Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Oral Candidiasis and Novel Therapeutic Strategies: Antifungals, Phytotherapy, Probiotics, and Photodynamic Therapy

Author(s): Maria Contaldo*, Dario Di Stasio, Antonio Romano, Fausto Fiori, Fedora Della Vella, Cosimo Rupe, Carlo Lajolo, Massimo Petruzzi, Rosario Serpico and Alberta Lucchese

Volume 20, Issue 5, 2023

Published on: 22 June, 2022

Page: [441 - 456] Pages: 16

DOI: 10.2174/1567201819666220418104042

Price: $65

Abstract

Oral candidiasis is an opportunistic infection of the oral mucosa sustained by fungi of the genus Candida. Various Candida species, with a predominance of C. albicans, normally a saprophyte of the oral cavity, may become virulent and infect the oral mucosa with variegated clinical presentation, in case of imbalance of the oral microbiota, the presence of local predisposing factors and systemic conditions that weaken the immune system. Conventionally, oral candidiasis eradication is done with the help of antifungal drugs. However, the growing phenomena of drug resistance and the increase in infections sustained by non-albicans species being less responsive to common antifungals have orientied researches towards the experimentation of alternative therapies. The present review considered the most promising alternative therapeutic proposals. The use of plant derivatives with phytotherapy is a promising option, such as probiotics, to rebalance the oral microbiota in case of dysbiosis. Finally, antimicrobial photodynamic therapy (aPDT), with highly selective fungicidal activity and free of side effects, is also being studied as a powerful alternative to drug administration. All these therapies are alternatives or supportive to the conventional treatment of recurrent and non-drug-responsive forms of oral candidiasis. However, further studies are needed to define the most active compounds, the efficacy of the therapies compared with the conventional ones, and the planning of regulated and standardized protocols.

Keywords: Oral candidiasis, denture stomatitis, photodynamic therapy, phytotherapy, antifungals, probiotics, mycobiome, microbiota.

Next »
Graphical Abstract
[1]
Petruzzi, M.; Della Vella, F.; Cassandro, A.; Mosca, A.; Di Comite, M.; Contaldo, M.; Grassi, F.R.; Lauritano, D. Dorsal tongue porphyrin autofluorescence and Candida saprophytism: A prospective observational study. PLoS One, 2019, 14(9), e0223072.
[http://dx.doi.org/10.1371/journal.pone.0223072] [PMID: 31557235]
[2]
Salerno, C.; Pascale, M.; Contaldo, M.; Esposito, V.; Busciolano, M.; Milillo, L.; Guida, A.; Petruzzi, M.; Serpico, R. Candida-associated denture stomatitis. Med. Oral Patol. Oral Cir. Bucal, 2011, 16(2), e139-e143.
[http://dx.doi.org/10.4317/medoral.16.e139] [PMID: 20711156]
[3]
Contaldo, M.; Boccellino, M.; Zannini, G.; Romano, A.; Sciarra, A.; Sacco, A.; Settembre, G.; Coppola, M.; Di Carlo, A.; D’Angelo, L.; Inchingolo, F.; Feola, A.; Di Domenico, M. Sex hormones and inflammation role in oral cancer progression: A molecular and biological point of view. J. Oncol., 2020, 2020, 9587971.
[http://dx.doi.org/10.1155/2020/9587971] [PMID: 32684934]
[4]
Contaldo, M.; Romano, A.; Mascitti, M.; Fiori, F.; Della Vella, F.; Serpico, R.; Santarelli, A. Association between denture Stomatitis, Candida species and diabetic status. J. Biol. Regul. Homeost. Agents, 2019, 33(3)(Suppl. 1), 35-41.
[PMID: 31538448]
[5]
Paoletti, I.; Fusco, A.; Grimaldi, E.; Perillo, L.; Coretti, L.; Di Domenico, M.; Cozza, V.; Contaldo, M.; Serpico, R.; Guida, A.; Donnarumma, G. Assessment of host defence mechanisms induced by Candida species. Int. J. Immunopathol. Pharmacol., 2013, 26(3), 663-672.
[http://dx.doi.org/10.1177/039463201302600309] [PMID: 24067462]
[6]
Di Domenico, M.; Pinto, F.; Quagliuolo, L.; Contaldo, M.; Settembre, G.; Romano, A.; Coppola, M.; Ferati, K.; Bexheti-Ferati, A.; Sciarra, A.; Nicoletti, G.F.; Ferraro, G.A.; Boccellino, M. The role of oxidative stress and hormones in controlling obesity. Front. Endocrinol., 2019, 10, 540.
[http://dx.doi.org/10.3389/fendo.2019.00540]
[7]
Castillo, G.D.V.; Blanc, S.L.; Sotomayor, C.E.; Azcurra, A.I. Study of virulence factor of Candida species in oral lesions and its association with potentially malignant and malignant lesions. Arch. Oral Biol., 2018, 91, 35-41.
[http://dx.doi.org/10.1016/j.archoralbio.2018.02.012] [PMID: 29656214]
[8]
Pannone, G.; Santoro, A.; Carinci, F.; Bufo, P.; Papagerakis, S.M.; Rubini, C.; Campisi, G.; Giovannelli, L.; Contaldo, M.; Serpico, R.; Mazzotta, M.; Lo Muzio, L. Double demonstration of oncogenic high risk human Papilloma virus DNA and HPV-E7 protein in oral cancers. Int. J. Immunopathol. Pharmacol., 2011, 24(2)(Suppl.), 95-101.
[http://dx.doi.org/10.1177/03946320110240S217] [PMID: 21781453]
[9]
Karpiński, T.M.; Ożarowski, M.; Seremak-Mrozikiewicz, A.; Wolski, H.; Adamczak, A. Plant preparations and compounds with activities against biofilms formed by Candida spp. J. Fungi (Basel), 2021, 7(5), 360.
[http://dx.doi.org/10.3390/jof7050360] [PMID: 34063007]
[10]
Ciurea, C.N.; Kosovski, I-B.; Mare, A.D.; Toma, F.; Pintea-Simon, I.A.; Man, A. Candida and candidiasis-opportunism versus pathogenicity: A review of the virulence traits. Microorganisms, 2020, 8(6), 857.
[http://dx.doi.org/10.3390/microorganisms8060857] [PMID: 32517179]
[11]
Moran, G.; Coleman, D.; Sullivan, D. An introduction to the medically important Candida species. Candida and Candidiasis, 2nd ed; Wiley: Hoboken, NJ, USA, 2012, pp. 11-25.
[12]
Altarawneh, S.; Bencharit, S.; Mendoza, L.; Curran, A.; Barrow, D.; Barros, S.; Preisser, J.; Loewy, Z.G.; Gendreau, L.; Offenbacher, S. Clinical and histological findings of denture stomatitis as related to intraoral colonization patterns of Candida albicans, salivary flow, and dry mouth. J. Prosthodont., 2013, 22(1), 13-22.
[http://dx.doi.org/10.1111/j.1532-849X.2012.00906.x] [PMID: 23107189]
[13]
Akpan, A.; Morgan, R. Oral candidiasis. Postgrad. Med. J., 2002, 78(922), 455-459.
[http://dx.doi.org/10.1136/pmj.78.922.455] [PMID: 12185216]
[14]
Serpico, R.; Liguori, G. La Candidosi Orale; Testo Atlante: Padova, Italy, 2012.
[15]
Lan, C.Y.; Newport, G.; Murillo, L.A.; Jones, T.; Scherer, S.; Davis, R.W.; Agabian, N. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc. Natl. Acad. Sci. USA, 2002, 99(23), 14907-14912.
[http://dx.doi.org/10.1073/pnas.232566499] [PMID: 12397174]
[16]
Alby, K.; Bennett, R.J. Sexual reproduction in the Candida clade: Cryptic cycles, diverse mechanisms, and alternative functions. Cell. Mol. Life Sci., 2010, 67(19), 3275-3285.
[http://dx.doi.org/10.1007/s00018-010-0421-8] [PMID: 20552251]
[17]
Snydman, D.R. Shifting patterns in the epidemiology of nosocomial Candida infections. Chest, 2003, 123(5)(Suppl.), 500S-503S.
[http://dx.doi.org/10.1378/chest.123.5_suppl.500S] [PMID: 12740235]
[18]
Gonçalves, R.H.; Miranda, E.T.; Zaia, J.E.; Giannini, M.J. Species diversity of yeast in oral colonization of insulin-treated diabetes mellitus patients. Mycopathologia, 2006, 162(2), 83-89.
[http://dx.doi.org/10.1007/s11046-006-0038-5] [PMID: 16897585]
[19]
Martinez, R.F.; Jaimes-Aveldañez, A.; Hernández-Pérez, F.; Arenas, R.; Miguel, G.F. Oral Candida spp carriers: Its prevalence in patients with type 2 diabetes mellitus. An. Bras. Dermatol., 2013, 88(2), 222-225.
[http://dx.doi.org/10.1590/S0365-05962013000200006] [PMID: 23739717]
[20]
Sharma, U.; Patel, K.; Shah, V.; Sinha, S.; Rathore, V.P.S. Isolation and speciation of Candida in type ii diabetic patients using CHROM Agar: A microbial study. J. Clin. Diagn. Res., 2017, 11(8), DC09-DC11.
[http://dx.doi.org/10.7860/JCDR/2017/24864.10394] [PMID: 28969120]
[21]
Hager, C.L.; Ghannoum, M.A. The mycobiome in HIV. Curr. Opin. HIV AIDS, 2018, 13(1), 69-72.
[http://dx.doi.org/10.1097/COH.0000000000000432] [PMID: 29028668]
[22]
Annavajhala, M.K.; Khan, S.D.; Sullivan, S.B.; Shah, J.; Pass, L.; Kister, K.; Kunen, H.; Chiang, V.; Monnot, G.C.; Ricupero, C.L.; Mazur, R.A.; Gordon, P.; de Jong, A.; Wadhwa, S.; Yin, M.T.; Demmer, R.T.; Uhlemann, A.C. Oral and gut microbial diversity and immune regulation in patients with HIV on antiretroviral therapy. MSphere, 2020, 5(1), e00798-e19.
[http://dx.doi.org/10.1128/mSphere.00798-19] [PMID: 32024712]
[23]
Sodré, C.S.; Rodrigues, P.M.G.; Vieira, M.S.; Marques Paes da Silva, A.; Gonçalves, L.S.; Ribeiro, M.G.; de Carvalho Ferreira, D. Oral mycobiome identification in atopic dermatitis, leukemia, and HIV patients - a systematic review. J. Oral Microbiol., 2020, 12(1), 1807179.
[http://dx.doi.org/10.1080/20002297.2020.1807179] [PMID: 32944157]
[24]
Dubois, V.A.; González, M.I.; Martínez, M.E.; Fedelli, L.; Lamas, S.; D, Eramo L.R.; Squassi, A.F.; Sánchez, G.A.; Salgado, P.; Gliosca, L.A.; Molgatini, S.L. Enzyme production by Candida albicans and Candida dubliniensis in periodontal HIV-positive patients receiving and not receiving antiretroviral therapy. Acta Odontol. Latinoam., 2020, 33(2), 104-111.
[http://dx.doi.org/10.54589/aol.33/2/104] [PMID: 32920612]
[25]
Sturtevant, J.; Calderone, R. Candida albicans adhesins: Biochemical aspects and virulence. Rev. Iberoam. Micol., 1997, 14(3), 90-97.
[PMID: 17655381]
[26]
Kozik, A.; Karkowska-Kuleta, J.; Zajac, D.; Bochenska, O.; Kedracka-Krok, S.; Jankowska, U.; Rapala-Kozik, M. Fibronectin-, vitronectin- and laminin-binding proteins at the cell walls of Candida parapsilosis and Candida tropicalis pathogenic yeasts. BMC Microbiol., 2015, 15, 197.
[http://dx.doi.org/10.1186/s12866-015-0531-4] [PMID: 26438063]
[27]
Holmes, A.R.; Rodrigues, E.; van der Wielen, P.; Lyons, K.M.; Haigh, B.J.; Wheeler, T.T.; Dawes, P.J.; Cannon, R.D. Adherence of Candida albicans to silicone is promoted by the human salivary protein SPLUNC2/PSP/BPIFA2. Mol. Oral Microbiol., 2014, 29(2), 90-98.
[http://dx.doi.org/10.1111/omi.12048] [PMID: 24506943]
[28]
Mba, I.E.; Nweze, E.I. Mechanism of Candida pathogenesis: Revisiting the vital drivers. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(10), 1797-1819.
[http://dx.doi.org/10.1007/s10096-020-03912-w] [PMID: 32372128]
[29]
Henriques, M.; Williams, D. Pathogenesis and virulence of Candida albicans and Candida glabrata. Pathogens, 2020, 9(9), E752.
[http://dx.doi.org/10.3390/pathogens9090752] [PMID: 32947768]
[30]
Becherelli, M.; Tao, J.; Ryder, N.S. Involvement of heat shock proteins in Candida albicans biofilm formation. J. Mol. Microbiol. Biotechnol., 2013, 23(6), 396-400.
[http://dx.doi.org/10.1159/000351619] [PMID: 23942459]
[31]
Pereira, R.; Dos Santos Fontenelle, R.O.; de Brito, E.H.S.; de Morais, S.M. Biofilm of Candida albicans: Formation, regulation and resistance. J. Appl. Microbiol., 2021, 131(1), 11-22.
[http://dx.doi.org/10.1111/jam.14949] [PMID: 33249681]
[32]
Bachtiar, E.W.; Bachtiar, B.M. Relationship between Candida albicans and Streptococcus mutans in early childhood caries, evaluated by quantitative PCR. F1000 Res., 2018, 7, 1645.
[http://dx.doi.org/10.12688/f1000research.16275.2] [PMID: 30450201]
[33]
Giugliano, D.; d’Apuzzo, F.; Majorana, A.; Campus, G.; Nucci, F.; Flores-Mir, C.; Perillo, L. Influence of occlusal characteristics, food intake and oral hygiene habits on dental caries in adolescents: A cross-sectional study. Eur. J. Paediatr. Dent., 2018, 19(2), 95-100.
[PMID: 29790772]
[34]
Pattanaik, S.; Vikas, B.V.J.; Pattanaik, B.; Sahu, S.; Lodam, S. Denture stomatitis: A literature review. J. Indian Acad. Oral Med. Radiol., 2010, 22, 136-140.
[http://dx.doi.org/10.5005/jp-journals-10011-1032]
[35]
Condal, L.; Castillo, G.; Morillas, V.; Mora, V.; Carrascosa, J.M. Median rhomboid glossitis associated with Candida infection in a woman treated with ixekizumab. Eur. J. Dermatol., 2020. [Epub ahead of print].
[http://dx.doi.org/10.1684/ejd.2020.3724] [PMID: 32301726]
[36]
Bassetti, M.; Righi, E.; Ansaldi, F.; Merelli, M.; Trucchi, C.; De Pascale, G.; Diaz-Martin, A.; Luzzati, R.; Rosin, C.; Lagunes, L.; Trecarichi, E.M.; Sanguinetti, M.; Posteraro, B.; Garnacho-Montero, J.; Sartor, A.; Rello, J.; Rocca, G.D.; Antonelli, M.; Tumbarello, M. A multicenter study of septic shock due to candidemia: Outcomes and predictors of mortality. Intensive Care Med., 2014, 40(6), 839-845.
[http://dx.doi.org/10.1007/s00134-014-3310-z] [PMID: 24807083]
[37]
Nami, S.; Aghebati-Maleki, A.; Morovati, H.; Aghebati-Maleki, L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed. Pharmacother., 2019, 110, 857-868.
[http://dx.doi.org/10.1016/j.biopha.2018.12.009] [PMID: 30557835]
[38]
Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; Zaoutis, T.E.; Sobel, J.D. Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of America. Clin. Infect. Dis., 2016, 62(4), e1-e50.
[http://dx.doi.org/10.1093/cid/civ933] [PMID: 26679628]
[39]
Mondal, R.K.; Singhi, S.C.; Chakrabarti, A.M.J. Randomized comparison between fluconazole and itraconazole for the treatment of candidemia in a pediatric intensive care unit: A preliminary study. Pediatr. Crit. Care Med., 2004, 5(6), 561-565.
[http://dx.doi.org/10.1097/01.PCC.0000144712.29127.81] [PMID: 15530193]
[40]
Sardaro, N.; Della Vella, F.; Incalza, M.A.; D.I., Stasio D.; Lucchese, A.; Contaldo, M.; Laudadio, C.; Petruzzi, M. Oxidative stress and oral mucosal diseases: An overview. In Vivo, 2019, 33(2), 289-296.
[http://dx.doi.org/10.21873/invivo.11474] [PMID: 30804105]
[41]
Scorzoni, L.; Fuchs, B.B.; Junqueira, J.C.; Mylonakis, E. Current and promising pharmacotherapeutic options for candidiasis. Expert Opin. Pharmacother., 2021, 22(7), 867-887.
[http://dx.doi.org/10.1080/14656566.2021.1873951] [PMID: 33538201]
[42]
Lohner, K. Antimicrobial mechanisms: A sponge against fungal infections. Nat. Chem. Biol., 2014, 10(6), 1-412.
[43]
Johnson, M.D. Antifungals in clinical use and the pipeline. Infect. Dis. Clin. North Am., 2021, 35(2), 341-371.
[http://dx.doi.org/10.1016/j.idc.2021.03.005] [PMID: 34016281]
[44]
Denning, D.W. Echinocandins: A new class of antifungal. J. Antimicrob. Chemother., 2002, 49(6), 889-891.
[http://dx.doi.org/10.1093/jac/dkf045] [PMID: 12039879]
[45]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[46]
Moccia, S.; Nucci, L.; Spagnuolo, C.; d’Apuzzo, F.; Piancino, M.G.; Minervini, G. Polyphenols as potential agents in the management of temporomandibular disorders. Appl. Sci. (Basel), 2020, 10, 5305.
[http://dx.doi.org/10.3390/app10155305]
[47]
Rafieian-Kopaei, M.; Bahmani, M.; Sepahvand, A.; Hassanzadazar, H.; Abaszadeh, A.; Rafieian, R.; Soroush, S. Candidiasis phytotherapy: An overview of the most important medicinal plants affecting the Candida albicans. J. Chem. Pharm. Sci., 2016, 9, 1283-1293.
[48]
Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Phenylpropanoids of plant origin as inhibitors of biofilm formation by Candida albicans. J. Microbiol. Biotechnol., 2014, 24(9), 1216-1225.
[http://dx.doi.org/10.4014/jmb.1402.02056] [PMID: 24851813]
[49]
Teodoro, G.R.; Gontijo, A.V.L.; Salvador, M.J.; Tanaka, M.H.; Brighenti, F.L.; Delbem, A.C.B.; Delbem, Á.C.B.; Koga-Ito, C.Y. Effects of acetone fraction from Buchenavia tomentosa aqueous extract and gallic acid on Candida albicans biofilms and virulence factors. Front. Microbiol., 2018, 9, 647.
[http://dx.doi.org/10.3389/fmicb.2018.00647] [PMID: 29675005]
[50]
Dalleau, S.; Cateau, E.; Bergès, T.; Berjeaud, J.M.; Imbert, C. In vitro activity of terpenes against Candida biofilms. Int. J. Antimicrob. Agents, 2008, 31(6), 572-576.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.01.028] [PMID: 18440786]
[51]
Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling, 2013, 29(1), 87-96.
[http://dx.doi.org/10.1080/08927014.2012.749398] [PMID: 23216018]
[52]
Ali, I.; Khan, F.G.; Suri, K.A.; Gupta, B.D.; Satti, N.K.; Dutt, P.; Afrin, F.; Qazi, G.N.; Khan, I.A. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L. Ann. Clin. Microbiol. Antimicrob., 2010, 9, 7.
[http://dx.doi.org/10.1186/1476-0711-9-7] [PMID: 20128889]
[53]
Hu, D.D.; Zhang, R.L.; Zou, Y.; Zhong, H.; Zhang, E.S.; Luo, X.; Wang, Y.; Jiang, Y.Y. The structure-activity relationship of pterostilbene against Candida albicans biofilms. Molecules, 2017, 22(3), 360.
[http://dx.doi.org/10.3390/molecules22030360] [PMID: 28264443]
[54]
Bakkiyaraj, D.; Nandhini, J.R.; Malathy, B.; Pandian, S.K. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling, 2013, 29(8), 929-937.
[http://dx.doi.org/10.1080/08927014.2013.820825] [PMID: 23906229]
[55]
Feldman, M.; Tanabe, S.; Howell, A.; Grenier, D. Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells. BMC Complement. Altern. Med., 2012, 12, 6.
[http://dx.doi.org/10.1186/1472-6882-12-6] [PMID: 22248145]
[56]
Gabriela, N.; Rosa, A.M.; Catiana, Z.I.; Soledad, C.; Mabel, O.R.; Esteban, S.J.; Veronica, B.; Daniel, W.; Ines, I.M. The effect of Zuccagnia punctata, an Argentine medicinal plant, on virulence factors from Candida species. Nat. Prod. Commun., 2014, 9(7), 933-936.
[http://dx.doi.org/10.1177/1934578X1400900712] [PMID: 25230496]
[57]
Messier, C.; Grenier, D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses, 2011, 54(6), e801-e806.
[http://dx.doi.org/10.1111/j.1439-0507.2011.02028.x] [PMID: 21615543]
[58]
Manoharan, R.K.; Lee, J.H.; Kim, Y.G.; Kim, S.I.; Lee, J. Inhibitory effects of the essential oils α-longipinene and linalool on biofilm formation and hyphal growth of Candida albicans. Biofouling, 2017, 33(2), 143-155.
[http://dx.doi.org/10.1080/08927014.2017.1280731] [PMID: 28155334]
[59]
Popović V.; Stojković D.; Nikolić M.; Heyerick, A.; Petrović S.; Soković M.; Niketić M. Extracts of three Laserpitium L. species and their principal components laserpitine and sesquiterpene lactones inhibit microbial growth and biofilm formation by oral Candida isolates. Food Funct., 2015, 6(4), 1205-1211.
[http://dx.doi.org/10.1039/C5FO00066A] [PMID: 25720441]
[60]
Ivanov, M.; Kannan, A.; Stojkovi’c, D.S. Glamoˇclija, J.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sanglard, D.; Sokovi’c, M. Camphor and eucalyptol-anti candidal spectrum, antivirulence effect, efflux pumps interference and cytotoxicity. Int. J. Mol. Sci., 2021, 22, 483.
[http://dx.doi.org/10.3390/ijms22020483]
[61]
Proškovcová, M.; Čonková, E.; Váczi, P.; Harčárová, M.; Malinovská, Z. Antibiofilm activity of selected plant essential oils from the Lamiaceae family against Candida albicans clinical isolates. Ann. Agric. Environ. Med., 2021, 28(2), 260-266.
[http://dx.doi.org/10.26444/aaem/135892] [PMID: 34184508]
[62]
Touil, H.F.Z.; Boucherit, K.; Boucherit-Otmani, Z.; Khoder, G.; Madkour, M.; Soliman, S.S.M. Optimum inhibition of amphotericin- B-resistant Candida albicans strain in single- and mixed-species biofilms by Candida and non-Candida terpenoids. Biomolecules, 2020, 10, 342.
[http://dx.doi.org/10.3390/biom10020342]
[63]
Xie, C.; Sun, L.; Meng, L.; Wang, M.; Xu, J.; Bartlam, M.; Guo, Y. Sesquiterpenes from Carpesium macrocephalum inhibit Candida albicans biofilm formation and dimorphism. Bioorg. Med. Chem. Lett., 2015, 25(22), 5409-5411.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.013] [PMID: 26394911]
[64]
Kipanga, P.N.; Liu, M.; Panda, S.K.; Mai, A.H.; Veryser, C.; Van Puyvelde, L.; De Borggraeve, W.M.; Van Dijck, P.; Matasyoh, J.; Luyten, W. Biofilm inhibiting properties of compounds from the leaves of Warburgia ugandensis sprague subsp ugandensis against Candida and staphylococcal biofilms. J. Ethnopharmacol., 2020, 248, 112352.
[http://dx.doi.org/10.1016/j.jep.2019.112352] [PMID: 31676401]
[65]
Cao, Y.; Dai, B.; Wang, Y.; Huang, S.; Xu, Y.; Cao, Y.; Gao, P.; Zhu, Z.; Jiang, Y. In vitro activity of baicalein against Candida albicans biofilms. Int. J. Antimicrob. Agents, 2008, 32(1), 73-77.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.01.026] [PMID: 18374543]
[66]
Abirami, G.; Alexpandi, R.; Durgadevi, R.; Kannappan, A.; Veera Ravi, A. Inhibitory effect of morin against Candida albicans pathogenicity and virulence factor production: An in vitro and in vivo approaches. Front. Microbiol., 2020, 11, 561298.
[http://dx.doi.org/10.3389/fmicb.2020.561298] [PMID: 33193145]
[67]
Dal Piaz, F.; Bader, A.; Malafronte, N.; D’Ambola, M.; Petrone, A.M.; Porta, A.; Ben Hadda, T.; De Tommasi, N.; Bisio, A.; Severino, L. Phytochemistry of compounds isolated from the leaf-surface extract of Psiadia punctulata (DC.) Vatke growing in Saudi Arabia. Phytochemistry, 2018, 155, 191-202.
[http://dx.doi.org/10.1016/j.phytochem.2018.08.003] [PMID: 30149245]
[68]
Patel, M.; Srivastava, V.; Ahmad, A. Dodonaea viscosa var angustifolia derived 5,6,8-trihydroxy-7,4′ dimethoxy flavone inhibits ergosterol synthesis and the production of hyphae and biofilm in Candida albicans. J. Ethnopharmacol., 2020, 259, 112965.
[http://dx.doi.org/10.1016/j.jep.2020.112965] [PMID: 32413575]
[69]
Andrade, G.; Orlando, H.C.S.; Scorzoni, L.; Pedroso, R.S.; Abrão, F.; Carvalho, M.T.M.; Veneziani, R.C.S.; Ambrósio, S.R.; Bastos, J.K.; Mendes-Giannini, M.J.S.; Martins, C.H.G.; Pires, R.H. Brazilian Copaifera species: Antifungal activity against clinically relevant Candida Species, cellular target, and in vivo toxicity. J. Fungi (Basel), 2020, 6(3), 153.
[http://dx.doi.org/10.3390/jof6030153] [PMID: 32872100]
[70]
Cretton, S.; Dorsaz, S.; Azzollini, A.; Favre-Godal, Q.; Marcourt, L.; Ebrahimi, S.N.; Voinesco, F.; Michellod, E.; Sanglard, D.; Gindro, K.; Wolfender, J.L.; Cuendet, M.; Christen, P. Antifungal quinoline alkaloids from Waltheria indica. J. Nat. Prod., 2016, 79(2), 300-307.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00896] [PMID: 26848627]
[71]
Kim, H-R.; Eom, Y-B. Antifungal and anti-biofilm effects of 6-shogaol against Candida auris. J. Appl. Microbiol., 2021, 130(4), 1142-1153.
[PMID: 32981148]
[72]
Feldman, M.; Sionov, R.V.; Mechoulam, R.; Steinberg, D. Anti-biofilm activity of cannabidiol against Candida albicans. Microorganisms, 2021, 9(2), 441.
[http://dx.doi.org/10.3390/microorganisms9020441] [PMID: 33672633]
[73]
Janeczko, M. Masłyk, M.; Kubiński, K.; Golczyk, H. Emodin, a natural inhibitor of protein kinase CK2, suppresses growth, hyphal development, and biofilm formation of Candida albicans. Yeast, 2017, 34(6), 253-265.
[http://dx.doi.org/10.1002/yea.3230] [PMID: 28181315]
[74]
Cheng, A.; Sun, L.; Wu, X.; Lou, H. The inhibitory effect of a macrocyclic bisbibenzyl riccardin D on the biofilms of Candida albicans. Biol. Pharm. Bull., 2009, 32(8), 1417-1421.
[http://dx.doi.org/10.1248/bpb.32.1417] [PMID: 19652383]
[75]
Lemos, A.S.O.; Florêncio, J.R.; Pinto, N.C.C.; Campos, L.M.; Silva, T.P.; Grazul, R.M.; Pinto, P.F.; Tavares, G.D.; Scio, E.; Apolônio, A.C.M.; Melo, R.C.N.; Fabri, R.L. Antifungal activity of the natural Coumarin scopoletin against planktonic cells and biofilms from a multidrug-resistant Candida tropicalis strain. Front. Microbiol., 2020, 11, 1525.
[http://dx.doi.org/10.3389/fmicb.2020.01525] [PMID: 32733416]
[76]
Barros Cota, B.; Batista Carneiro de Oliveira, D.; Carla Borges, T.; Cristina Catto, A.; Valverde Serafim, C.; Rogelis Aquiles Rodrigues, A.; Kohlhoff, M.; Leomar Zani, C.; Assunção Andrade, A. Antifungal activity of extracts and purified saponins from the rhizomes of Chamaecostus cuspidatus against Candida and Trichophyton species. J. Appl. Microbiol., 2021, 130(1), 61-75.
[http://dx.doi.org/10.1111/jam.14783] [PMID: 32654270]
[77]
Said, M.M.; Watson, C.; Grando, D. Garlic alters the expression of putative virulence factor genes SIR2 and ECE1 in vulvovaginal C. albicans isolates. Sci. Rep., 2020, 10(1), 3615.
[http://dx.doi.org/10.1038/s41598-020-60178-0] [PMID: 32107396]
[78]
Del Rio, M.; de la Canal, L.; Pinedo, M.; Mora-Montes, H.M.; Regente, M. Effects of the binding of a Helianthus annuus lectin to Candida albicans cell wall on biofilm development and adhesion to host cells. Phytomedicine, 2019, 58, 152875.
[http://dx.doi.org/10.1016/j.phymed.2019.152875] [PMID: 30884454]
[79]
Kaomongkolgit, R.; Jamdee, K.; Chaisomboon, N. Antifungal activity of alpha-mangostin against Candida albicans. J. Oral Sci., 2009, 51(3), 401-406.
[http://dx.doi.org/10.2334/josnusd.51.401] [PMID: 19776506]
[80]
Vasconcelos, L.C.; Sampaio, M.C.; Sampaio, F.C.; Higino, J.S. Use of Punica granatum as an antifungal agent against Candidosis associated with denture stomatitis. Mycoses, 2003, 46(5-6), 192-196.
[http://dx.doi.org/10.1046/j.1439-0507.2003.00884.x] [PMID: 12801361]
[81]
Bakhshi, M.; Taheri, J.B.; Shabestari, S.B.; Tanik, A.; Pahlevan, R. Comparison of therapeutic effect of aqueous extract of garlic and nystatin mouthwash in denture stomatitis. Gerodontology, 2012, 29(2), e680-e684.
[http://dx.doi.org/10.1111/j.1741-2358.2011.00544.x] [PMID: 22126338]
[82]
Pinelli, L.A.; Montandon, A.A.; Corbi, S.C.; Moraes, T.A.; Fais, L.M. Ricinus communis treatment of denture stomatitis in institutionalised elderly. J. Oral Rehabil., 2013, 40(5), 375-380.
[http://dx.doi.org/10.1111/joor.12039] [PMID: 23438045]
[83]
de Araújo, M.R.C.; Maciel, P.P.; Castellano, L.R.C.; Bonan, P.R.F.; Alves, D.D.N.; de Medeiros, A.C.D.; de Castro, R.D. Efficacy of essential oil of cinnamon for the treatment of oral candidiasis: A randomized trial. Spec. Care Dentist., 2021, 41(3), 349-357.
[http://dx.doi.org/10.1111/scd.12570] [PMID: 33475184]
[84]
Milillo, L.; Lo Muzio, L.; Carlino, P.; Serpico, R.; Coccia, E.; Scully, C. Candida-related denture stomatitis: A pilot study of the efficacy of an amorolfine antifungal varnish. Int. J. Prosthodont., 2005, 18(1), 55-59.
[PMID: 15754893]
[85]
Okonogi, S.; Phumat, P.; Khongkhunthian, S.; Suttiat, K.; Chaijareenont, P. Denture-soaking solution containing piper betle extract-loaded polymeric micelles; inhibition of Candida albicans, clinical study, and effects on denture base resin. Antibiotics (Basel), 2021, 10(4), 440.
[http://dx.doi.org/10.3390/antibiotics10040440] [PMID: 33920823]
[86]
Morelli, L.; Capurso, L. FAO/WHO guidelines on probiotics: 10 years later. J. Clin. Gastroenterol., 2012, 46(Suppl.), S1-S2.
[http://dx.doi.org/10.1097/MCG.0b013e318269fdd5] [PMID: 22955349]
[87]
Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.; Yu, W.H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol., 2010, 192(19), 5002-5017.
[http://dx.doi.org/10.1128/JB.00542-10] [PMID: 20656903]
[88]
Contaldo, M.; Itro, A.; Lajolo, C.; Gioco, G.; Inchingolo, F.; Serpico, R. Overview on osteoporosis, periodontitis and oral dysbiosis: The emerging role of oral microbiota. Appl. Sci. (Basel), 2020, 10, 6000.
[http://dx.doi.org/10.3390/app10176000]
[89]
Contaldo, M.; Fusco, A.; Stiuso, P.; Lama, S.; Gravina, A.G.; Itro, A.; Federico, A.; Itro, A.; Dipalma, G.; Inchingolo, F.; Serpico, R.; Donnarumma, G. Oral microbiota and salivary levels of oral pathogens in gastro-intestinal diseases: Current knowledge and exploratory study. Microorganisms, 2021, 9(5), 1064.
[http://dx.doi.org/10.3390/microorganisms9051064] [PMID: 34069179]
[90]
Contaldo, M.; Lucchese, A.; Lajolo, C.; Rupe, C.; Di Stasio, D.; Romano, A.; Petruzzi, M.; Serpico, R. The oral microbiota changes in orthodontic patients and effects on oral health: An overview. J. Clin. Med., 2021, 10(4), 780.
[http://dx.doi.org/10.3390/jcm10040780] [PMID: 33669186]
[91]
Lajolo, C.; Rupe, C.; Schiavelli, A.; Gioco, G.; Metafuni, E.; Contaldo, M.; Sica, S. Saprochaete clavata infection in immunosuppressed patients: Systematic review of cases and report of the first oral manifestation, focusing on differential diagnosis. Int. J. Environ. Res. Public Health, 2021, 18(5), 2385.
[http://dx.doi.org/10.3390/ijerph18052385] [PMID: 33804487]
[92]
Ribeiro, F.C.; Rossoni, R.D.; de Barros, P.P.; Santos, J.D.; Fugisaki, L.R.O.; Leão, M.P.V.; Junqueira, J.C. Action mechanisms of probiotics on Candida spp. and candidiasis prevention: An update. J. Appl. Microbiol., 2020, 129(2), 175-185.
[http://dx.doi.org/10.1111/jam.14511] [PMID: 31705713]
[93]
Aarti, C.; Khusro, A.; Varghese, R.; Arasu, M.V.; Agastian, P.; Al-Dhabi, N.A.; Ilavenil, S.; Choi, K.C. In vitro investigation on probiotic, anti-Candida, and antibiofilm properties of Lactobacillus pentosus strain LAP1. Arch. Oral Biol., 2018, 89, 99-106.
[http://dx.doi.org/10.1016/j.archoralbio.2018.02.014] [PMID: 29499562]
[94]
Jørgensen, M.R.; Kragelund, C.; Jensen, P.O.; Keller, M.K.; Twetman, S. Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro. J. Oral Microbiol., 2017, 9(1), 1274582.
[http://dx.doi.org/10.1080/20002297.2016.1274582] [PMID: 28326154]
[95]
Liao, H.; Liu, S.; Wang, H.; Su, H.; Liu, Z. Enhanced antifungal activity of bovine lactoferrin-producing probiotic Lactobacillus casei in the murine model of Vulvovaginal candidiasis. BMC Microbiol., 2019, 19(1), 7.
[http://dx.doi.org/10.1186/s12866-018-1370-x] [PMID: 30621597]
[96]
Orsi, C.F.; Sabia, C.; Ardizzoni, A.; Colombari, B.; Neglia, R.G.; Peppoloni, S.; Morace, G.; Blasi, E. Inhibitory effects of different lactobacilli on Candida albicans hyphal formation and biofilm development. J. Biol. Regul. Homeost. Agents, 2014, 28(4), 743-752.
[PMID: 25620183]
[97]
Ribeiro, F.C.; de Barros, P.P.; Rossoni, R.D.; Junqueira, J.C.; Jorge, A.O. Lactobacillus rhamnosus inhibits Candida albicans virulence factors in vitro and modulates immune system in Galleria mellonella. J. Appl. Microbiol., 2017, 122(1), 201-211.
[http://dx.doi.org/10.1111/jam.13324] [PMID: 27727499]
[98]
do Carmo, M.S.; Noronha, F.M.F.; Arruda, M.O.; Costa, E.P.S.; Bomfim, M.R.Q.; Monteiro, A.S.; Ferro, T.A.F.; Fernandes, E.S.; Girón, J.A.; Monteiro-Neto, V. Lactobacillus fermentum ATCC 23271 displays in vitro inhibitory activities against Candida spp. Front. Microbiol., 2016, 7, 1722.
[http://dx.doi.org/10.3389/fmicb.2016.01722] [PMID: 27833605]
[99]
Hu, L.; Mao, Q.; Zhou, P.; Lv, X.; Hua, H.; Yan, Z. Effects of Streptococcus salivarius K12 with nystatin on oral candidiasis-RCT. Oral Dis., 2019, 25(6), 1573-1580.
[http://dx.doi.org/10.1111/odi.13142] [PMID: 31177581]
[100]
Li, D.; Li, Q.; Liu, C.; Lin, M.; Li, X.; Xiao, X.; Zhu, Z.; Gong, Q.; Zhou, H. Efficacy and safety of probiotics in the treatment of Candida-associated stomatitis. Mycoses, 2014, 57(3), 141-146.
[http://dx.doi.org/10.1111/myc.12116] [PMID: 23952962]
[101]
Ishikawa, K.H.; Mayer, M.P.; Miyazima, T.Y.; Matsubara, V.H.; Silva, E.G.; Paula, C.R.; Campos, T.T.; Nakamae, A.E. A multispecies probiotic reduces oral Candida colonization in denture wearers. J. Prosthodont., 2015, 24(3), 194-199.
[http://dx.doi.org/10.1111/jopr.12198] [PMID: 25143068]
[102]
Doppalapudi, R.; Vundavalli, S.; Prabhat, M.P. Effect of probiotic bacteria on oral Candida in head- and neck-radiotherapy patients: A randomized clinical trial. J. Cancer Res. Ther., 2020, 16(3), 470-477.
[http://dx.doi.org/10.4103/jcrt.JCRT_334_18] [PMID: 32719253]
[103]
Xi, Y.; Ding, S.; Guo, J.; Ma, S.; Kong, X.; Pan, L. Observation of clinical effects of biostime probiotics on thrush. Zhongguo Weishengtaixue Zazhi, 2013, 25, 830-831.
[104]
Roselletti, E.; Sabbatini, S.; Ballet, N.; Perito, S.; Pericolini, E.; Blasi, E.; Mosci, P.; Cayzeele Decherf, A.; Monari, C.; Vecchiarelli, A. Saccharomyces cerevisiae CNCM I-3856 as a New Therapeutic agent against oropharyngeal Candidiasis. Front. Microbiol., 2019, 10, 1469.
[http://dx.doi.org/10.3389/fmicb.2019.01469] [PMID: 31354640]
[105]
Kunyeit, L.; Kurrey, N.K.; Anu-Appaiah, K.A.; Rao, R.P. Probiotic yeasts inhibit virulence of non-albicans candida species. MBio, 2019, 10(5), e02307-e02319.
[http://dx.doi.org/10.1128/mBio.02307-19] [PMID: 31615960]
[106]
Kunyeit, L. K A, A.A.; Rao, R.P. Application of probiotic yeasts on Candida species associated infection. J. Fungi (Basel), 2020, 6(4), 189.
[http://dx.doi.org/10.3390/jof6040189] [PMID: 32992993]
[107]
Rezende, S.B.; Campos, L.; Palma, L.F.; Tateno, R.Y.; Simões, A.; Macedo, M.C.; da Silva, R.L. Antimicrobial photodynamic therapy for recurrent herpes labialis in chronic graft-versus-host disease: A case report. Photodermatol. Photoimmunol. Photomed., 2021, 37(4), 321-323.
[http://dx.doi.org/10.1111/phpp.12655] [PMID: 33423329]
[108]
Donnarumma, G.; De Gregorio, V.; Fusco, A.; Farina, E.; Baroni, A.; Esposito, V.; Contaldo, M.; Petruzzi, M.; Pannone, G.; Serpico, R. Inhibition of HSV-1 replication by laser diode-irradiation: Possible mechanism of action. Int. J. Immunopathol. Pharmacol., 2010, 23(4), 1167-1176.
[http://dx.doi.org/10.1177/039463201002300420] [PMID: 21244765]
[109]
Biyiklioglu, I.; Ozturk, T.; Arslan, A.; Tuncel, K.; Ocakoglu, M.; Hosgor-Limoncu, F. Yurt, Synthesis and antimicrobial photodynamic activities of axially {4-[(1E)-3- oxo-3-(2-thienyl)prop-1-en-1-yl]phenoxy} groups substituted silicon phthalocyanine, subphthalocyanine on gram-positive and gram-negative bacteria. Dyes Pigments, 2019, 166, 149-158.
[http://dx.doi.org/10.1016/j.dyepig.2019.03.010]
[110]
Du, M.; Xuan, W.; Zhen, X.; He, L.; Lan, L.; Yang, S.; Wu, N.; Qin, J.; Zhao, R.; Qin, J.; Lan, J.; Lu, H.; Liang, C.; Li, Y.; R Hamblin, M.; Huang, L. Antimicrobial photodynamic therapy for oral Candida infection in adult AIDS patients: A pilot clinical trial. Photodiagn. Photodyn. Ther., 2021, 34, 102310.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102310] [PMID: 33901690]
[111]
Calzavara-Pinton, P.; Rossi, M.T.; Sala, R.; Venturini, M. Photodynamic antifungal chemotherapy. Photochem. Photobiol., 2012, 88(3), 512-522.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01107.x] [PMID: 22313493]
[112]
Scwingel, A.R.; Barcessat, A.R.; Núñez, S.C.; Ribeiro, M.S. Antimicrobial photodynamic therapy in the treatment of oral candidiasis in HIV-infected patients. Photomed. Laser Surg., 2012, 30(8), 429-432.
[http://dx.doi.org/10.1089/pho.2012.3225] [PMID: 22730912]
[113]
Romano, A.; Contaldo, M.; Della Vella, F.; Russo, D.; Lajolo, C.; Serpico, R.; Di Stasio, D. Topical toluidine blue-mediated photodynamic therapy for the treatment of oral lichen planus. J. Biol. Regul. Homeost. Agents, 2019, 33(3)(Suppl. 1), 27-33.
[PMID: 31538447]
[114]
Nastri, L.; Donnarumma, G.; Porzio, C.; De Gregorio, V.; Tufano, M.A.; Caruso, F.; Mazza, C.; Serpico, R. Effects of toluidine blue-mediated photodynamic therapy on periopathogens and periodontal biofilm: in vitro evaluation. Int. J. Immunopathol. Pharmacol., 2010, 23(4), 1125-1132.
[http://dx.doi.org/10.1177/039463201002300416] [PMID: 21244761]
[115]
Romano, A.; Di Stasio, D.; Gentile, E.; Petruzzi, M.; Serpico, R.; Lucchese, A. The potential role of photodynamic therapy in oral premalignant and malignant lesions: A systematic review. J. Oral Pathol. Med., 2021, 50(4), 333-344.
[http://dx.doi.org/10.1111/jop.13139] [PMID: 33217059]
[116]
Romano, A.; Di Stasio, D.; Lauritano, D.; Lajolo, C.; Fiori, F.; Gentile, E.; Lucchese, A. Topical photodynamic therapy in the treatment of benign oral mucosal lesions: A systematic review. J. Oral Pathol. Med., 2021, 50(7), 639-648.
[http://dx.doi.org/10.1111/jop.13152] [PMID: 33314331]
[117]
Di Stasio, D.; Romano, A.; Russo, D.; Fiori, F.; Laino, L.; Caponio, V.C.A.; Troiano, G.; Muzio, L.L.; Serpico, R.; Lucchese, A. Photodynamic therapy using topical toluidine blue for the treatment of oral leukoplakia: A prospective case series. Photodiagn. Photodyn. Ther., 2020, 31, 101888.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101888] [PMID: 32593778]
[118]
Mesquita, Q.M.; Dias, J.C.; P.M.S., Neves M.G.; Almeida, A.; F Faustino, M.A. Revisiting current photoactive materials for antimicrobial photodynamic therapy. Molecules, 2018, 23(10), 2424.
[http://dx.doi.org/10.3390/molecules23102424]
[119]
Donnelly, R.F.; McCarron, P.A.; Tunney, M.M. Antifungal photodynamic therapy. Microbiol. Res., 2008, 163(1), 1-12.
[http://dx.doi.org/10.1016/j.micres.2007.08.001] [PMID: 18037279]
[120]
Mima, E.G.; Vergani, C.E.; Machado, A.L.; Massucato, E.M.; Colombo, A.L.; Bagnato, V.S.; Pavarina, A.C. Comparison of photodynamic therapy versus conventional antifungal therapy for the treatment of denture stomatitis: A randomized clinical trial. Clin. Microbiol. Infect., 2012, 18(10), E380-E388.
[http://dx.doi.org/10.1111/j.1469-0691.2012.03933.x] [PMID: 22731617]
[121]
Afroozi, B.; Zomorodian, K.; Lavaee, F.; Zare Shahrabadi, Z.; Mardani, M. Comparison of the efficacy of indocyanine green-mediated photodynamic therapy and nystatin therapy in treatment of denture stomatitis. Photodiagn. Photodyn. Ther., 2019, 27, 193-197.
[http://dx.doi.org/10.1016/j.pdpdt.2019.06.005] [PMID: 31185323]
[122]
Campos, L.; Rezende, S.B.; Palma, L.F.; Hotsumi, A.M.; Tateno, R.Y.; Simões, A.; Okada, L.Y.; Macedo, M.C. Antimicrobial photodynamic therapy to oral candidiasis not responsive to micafungin in a patient undergoing hematopoietic cell transplantation. Photodiagn. Photodyn. Ther., 2021, 34, 102296.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102296] [PMID: 33866015]
[123]
Cancela-Rodríguez, P.; Cerero-Lapiedra, R.; Esparza-Gómez, G.; Llamas-Martínez, S.; Warnakulasuriya, S. The use of toluidine blue in the detection of pre-malignant and malignant oral lesions. J. Oral Pathol. Med., 2011, 40(4), 300-304.
[http://dx.doi.org/10.1111/j.1600-0714.2010.00985.x] [PMID: 21426401]
[124]
Petruzzi, M.; Lucchese, A.; Nardi, G.M.; Lauritano, D.; Favia, G.; Serpico, R.; Grassi, F.R. Evaluation of autofluorescence and toluidine blue in the differentiation of oral dysplastic and neoplastic lesions from non dysplastic and neoplastic lesions: A cross-sectional study. J. Biomed. Opt., 2014, 19(7), 76003.
[http://dx.doi.org/10.1117/1.JBO.19.7.076003] [PMID: 24996662]
[125]
Petruzzi, M.; Lucchese, A.; Baldoni, E.; Grassi, F.R.; Serpico, R. Use of Lugol’s iodine in oral cancer diagnosis: An overview. Oral Oncol., 2010, 46(11), 811-813.
[http://dx.doi.org/10.1016/j.oraloncology.2010.07.013] [PMID: 20729139]
[126]
Epstein, J.B.; Scully, C.; Spinelli, J. Toluidine blue and Lugol’s iodine application in the assessment of oral malignant disease and lesions at risk of malignancy. J. Oral Pathol. Med., 1992, 21(4), 160-163.
[http://dx.doi.org/10.1111/j.1600-0714.1992.tb00094.x] [PMID: 1376363]
[127]
Romano, A.; Di Stasio, D.; Petruzzi, M.; Fiori, F.; Lajolo, C.; Santarelli, A.; Lucchese, A.; Serpico, R.; Contaldo, M. Noninvasive imaging methods to improve the diagnosis of oral carcinoma and its precursors: State of the art and proposal of a three-step diagnostic process. Cancers (Basel), 2021, 13(12), 2864.
[http://dx.doi.org/10.3390/cancers13122864] [PMID: 34201237]
[128]
Wiench, R.; Skaba, D.; Matys, J. Grzech-Leśniak, K. Efficacy of toluidine blue-mediated antimicrobial photodynamic therapy on Candida spp. A systematic review. Antibiotics (Basel), 2021, 10(4), 349.
[http://dx.doi.org/10.3390/antibiotics10040349] [PMID: 33806003]
[129]
Petruzzi, M.; Grassi, F.R.; Nardi, G.M.; Martinelli, D.; Serpico, R.; Luglie, P.F.; Baldoni, E. Sodium iodide associated to salicylic acid in the topical management of chronic oral candidiasis: A randomized trial. J. Biol. Regul. Homeost. Agents, 2010, 24(3), 381-384.
[PMID: 20846487]
[130]
Cardoso, J.; Nakayama, D.G.; Sousa, E.; Pinto, E. Marine-derived compounds and prospects for their antifungal application. Molecules, 2020, 25(24), 5856.
[http://dx.doi.org/10.3390/molecules25245856] [PMID: 33322412]
[131]
Lucchese, A.; Guida, A.; Capone, G.; Petruzzi, M.; Lauritano, D.; Serpico, R. Designing a peptide-based vaccine against Porphyromonas gingivalis. Front. Biosci. (Schol. Ed.), 2013, 5, 631-637.
[http://dx.doi.org/10.2741/S395] [PMID: 23277074]
[132]
Lucchese, A.; Guida, A.; Petruzzi, M.; Capone, G.; Laino, L.; Serpico, R. Peptides in oral diseases. Curr. Pharm. Des., 2012, 18(6), 782-788.
[http://dx.doi.org/10.2174/138161212799277842] [PMID: 22236124]
[133]
Ciociola, T.; Giovati, L.; Conti, S.; Magliani, W. Anti-infective antibody-derived peptides active against endogenous and exogenous fungi. Microorganisms, 2021, 9(1), 143.
[http://dx.doi.org/10.3390/microorganisms9010143] [PMID: 33435157]
[134]
Ruospo, M.; Palmer, S.C.; Graziano, G.; Natale, P.; Saglimbene, V.; Petruzzi, M.; De Benedittis, M.; Craig, J.C.; Johnson, D.W.; Ford, P.; Tonelli, M.; Celia, E.; Gelfman, R.; Leal, M.R.; Török, M.; Stroumza, P.; Frantzen, L.; Bednarek-Skublewska, A.; Dulawa, J.; Del Castillo, D.; Schön, S.; Bernat, A.G.; Hegbrant, J.; Wollheim, C.; Gargano, L.; Strippoli, G.F.M. ORAL-D Investigators.. Oral mucosal lesions and risk of all-cause and cardiovascular mortality in people treated with long-term haemodialysis: The ORAL-D multinational cohort study. PLoS One, 2019, 14(6), e0218684.
[http://dx.doi.org/10.1371/journal.pone.0218684] [PMID: 31226151]
[135]
Strippoli, G.F.; Palmer, S.C.; Ruospo, M.; Natale, P.; Saglimbene, V.; Craig, J.C.; Pellegrini, F.; Petruzzi, M.; De Benedittis, M.; Ford, P.; Johnson, D.W.; Celia, E.; Gelfman, R.; Leal, M.R.; Torok, M.; Stroumza, P.; Bednarek-Skublewska, A.; Dulawa, J.; Frantzen, L.; Ferrari, J.N.; del Castillo, D.; Hegbrant, J.; Wollheim, C.; Gargano, L. ORAL-D Investigators. Oral disease in adults treated with hemodialysis: Prevalence, predictors, and association with mortality and adverse cardiovascular events: The rationale and design of the ORAL Diseases in hemodialysis (ORAL-D) study, a prospective, multinational, longitudinal, observational, cohort study. BMC Nephrol., 2013, 14, 90.
[http://dx.doi.org/10.1186/1471-2369-14-90] [PMID: 23597063]
[136]
Di Stasio, D.; Romano, A.N.; Paparella, R.S.; Gentile, C.; Minervini, G.; Serpico, R.; Candotto, V.; Laino, L. How social media meet patients’ questions: YouTube™ review for children oral thrush. J. Biol. Regul. Homeost. Agents, 2018, 32(2)(Suppl. 1), 101-106.
[PMID: 29460525]
[137]
Maya-Barrios, A.; Lira-Hernandez, K.; Jiménez-Escobar, I.; Hernández, L.; Ortiz-Hernandez, A.; Jiménez-Gutiérrez, C.; López-Velázquez, G.; Gutiérrez-Castrellón, P. Limosilactobacillus reuteri ATCC PTA 5289 and DSM 17938 as adjuvants to improve evolution of pharyngitis/tonsillitis in children: Randomised controlled trial. Benef. Microbes, 2021, 12(2), 137-145.
[http://dx.doi.org/10.3920/BM2020.0171] [PMID: 33789556]
[138]
Noda, M.; Sugihara, N.; Sugimoto, Y.; Hayashi, I.; Sugimoto, S.; Danshiitsoodol, N.; Sugiyama, M. Lactobacillus reuteri BM53-1 produces a compound that inhibits sticky glucan synthesis by Streptococcus mutans. Microorganisms, 2021, 9(7), 1390.
[http://dx.doi.org/10.3390/microorganisms9071390] [PMID: 34199080]
[139]
Karbalaei, M.; Keikha, M.; Kobyliak, N.M.; Khatib Zadeh, Z.; Yousefi, B.; Eslami, M. Alleviation of halitosis by use of probiotics and their protective mechanisms in the oral cavity. New Microbes New Infect., 2021, 42, 100887.
[http://dx.doi.org/10.1016/j.nmni.2021.100887] [PMID: 34123388]
[140]
Hao, S.; Wang, J.; Wang, Y. Effectiveness and safety of Bifidobacterium in preventing dental caries: A systematic review and meta-analysis. Acta Odontol. Scand., 2021, 79(8), 613-622.
[http://dx.doi.org/10.1080/00016357.2021.1921259] [PMID: 33956564]
[141]
Contaldo, M.; De Rosa, A.; Nucci, L.; Ballini, A.; Malacrinò, D.; La Noce, M.; Inchingolo, F.; Xhajanka, E.; Ferati, K.; Bexheti-Ferati, A.; Feola, A.; Di Domenico, M. Titanium functionalized with polylysine homopolymers: In vitro enhancement of cells growth. Materials (Basel), 2021, 14(13), 3735.
[http://dx.doi.org/10.3390/ma14133735] [PMID: 34279306]
[142]
Cervino, G.; Laino, L.; D’Amico, C.; Russo, D.; Nucci, L.; Amoroso, G.; Gorassini, F.; Tepedino, M.; Terranova, A.; Gambino, D.; Mastroieni, R.; Tözüm, M.D.; Fiorillo, L. Mineral trioxide aggregate applications in endodontics: A review. Eur. J. Dent., 2020, 14(4), 683-691.
[http://dx.doi.org/10.1055/s-0040-1713073] [PMID: 32726858]
[143]
Marra, P.M.; Nucci, L.; Jamilian, A.; Perillo, L.; Itro, A.; Grassia, V. Odontoma in a young non-compliance patient associated unerupted permanent mandibular cuspid: A case report. Int Oral Health J, 2020, 12(2), 182-186.
[http://dx.doi.org/10.4103/jioh.jioh_287_19]
[144]
Nastri, L.; De Rosa, A.; De Gregorio, V.; Grassia, V.; Donnarumma, G. A new controlled-release material containing metronidazole and doxycycline for the treatment of periodontal and peri-implant diseases: Formulation and in vitro testing. Int. J. Dent., 2019, 2019, 9374607.
[http://dx.doi.org/10.1155/2019/9374607] [PMID: 30956660]
[145]
Ioannidis, K.; Papachristos, A.; Skarlatinis, I.; Kiospe, F.; Sotiriou, S.; Papadogeorgaki, E.; Plakias, G.; Karalis, V.D.; Markantonis, S.L. Do we need to adopt antifungal stewardship programmes? Eur. J. Hosp. Pharm. Sci. Pract., 2020, 27(1), 14-18.
[http://dx.doi.org/10.1136/ejhpharm-2017-001467] [PMID: 32064083]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy