Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Bioinformatic Screening of Compounds from Iranian Lamiaceae Family Members against SARS-CoV-2 Spike Protein

Author(s): Abbas Alibakhshi*, Shima Gharibi, Shahrzad Ahangarzadeh* and Fatemeh Yarian

Volume 20, Issue 6, 2023

Published on: 09 June, 2022

Page: [684 - 698] Pages: 15

DOI: 10.2174/1570180819666220509090514

Price: $65

Abstract

Background: COVID-19 (coronavirus disease 2019) is still a major challenge worldwide. The disease is caused by binding the coronavirus to ACE2 receptors on lung cells, infecting the cells and triggering the onset of symptoms. The prevention of such a binding in which the virus is eventually unable to enter the cell could be a promising therapeutic approach.

Methods: In this in silico study, 306 compounds of Lamiaceae family native in Iran (native Mints) were retrieved from several databases as 3D structures, and after that molecular docking and virtual screening, the compounds with inhibitory potential were selected in terms of free energy binding against the spike protein of the virus. The pharmacokinetic profile of selected compounds was evaluated, and by molecular dynamic simulation and MM/PBSA, four compounds were further assessed for binding affinities against the receptor-binding domain of the spike.

Results: The results showed the Catechin gallate and Perovskone B from Stachys and Salvia genus generated a stronger binding affinity, and therefore could act as potential inhibitory compounds of RBD of the SARS-CoV-2 spike protein.

Conclusion: This study revealed that some members of the Lamiaceae family could be employed to inhibit SARS-CoV-2 activity through interaction with spike protein and therefore could be used for further investigation in vitro and in vivo.

Keywords: Lamiaceae family, SARS-CoV-2, RBD, molecular docking, molecular dynamic, spike protein.

Graphical Abstract
[1]
Zhang, Q.; Xiang, R.; Huo, S.; Zhou, Y.; Jiang, S.; Wang, Q.; Yu, F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct. Target. Ther., 2021, 6(1), 233.
[http://dx.doi.org/10.1038/s41392-021-00653-w] [PMID: 34117216]
[2]
Alibakhshi, A.; Ahangarzadeh, S.; Beikmohammadi, L.; Soltanmohammadi, B.; Bahrami, A.A.; Ranjbar, M.M.; Mohammadi, E. Computational design of a potential therapeutic peptide against spike protein of SARS-CoV-2. Journal of Computational Biophysics and Chemistry, 2021, 20(04), 337-346.
[http://dx.doi.org/10.1142/S2737416521500162]
[3]
Huang, Y.; Yang, C.; Xu, X.F.; Xu, W.; Liu, S.W. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[4]
Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[5]
Lubbe, L.; Cozier Gyles, E.; Oosthuizen, D.; Acharya, K.R.; Sturrock Edward, D. ACE2 and ACE: Structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Clin. Sci., 2020, 134(21), 2851-2871.
[http://dx.doi.org/10.1042/CS20200899]
[6]
Xie, Y.; Karki, C.B.; Du, D.; Li, H.; Wang, J.; Sobitan, A.; Teng, S.; Tang, Q.; Li, L. Spike proteins of SARS-CoV and SARS-CoV-2 utilize different mechanisms to bind with human ACE2. Front. Mol. Biosci., 2020, 7, 591873.
[http://dx.doi.org/10.3389/fmolb.2020.591873] [PMID: 33363207]
[7]
Ahmad, F.; Mahmood, A.; Muhmood, T. Machine learning-integrated omics for the risk and safety assessment of nanomaterials. Biomater. Sci., 2021, 9(5), 1598-1608.
[http://dx.doi.org/10.1039/D0BM01672A] [PMID: 33443512]
[8]
Mahmood, A.; Wang, J-L. Machine learning for high performance organic solar cells: Current scenario and future prospects. Energy Environ. Sci., 2021, 14(1), 90-105.
[http://dx.doi.org/10.1039/D0EE02838J]
[9]
Guha, R. On exploring structure-activity relationships. Methods Mol. Biol., 2013, 993, 81-94.
[http://dx.doi.org/10.1007/978-1-62703-342-8_6] [PMID: 23568465]
[10]
Nazar, M.F.; Abdullah, M.I.; Badshah, A.; Mahmood, A.; Rana, U.A.; Khan, S.U-D. Synthesis, structure–activity relationship and molecular docking of cyclohexenone based analogous as potent non-nucleoside reverse-transcriptase inhibitors. J. Mol. Struct., 2015, 1086, 8-16.
[http://dx.doi.org/10.1016/j.molstruc.2014.12.090]
[11]
Asif, M.; Muhammad, S.; Muhammad, A.; Imran, A.M.; Bilal, K. Theoretical investigation for the designing of novel antioxidants. Can. J. Chem., 2013, 91(2), 126-130.
[http://dx.doi.org/10.1139/cjc-2012-0356]
[12]
Tallei, T.E.; Tumilaar, S.G.; Niode, N.J.; Fatima, wali.; Kepel,, N.J.; Idroes, R.; Effendi, Y.; Sakib, S.A.; Emran, T.B. Potential of plant bioactive compounds as SARS-CoV-2 main protease (M<sup>pro</sup>) and Spike (S) Glycoprotein Inhibitors: A molecular docking study. Scientifica (Cairo), 2020, 2020, 6307457.
[http://dx.doi.org/10.1155/2020/6307457] [PMID: 33425427]
[13]
Islam, M.T.; Sarkar, C.; El-Kersh, D.M.; Jamaddar, S.; Uddin, S.J.; Shilpi, J.A.; Mubarak, M.S. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother. Res., 2020, 34(10), 2471-2492.
[http://dx.doi.org/10.1002/ptr.6700] [PMID: 32248575]
[14]
Uritu, C.M.; Mihai, C.T.; Stanciu, G-D.; Dodi, G.; Alexa-Stratulat, T.; Luca, A.; Leon-Constantin, M-M.; Stefanescu, R.; Bild, V.; Melnic, S.; Tamba, B.I. Medicinal plants of the family lamiaceae in pain therapy: A review. Pain Res. Manag., 2018, 2018, 7801543.
[http://dx.doi.org/10.1155/2018/7801543] [PMID: 29854039]
[15]
Naghibi, F.; Mosaddegh, M.; Mohammadi Motamed, M.; Ghorbani, A. Labiatae family in folk medicine in Iran: From ethnobotany to pharmacology. Iran. J. Pharm. Res., 2010, 4(2), 63-79.
[16]
Michel, J.; Abd Rani, N.Z.; Husain, K. A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Front. Pharmacol., 2020, 11, 852.
[http://dx.doi.org/10.3389/fphar.2020.00852] [PMID: 32581807]
[17]
Hastings, J.; Owen, G.; Dekker, A.; Ennis, M.; Kale, N.; Muthukrishnan, V.; Turner, S.; Swainston, N.; Mendes, P.; Steinbeck, C. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res., 2016, 44(D1), D1214-D1219.
[http://dx.doi.org/10.1093/nar/gkv1031] [PMID: 26467479]
[18]
Pence, H.E.; Williams, A. ChemSpider: An online chemical information resource. J. Chem. Educ., 2010, 87(11), 1123-1124.
[http://dx.doi.org/10.1021/ed100697w]
[19]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[20]
Sterling, T.; Irwin, J.J. ZINC 15--Ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[http://dx.doi.org/10.1021/acs.jcim.5b00559] [PMID: 26479676]
[21]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[22]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[23]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[24]
Laskowski, R.; JacBpDska, J.; Pravda, L.; Vareková, R.; Thornton, J. PDBsum: Structural summaries of PDB entries. Protein Science : A Publication of the Protein Society, 2018, 27, 129-134.
[25]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[26]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[27]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[28]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[29]
Huang, J.; MacKerell, A.D., Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem., 2013, 34(25), 2135-2145.
[http://dx.doi.org/10.1002/jcc.23354] [PMID: 23832629]
[30]
Vanommeslaeghe, K.; MacKerell, A.D., Jr Automation of the CHARMM general force field (CGenFF) I: Bond perception and atom typing. J. Chem. Inf. Model., 2012, 52(12), 3144-3154.
[http://dx.doi.org/10.1021/ci300363c] [PMID: 23146088]
[31]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[32]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[33]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[34]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[35]
Othman, H.; Bouslama, Z.; Brandenburg, J-T.; da Rocha, J.; Hamdi, Y.; Ghedira, K.; Srairi-Abid, N.; Hazelhurst, S. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Biochem. Biophys. Res. Commun., 2020, 527(3), 702-708.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.028] [PMID: 32410735]
[36]
Chen, J.; Wu, F.; Lin, D.; Kong, W.; Cai, X.; Yang, J.; Sun, X.; Cao, P. Rational optimization of a human neutralizing antibody of SARS-CoV-2. Comput. Biol. Med., 2021, 135, 104550.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104550] [PMID: 34147856]
[37]
Teli, D.M.; Shah, M.B.; Chhabria, M.T. In silico Screening of natural compounds as potential inhibitors of SARS-CoV-2 main protease and spike RBD: Targets for COVID-19. Front. Mol. Biosci., 2021, 7(429), 599079.
[http://dx.doi.org/10.3389/fmolb.2020.599079] [PMID: 33542917]
[38]
Farouk, A-E.; Baig, M.H.; Khan, M.I.; Park, T.; Alotaibi, S.S.; Dong, J-J. Screening of inhibitors against SARS-CoV-2 spike protein and their capability to block the viral entry mechanism: A viroinformatics study. Saudi J. Biol. Sci., 2021, 28(6), 3262-3269.
[http://dx.doi.org/10.1016/j.sjbs.2021.02.066] [PMID: 33654454]
[39]
Dhasmana, A.; Kashyap, V.K.; Dhasmana, S.; Kotnala, S.; Haque, S.; Ashraf, G.M.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Neutralization of SARS-CoV-2 spike protein via natural compounds: A multilayered high throughput virtual screening approach. Curr. Pharm. Des., 2020, 26(41), 5300-5309.
[http://dx.doi.org/10.2174/1381612826999200820162937] [PMID: 32867645]
[40]
Chandel, V.; Sharma, P.P.; Raj, S.; Choudhari, R.; Rathi, B.; Kumar, D. Structure-based drug repurposing for targeting Nsp9 replicase and spike proteins of severe acute respiratory syndrome coronavirus 2. J. Biomol. Struct. Dyn., 2022, 40(1), 249-262.
[http://dx.doi.org/10.1080/07391102.2020.1811773] [PMID: 32838660]
[41]
Jang, W.D.; Jeon, S. Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. 2021, 118(30)e2024302118
[42]
Lim, C.T.; Tan, K.W.; Wu, M.; Ulferts, R.; Armstrong, L.A.; Ozono, E.; Drury, L.S.; Milligan, J.C.; Zeisner, T.U.; Zeng, J.; Weissmann, F.; Canal, B.; Bineva-Todd, G.; Howell, M.; O'Reilly, N.; Beale, R.; Kulathu, Y.; Labib, K. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp3 papain-like protease. 2021, 478(13), 2517-2531.
[http://dx.doi.org/10.1042/BCJ20210244]
[43]
Kandeel, M.; Al-Nazawi, M. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci., 2020, 251, 117627.
[http://dx.doi.org/10.1016/j.lfs.2020.117627] [PMID: 32251634]
[44]
Alibakhshi, A.; Ranjbar, M.M.; Javanmard, S.H.; Yarian, F.; Ahangarzadeh, S. Virtual Screening for the identification of potential candidate molecules against envelope (E) and membrane (M) proteins of SARS-CoV-2. J. Comput. Biophy. Chem., 2021, 20(03), 209-224.
[http://dx.doi.org/10.1142/S2737416521500083]

© 2024 Bentham Science Publishers | Privacy Policy