.; Tuji, F.M. Therapeutic effects of andiroba (Carapa guianensis Aubl) oil, compared to low power laser, on oral mucositis in children underwent chemotherapy: A clinical study. J. Ethnopharmacol., 2021, 264, 113365.
[http://dx.doi.org/10.1016/j.jep.2020.113365] [PMID: 32920135]
[259]
Tappin, M.R.R.; Nakamura, M.J.; Siani, A.C.; Lucchetti, L. Development of an HPLC method for the determination of tetranortriterpenoids in Carapa guianensis seed oil by experimental design. J. Pharm. Biomed. Anal., 2008, 48(4), 1090-1095.
[http://dx.doi.org/10.1016/j.jpba.2008.08.027] [PMID: 18845411]
[260]
Ferraris, F.K.; Rodrigues, R.; da Silva, V.P.; Figueiredo, R.; Penido, C.; Henriques, Md. Modulation of T lymphocyte and eosinophil functions in vitro by natural tetranortriterpenoids isolated from Carapa guianensis Aublet. Int. Immunopharmacol., 2011, 11(1), 1-11.
[http://dx.doi.org/10.1016/j.intimp.2010.09.010] [PMID: 20951667]
[261]
Ferreira, M.C.; Vierira, M.D.L.A.; Zani, C.L.; Alves, T.M.D.A.; Sales, P.A.S. Junior; Nurta, S.M.F.; Romanha, A.J.; Gil, L.H.V.G.; Carvalho, A.G.D.O.; Zilli, J.E.; Vital, M.J.S.; Rosa, C.A.; Rosa, L.H. Molecular phylogeny, diversity, symbiosis and discover of bioactive compounds of endophytic fungi associated with the medicinal Amazonian plant Carapa guianensis Aublet (Meliaceae). Biochem. Syst. Ecol., 2015, 59, 36-44.
[http://dx.doi.org/10.1016/j.bse.2014.12.017]
[262]
Nascimento, G.O.; Souza, D.P.; Santos, A.S.; Batista, J.F.; Rathinasabapathi, B.; Gagliardi, P.R.; Goncalves, J.F.C. Lipidomic profiles from seed oil of Carapa guianensis Aubl. And Carapa vasquezii Kenfack and implications for the control of phytopathogenic fungi. Ind. Crops Prod., 2019, 129, 67-73.
[http://dx.doi.org/10.1016/j.indcrop.2018.11.069]
[263]
Costa-Silva, J.H.; Lima, C.R.; Silva, E.J.R.; Araújo, A.V.; Fraga, M.C.C.A.; Ribeiro, E. Ribeiro, A.; Arruda, A.C.; Lafayette, S.S.L.; Wanderley, A.G. Acute and subacute toxicity of the Carapa guianensis Aublet (Meliaceae) seed oil. J. Ethnopharmacol., 2008, 116(3), 495-500.
[http://dx.doi.org/10.1016/j.jep.2007.12.016] [PMID: 18281172]
[264]
Lavie, D.; Levy, E.C.; Zelnik, R. The constituents of Carapa guianensis Aubl. And their biogenetic relationship. Bioorg. Chem., 1972, 2(1), 59-64.
[http://dx.doi.org/10.1016/0045-2068(73)90007-2]
[265]
Sarquis, I.R.; Sarquis, R.S.F.R.; Marinho, V.H.S.; Neves, F.B.; Araujo, I.F.; Damasceno, L.F.; Ferreira, R.M.A.; Souto, R.N.P.; Carvalho, J.C.T.; Ferreira, I.M. Carapa guianensis Aubl. (Meliaceae) oil associated with silk fibroin, as alternative to traditional surfactants, and active against larvae of the vector Aedes aegypti. Ind. Crops Prod., 2020, 157, 112931.
[http://dx.doi.org/10.1016/j.indcrop.2020.112931]
[266]
Miranda Júnior, R.N.; Dolabela, M.F.; da Silva, M.N.; Póvoa, M.M.; Maia, J.G.S. Antiplasmodial activity of the andiroba (Carapa guianensis Aubl., Meliaceae) oil and its limonoid-rich fraction. J. Ethnopharmacol., 2012, 142(3), 679-683.
[http://dx.doi.org/10.1016/j.jep.2012.05.037] [PMID: 22659195]
[267]
Iha, O.K.; Alves, F.C.S.C.; Suarez, P.A.Z.; Silva, C.P.R.; Meneghetti, M.R.; Meneghetti, S.M.P. Potential application of Terminalia catappa L. and Carapaguianensis oils for biofuel production: Physical-chemical properties of neat vegetable oils, their methul-esters and bio-oils (hydrocarbons). Ind. Crops Prod., 2014, 52, 95-98.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.001]
[268]
Silva, B.P.D.; Parente, J.P. Bioactive polysaccharides from Costusspicatus. Carbohydr. Polym., 2003, 51(3), 239-242.
[http://dx.doi.org/10.1016/S0144-8617(02)00215-1]
[269]
Moreno, K.G.T.; Gasparotto, Junior A.; Dos Santos, A.C.; Palozi, R.A.C.; Guarnier, L.P.; Marques, A.A.M.; Romão, P.V.M.; Lorençone, B.R.; Cassemiro, N.S.; Silva, D.B.; Tirloni, C.A.S.; de Barros, M.E.; Silva, D.B.; Tirloni, C.A.S.; Barros, M.E.D. Nephroprotective and antilithiatic activities of Costus spicatus (Jacq.) Sw.: Ethnopharmacological investigation of a species from the Dourados region, Mato Grosso do Sul State, Brazil. J. Ethnopharmacol., 2021, 266, 113409.
[http://dx.doi.org/10.1016/j.jep.2020.113409] [PMID: 32979411]
[270]
Keller, A.C.; Vandebroek, I.; Liu, Y.; Balick, M.J.; Kronenberg, F.; Kennelly, E.J.; Brillantes, A-M.B. Costus spicatus tea failed to improve diabetic progression in C57BLKS/J db/db mice, a model of type 2 diabetes mellitus. J. Ethnopharmacol., 2009, 121(2), 248-254.
[http://dx.doi.org/10.1016/j.jep.2008.10.025] [PMID: 19027842]
[271]
da Silva, B.P.; Bernardo, R.R.; Parente, J.P. Flavonol glycosides from Costus spicatus. Phytochemistry, 2000, 53(1), 87-92.
[http://dx.doi.org/10.1016/S0031-9422(99)00441-0] [PMID: 10656413]
[272]
Lorençone, B.R.; Guarnier, L.P.; Palozi, R.A.C.; Romão, P.V.M.; Marques, A.A.M.; Klider, L.M.; Souza, R.I.C.; Dos Santos, A.C.; Tirloni, C.A.S.; Cassemiro, N.S.; Silva, D.B.; Manfron Budel, J.; Gasparotto, Junior A. Atheroprotective properties of Costus spicatus (Jacq.) Sw. in female rats. Life (Basel), 2021, 11(3), 212.
[http://dx.doi.org/10.3390/life11030212] [PMID: 33800454]
[273]
Amorim, A.C.L.; Lima, C.K.F.; Hovell, A.M.C.; Miranda, A.L.P.; Rezende, C.M. Antinociceptive and hypothermic evaluation of the leaf essential oil and isolated terpenoids from Eugenia uniflora L. (Brazilian Pitanga). Phytomedicine, 2009, 16(10), 923-928.
[http://dx.doi.org/10.1016/j.phymed.2009.03.009] [PMID: 19423309]
[274]
Sobral-Souza, C.E.; Silva, A.R.P.; Leite, N.F.; Rocha, J.E.; Costa, J.G.M.; Menezes, I.R.A.; Cunha, F.A.B.; Rolim, L.A.; Sousa, A.K.; Coutinho, H.D.M. The role of extracts from Eugenia uniflora L. against metal stress in eukaryotic and prokaryotic models. S. Afr. J. Bot., 2020, 131, 360-368.
[http://dx.doi.org/10.1016/j.sajb.2020.03.012]
[275]
Engela, M.R.G.D.S.; Furlan, C.M.; Esposito, M.P.; Fernandes, F.F.; Carrari, E.; Domingos, M.; Paoletti, E.; Hoshika, Y. Metabolic and physiological alterations indicate that the tropical broadleaf tree Eugenia uniflora L. is sensitive to ozone. Sci. Total Environ., 2021, 769, 145080.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145080] [PMID: 33736256]
[276]
Sobeh, M.; El-Raey, M.; Rezq, S.; Abdelfattah, M.A.O.; Petruk, G.; Osman, S.; El-Shazly, A.M.; El-Beshbishy, H.A.; Mahmoud, M.F.; Wink, M. Chemical profiling of secondary metabolites of Eugenia uniflora and their antioxidant, anti-inflammatory, pain killing and anti-diabetic activities: A comprehensive approach. J. Ethnopharmacol., 2019, 240, 111939.
[http://dx.doi.org/10.1016/j.jep.2019.111939] [PMID: 31095981]
[277]
Canabarro, N.I.; Veggi, P.C.; Vardanega, R.; Mazutti, M.A.; Ferreira, M.D.C. Techno-economic evaluation and mathematical modeling of supercritical CO2 extraction from Eugenia uniflora L. leaves. J. Appl. Res. Med. Aromat. Plants, 2020, 18, 100261.
[http://dx.doi.org/10.1016/j.jarmap.2020.100261]
[278]
Meira, E.F.; Oliveira, N.D.; Mariani, N.P.; Porto, M.L.; Severi, J.A.; Siman, F.D.M.; Meyrelles, S.S.; Vasquez, E.C.; Gava, A.L. Eugenia uniflora (pitanga) leaf extract prevents the progression of experimental acute kidney injury. J. Funct. Foods, 2020, 66, 103818.
[http://dx.doi.org/10.1016/j.jff.2020.103818]
[279]
Tambara, A.L.; de Los Santos Moraes, L.; Dal Forno, A.H.; Boldori, J.R.; Gonçalves Soares, A.T.; de Freitas Rodrigues, C.; Mariutti, L.R.B.; Mercadante, A.Z.; de Ávila, D.S.; Denardin, C.C. Purple pitanga fruit (Eugenia uniflora L.) protects against oxidative stress and increase the lifespan in Caenorhabditis elegans via the DAF-16/FOXO pathway. Food Chem. Toxicol., 2018, 120, 639-650.
[http://dx.doi.org/10.1016/j.fct.2018.07.057] [PMID: 30077708]
[280]
Oliveira, P.S.; Chaves, V.C.; Bona, N.P.; Soares, M.S.P.; Cardoso, J.S.; Vasconcellos, F.A.; Tavares, R.G.; Vizzotto, M.; Silva, L.M.C.D.; Grecco, F.B.; Gamaro, G.D.; Spanevello, R.M.; Lencina, C.L.; Reginatto, F.H.; Stefanello, F.M. Eugenia uniflora fruit (red type) standardized extract: a potential pharmacological tool to diet-induced metabolic syndrome damage management. Biomed. Pharmacother., 2017, 92, 935-941.
[http://dx.doi.org/10.1016/j.biopha.2017.05.131] [PMID: 28618655]
[281]
da Cunha, F.A.B.; Waczuk, E.P.; Duarte, A.E.; Barros, L.M.; Elekofehinti, O.O.; Matias, E.F.F.; da Costa, J.G.M.; Sanmi, A.A.; Boligon, A.A.; da Rocha, J.B.T.; Souza, D.O.; Posser, T.; Coutinho, H.D.M.; Franco, J.L.; Kamdem, J.P. Cytotoxic and antioxidative potentials of ethanolic extract of Eugenia uniflora L. (Myrtaceae) leaves on human blood cells. Biomed. Pharmacother., 2016, 84, 614-621.
[http://dx.doi.org/10.1016/j.biopha.2016.09.089] [PMID: 27694006]
[282]
Ogunwande, I.A.; Olawore, N.O.; Ekundayo, O.; Walker, T.M.; Schmidt, J.M.; Setzer, W.N. Studies on the essential oils composition, antibacterial and cytotoxicity of Eugenia uniflora L. Int. J. Aromather., 2005, 15(3), 147-152.
[http://dx.doi.org/10.1016/j.ijat.2005.07.004]
[283]
Oliveira, A.L.; Lopes, R.B.; Cabral, F.A.; Eberlin, M.N. Volatile compounds from pitanga fruit (Eugenia uniflora L.). Food Chem., 2006, 99(1), 1-5.
[http://dx.doi.org/10.1016/j.foodchem.2005.07.012]
[284]
Bezerra, I.C.F.; Ramos, R.T.D.M.; Ferreira, M.R.A.; Soares, L.A.L. Chromatographic profiles of extractives from leaves of Eugenia uniflora. Rev. Bras. Farmacogn., 2018, 28(1), 92-101.
[http://dx.doi.org/10.1016/j.bjp.2017.11.002]
[285]
Tessaro, L.; Lourenço, R.V.; Martelli-Tosi, M.; do Amaral Sobral, P.J. Gelatin/chitosan based films loaded with nanocellulose from soybean straw and activated with “Pitanga” (Eugenia uniflora L.) leaf hydroethanolic extract in W/O/W emulsion. Int. J. Biol. Macromol., 2021, 186, 328-340.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.07.039] [PMID: 34246680]
[286]
Dos Santos, J.F.S.; Rocha, J.E.; Bezerra, C.F.; do Nascimento Silva, M.K.; de Matos, Y.M.L.S.; de Freitas, T.S.; Dos Santos, A.T.L.; da Cruz, R.P.; Machado, A.J.T.; Rodrigues, T.H.S.; de Brito, E.S.; Sales, D.L.; de Oliveira Almeida, W.; da Costa, J.G.M.; Coutinho, H.D.M.; Morais-Braga, M.F.B. Chemical composition, antifungal activity and potential anti-virulence evaluation of the Eugenia uniflora essential oil against Candida spp. Food Chem., 2018, 261, 233-239.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.015] [PMID: 29739588]
[287]
Figueiredo, P.L.B.; Pinto, L.C.; da Costa, J.S.; da Silva, A.R.C.; Mourão, R.H.V.; Montenegro, R.C.; da Silva, J.K.R.; Maia, J.G.S. Composition, antioxidant capacity and cytotoxic activity of Eugenia uniflora L. chemotype-oils from the Amazon. J. Ethnopharmacol., 2019, 232, 30-38.
[http://dx.doi.org/10.1016/j.jep.2018.12.011] [PMID: 30543916]
[288]
Santos, K.K.A.; Matias, E.F.F.; Tintino, S.R.; Souza, C.E.S.; Braga, M.F.B.M.; Guedes, G.M.M.; Rolón, M.; Vega, C.; de Arias, A.R.; Costa, J.G.M.; Menezes, I.R.A.; Coutinho, H.D.M. Anti-Trypanosoma cruzi and cytotoxic activities of Eugenia uniflora L. Exp. Parasitol., 2012, 131(1), 130-132.
[http://dx.doi.org/10.1016/j.exppara.2012.02.019] [PMID: 22426246]

© 2024 Bentham Science Publishers | Privacy Policy