Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Efficacy of Mesenchymal Stem Cells from Human Exfoliated Deciduous Teeth and their Derivatives in Inflammatory Diseases Therapy

Author(s): Junxiang Su, Xuejun Ge*, Nan Jiang*, Ziqian Zhang and Xiaowen Wu

Volume 17, Issue 4, 2022

Published on: 20 May, 2022

Page: [302 - 316] Pages: 15

DOI: 10.2174/1574888X17666220417153309

Price: $65

Abstract

Mesenchymal stem cells derived from postnatal orofacial tissues can be readily isolated and possess diverse origins, for example, from surgically removed teeth or gingiva. These cells exhibit stem cell properties, strong potential for self-renewal, and show multi-lineage differentiation, and they have therefore been widely employed in stem cell therapy, tissue regeneration, and inflammatory diseases. Among them, stem cells from human exfoliated deciduous teeth [SHED] and their derivatives have manifested wide application in the treatment of diseases because of their outstanding advantages— including convenient access, easy storage, and less immune rejection. Numerous studies have shown that most diseases are closely associated with inflammation and that inflammatory diseases are extremely destructive, can lead to necrosis of organ parenchymal cells, and can deposit excessive extracellular matrix in the tissues. Inflammatory diseases are thus the principal causes of disability and death from many diseases worldwide. SHED and their derivatives not only exhibit the basic characteristics of stem cells but also exhibit some special properties of their own, particularly with regard to their great potential in inhibiting inflammation and tissue regeneration. SHED therapy may provide a new direction for the treatment of inflammation and corresponding tissue defects. In this review, we critically analyze and summarize the latest findings on the behaviors and functions of SHED, serum-free conditioned medium from SHED [SHED-CM], and extracellular vesicles, especially exosomes, from SHED [SHED-Exos], and discuss their roles and underlying mechanisms in the control of inflammatory diseases, thus further highlighting additional functions for SHED and their derivatives in future therapies.

Keywords: Stem cells from human exfoliated deciduous teeth [SHED], serum-free conditioned medium from SHED [SHEDCM], exosomes from SHED [SHED-Exos], inflammatory diseases, tissue regeneration, periodontal ligament stem cells [PDLSCs].

Graphical Abstract
[1]
Sharpe PT. Dental mesenchymal stem cells. Development 2016; 143(13): 2273-80.
[http://dx.doi.org/10.1242/dev.134189] [PMID: 27381225]
[2]
Rodríguez-Lozano FJ, Bueno C, Insausti CL, et al. Mesenchymal stem cells derived from dental tissues. Int Endod J 2011; 44(9): 800-6.
[http://dx.doi.org/10.1111/j.1365-2591.2011.01877.x] [PMID: 21477154]
[3]
Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807-12.
[http://dx.doi.org/10.1073/pnas.0937635100] [PMID: 12716973]
[4]
Lee HS, Jeon M, Kim SO, et al. Characteristics of stem cells from human exfoliated deciduous teeth (SHED) from intact cryopreserved deciduous teeth. Cryobiology 2015; 71(3): 374-83.
[http://dx.doi.org/10.1016/j.cryobiol.2015.10.146] [PMID: 26506257]
[5]
Giordano G, La Monaca G, Annibali S, Cicconetti A, Ottolenghi L. Stem cells from oral niches: A review. Ann Stomatol (Roma) 2011; 2(1-2): 3-8.
[PMID: 22238715]
[6]
Martinez Saez D, Sasaki RT, Neves AD, da Silva MC. Stem cells from human exfoliated deciduous teeth: A growing literature. Cells Tissues Organs 2016; 202(5-6): 269-80.
[http://dx.doi.org/10.1159/000447055] [PMID: 27544531]
[7]
Wei J, Song Y, Du Z, et al. Exosomes derived from human exfoliated deciduous teeth ameliorate adult bone loss in mice through promot-ing osteogenesis. J Mol Histol 2020; 51(4): 455-66.
[http://dx.doi.org/10.1007/s10735-020-09896-3] [PMID: 32656578]
[8]
Du ZH, Li SL, Ge XY, Yu GY, Ding C. Comparison of the secretory related molecules expression in stem cells from the pulp of human exfoliated deciduous teeth and dental pulp stem cells Chung Hua Kou Chiang Hsueh Tsa Chih 2018; 53(11): 741-7.
[PMID: 30419654]
[9]
Yoon JH, Roh EY, Shin S, et al. Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly. BioMed Res Int 2013; 2013: 428726.
[http://dx.doi.org/10.1155/2013/428726] [PMID: 23653895]
[10]
Jeon M, Song JS, Choi BJ, et al. In vitro and in vivo characteristics of stem cells from human exfoliated deciduous teeth obtained by en-zymatic disaggregation and outgrowth. Arch Oral Biol 2014; 59(10): 1013-23.
[http://dx.doi.org/10.1016/j.archoralbio.2014.06.002] [PMID: 24960116]
[11]
Bhandary M, Rao S, Shetty AV, Kumar BM, Hegde AM, Chhabra R. Comparison of stem cells from human exfoliated deciduous posterior teeth with varying levels of root resorption. Stem Cell Investig 2021; 8: 15.
[http://dx.doi.org/10.21037/sci-2020-039] [PMID: 34527730]
[12]
Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 2009; 35(11): 1536-42.
[http://dx.doi.org/10.1016/j.joen.2009.07.024] [PMID: 19840643]
[13]
Fu X, Jin L, Ma P, Fan Z, Wang S. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine. J Periodontol 2014; 85(6): 845-51.
[http://dx.doi.org/10.1902/jop.2013.130254] [PMID: 24001042]
[14]
Kushnerev E, Shawcross SG, Hillarby MC, Yates JM. High-plasticity mesenchymal stem cells isolated from adult-retained primary teeth and autogenous adult tooth pulp--A potential source for regenerative therapies? Arch Oral Biol 2016; 62: 43-8.
[http://dx.doi.org/10.1016/j.archoralbio.2015.11.009] [PMID: 26651082]
[15]
Zhou Y, Zheng L, Zhou X, Li J, Xu X. Dental mesenchymal stem cells in inflamed microenvironment: Potentials and challenges for regen-eration. Curr Stem Cell Res Ther 2015; 10(5): 412-21.
[http://dx.doi.org/10.2174/1574888X10666150312102324] [PMID: 25764197]
[16]
Anoop M, Datta I. Stem cells derived from human exfoliated deciduous teeth [shed] in neuronal disorders: A review. Curr Stem Cell Res Ther 2021; 16(5): 535-50.
[PMID: 33349220]
[17]
Nourbakhsh N, Soleimani M, Taghipour Z, et al. Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 2011; 55(2): 189-95.
[http://dx.doi.org/10.1387/ijdb.103090nn] [PMID: 21671222]
[18]
Nuti N, Corallo C, Chan BM, Ferrari M, Gerami-Naini B. Multipotent differentiation of human dental pulp stem cells: A literature review. Stem Cell Rev Rep 2016; 12(5): 511-23.
[http://dx.doi.org/10.1007/s12015-016-9661-9] [PMID: 27240827]
[19]
Kim J, Park JC, Kim SH, et al. Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth. Oral Dis 2014; 20(2): 191-204.
[http://dx.doi.org/10.1111/odi.12089] [PMID: 23496287]
[20]
Kerkis I, Ambrosio CE, Kerkis A, et al. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriev-er muscular dystrophy (GRMD) dogs: Local or systemic? J Transl Med 2008; 6(1): 35.
[http://dx.doi.org/10.1186/1479-5876-6-35] [PMID: 18598348]
[21]
Alipour R, Masoumi Karimi M, Hashemi-Beni B, Adib M, Sereshki N, Sadeghi F. Indoleamine 2,3-dioxygenase is dispensable for the immunomodulatory function of stem cells from human exfoliated deciduous teeth. Cell J 2017; 18(4): 597-608.
[PMID: 28042544]
[22]
Yildirim S, Zibandeh N, Genc D, Ozcan EM, Goker K, Akkoc T. The comparison of the immunologic properties of stem cells isolated from human exfoliated deciduous teeth, dental pulp, and dental follicles. Stem Cells Int 2016; 2016: 4682875.
[http://dx.doi.org/10.1155/2016/4682875] [PMID: 26770205]
[23]
Yamaza T, Kentaro A, Chen C, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 2010; 1(1): 5.
[http://dx.doi.org/10.1186/scrt5] [PMID: 20504286]
[24]
Yang N, Liu X, Chen X, Yu S, Yang W, Liu Y. Stem cells from exfoliated deciduous teeth transplantation ameliorates Sjögren’s syndrome by secreting soluble PD-L1. J Leukoc Biol 2021; JLB.6MA0921-752RR.
[http://dx.doi.org/10.1002/JLB.6MA0921-752RR] [PMID: 34622984]
[25]
Dai YY, Ni SY, Ma K, Ma YS, Wang ZS, Zhao XL. Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro. Stem Cell Res Ther 2019; 10(1): 39.
[http://dx.doi.org/10.1186/s13287-019-1134-z] [PMID: 30670101]
[26]
Esmaeili A, Alifarja S, Nourbakhsh N, Talebi A. Messenger RNA expression patterns of neurotrophins during transdifferentiation of stem cells from human-exfoliated deciduous teeth into neural-like cells. Avicenna J Med Biotechnol 2014; 6(1): 21-6.
[PMID: 24551431]
[27]
Hochuli AHD, Senegaglia AC, Selenko AH, Fracaro L, Brofman PRS. Dental pulp from human exfoliated deciduous teeth-derived stromal cells demonstrated neuronal potential: In vivo and in vitro studies. Curr Stem Cell Res Ther 2021; 16(5): 495-506.
[http://dx.doi.org/10.2174/1574888X16666210215160402] [PMID: 33588741]
[28]
Yang S, Xin C, Zhang B, Zhang H, Hao Y. Synergistic effects of Rho kinase inhibitor Y-27632 and Noggin overexpression on the prolifer-ation and neuron-like cell differentiation of stem cells derived from human exfoliated deciduous teeth. IUBMB Life 2020; 72(4): 665-76.
[http://dx.doi.org/10.1002/iub.2208] [PMID: 31889420]
[29]
Zhang N, Lu X, Wu S, et al. Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats. Cytotherapy 2018; 20(5): 670-86.
[http://dx.doi.org/10.1016/j.jcyt.2018.02.371] [PMID: 29576501]
[30]
Wang J, Wang X, Sun Z, et al. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 2010; 19(9): 1375-83.
[http://dx.doi.org/10.1089/scd.2009.0258] [PMID: 20131979]
[31]
Guo W, Zeng Z, Xing C, Zhang J, Bi W, Yang J, et al. Stem cells from human exfoliated deciduous teeth affect mitochondria and reverse cognitive decline in a senescence-accelerated mouse prone 8 model. Cytotherapy 2021.
[PMID: 34598900]
[32]
Bai X, Xiao K, Yang Z, Zhang Z, Li J, Yan Z, et al. Stem cells from human exfoliated deciduous teeth relieve pain via downregulation of c-Jun in a rat model of trigeminal neuralgia. J Oral Rehabil 2021.
[PMID: 34386989]
[33]
Gao X, Shen Z, Guan M, et al. Immunomodulatory role of stem cells from human exfoliated deciduous teeth on periodontal regeneration. Tissue Eng Part A 2018; 24(17-18): 1341-53.
[http://dx.doi.org/10.1089/ten.tea.2018.0016] [PMID: 29652608]
[34]
Xuan K, Li B, Guo H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med 2018; 10(455): eaaf3227.
[http://dx.doi.org/10.1126/scitranslmed.aaf3227] [PMID: 30135248]
[35]
Colombo JS, Jia S, D’Souza RN. Modeling hypoxia induced factors to treat pulpal inflammation and drive regeneration. J Endod 2020; 46(9S): S19-25.
[http://dx.doi.org/10.1016/j.joen.2020.06.039] [PMID: 32950190]
[36]
Kerkis I, Caplan AI. Stem cells in dental pulp of deciduous teeth. Tissue Eng Part B Rev 2012; 18(2): 129-38.
[http://dx.doi.org/10.1089/ten.teb.2011.0327] [PMID: 22032258]
[37]
Seo BM, Sonoyama W, Yamaza T, et al. SHED repair critical-size calvarial defects in mice. Oral Dis 2008; 14(5): 428-34.
[http://dx.doi.org/10.1111/j.1601-0825.2007.01396.x] [PMID: 18938268]
[38]
Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH. Transplantation of human dental pulp stem cells: Enhance bone consolidation in mandibular distraction osteogenesis. J Oral Maxillofac Surg 2013; 71(10): 1758.e1-1758.e13.
[http://dx.doi.org/10.1016/j.joms.2013.05.016] [PMID: 24040948]
[39]
Zheng Y, Liu Y, Zhang CM, et al. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 2009; 88(3): 249-54.
[http://dx.doi.org/10.1177/0022034509333804] [PMID: 19329459]
[40]
Feitosa ML, Fadel L, Beltrão-Braga PC, et al. Successful transplant of mesenchymal stem cells in induced osteonecrosis of the ovine fem-oral head: Preliminary results. Acta Cir Bras 2010; 25(5): 416-22.
[http://dx.doi.org/10.1590/S0102-86502010000500006] [PMID: 20877951]
[41]
Zhao W, Lu JY, Hao YM, Cao CH, Zou DR. Maxillary sinus floor elevation with a tissue-engineered bone composite of deciduous tooth stem cells and calcium phosphate cement in goats. J Tissue Eng Regen Med 2017; 11(1): 66-76.
[http://dx.doi.org/10.1002/term.1867] [PMID: 24616333]
[42]
de Mendonça Costa A, Bueno DF, Martins MT, et al. Reconstruction of large cranial defects in nonimmunosuppressed experimental de-sign with human dental pulp stem cells. J Craniofac Surg 2008; 19(1): 204-10.
[http://dx.doi.org/10.1097/scs.0b013e31815c8a54] [PMID: 18216690]
[43]
Koyama N, Okubo Y, Nakao K, Bessho K. Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 2009; 67(3): 501-6.
[http://dx.doi.org/10.1016/j.joms.2008.09.011] [PMID: 19231772]
[44]
Yang X, Ma Y, Guo W, Yang B, Tian W. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regen-eration. Theranostics 2019; 9(9): 2694-711.
[http://dx.doi.org/10.7150/thno.31801] [PMID: 31131062]
[45]
Sakai K, Yamamoto A, Matsubara K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 2012; 122(1): 80-90.
[PMID: 22133879]
[46]
Pereira LV, Bento RF, Cruz DB, et al. Stem cells from human exfoliated deciduous teeth (SHED) differentiate in vivo and promote facial nerve regeneration. Cell Transplant 2019; 28(1): 55-64.
[http://dx.doi.org/10.1177/0963689718809090] [PMID: 30380914]
[47]
Zhang X, Lei T, Chen P, et al. Stem cells from human exfoliated deciduous teeth promote hair regeneration in mouse. Cell Transplant 2021; 30: 9636897211042927.
[http://dx.doi.org/10.1177/09636897211042927] [PMID: 34633878]
[48]
Ferreira E, Porter RM. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018; 7(4): 263-73.
[http://dx.doi.org/10.1302/2046-3758.74.BJR-2018-0006] [PMID: 29922444]
[49]
de Almeida PE, Ransohoff JD, Nahid A, Wu JC. Immunogenicity of pluripotent stem cells and their derivatives. Circ Res 2013; 112(3): 549-61.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.249243] [PMID: 23371903]
[50]
Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspec-tives. Cell Transplant 2014; 23(9): 1045-59.
[http://dx.doi.org/10.3727/096368913X667709] [PMID: 23676629]
[51]
Heldring N, Mäger I, Wood MJ, Le Blanc K, Andaloussi SE. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther 2015; 26(8): 506-17.
[http://dx.doi.org/10.1089/hum.2015.072] [PMID: 26153722]
[52]
Shimojima C, Takeuchi H, Jin S, et al. Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experi-mental autoimmune encephalomyelitis. J Immunol 2016; 196(10): 4164-71.
[http://dx.doi.org/10.4049/jimmunol.1501457] [PMID: 27053763]
[53]
Ishikawa J, Takahashi N, Matsumoto T, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experi-mental rheumatoid arthritis. Bone 2016; 83: 210-9.
[http://dx.doi.org/10.1016/j.bone.2015.11.012] [PMID: 26603475]
[54]
Matsubara K, Matsushita Y, Sakai K, et al. Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant pro-tein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci 2015; 35(6): 2452-64.
[http://dx.doi.org/10.1523/JNEUROSCI.4088-14.2015] [PMID: 25673840]
[55]
Kano F, Matsubara K, Ueda M, Hibi H, Yamamoto A. Secreted Ectodomain of Sialic Acid-Binding Ig-Like Lectin-9 and Monocyte Chem-oattractant Protein-1 Synergistically Regenerate Transected Rat Peripheral Nerves by Altering Macrophage Polarity. Stem Cells 2017; 35(3): 641-53.
[http://dx.doi.org/10.1002/stem.2534] [PMID: 27862629]
[56]
Hayashi Y, Kato H, Nonaka K, Nakanishi H. Stem cells from human exfoliated deciduous teeth attenuate mechanical allodynia in mice through distinct from the siglec-9/MCP-1-mediated tissue-repairing mechanism. Sci Rep 2021; 11(1): 20053.
[http://dx.doi.org/10.1038/s41598-021-99585-2] [PMID: 34625639]
[57]
Ito T, Ishigami M, Matsushita Y, et al. Secreted ectodomain of SIGLEC-9 and MCP-1 synergistically improve acute liver failure in rats by altering macrophage polarity. Sci Rep 2017; 7(1): 44043.
[http://dx.doi.org/10.1038/srep44043] [PMID: 28272428]
[58]
Matsushita Y, Ishigami M, Matsubara K, et al. Multifaceted therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for acute liver failure in rats. J Tissue Eng Regen Med 2017; 11(6): 1888-96.
[http://dx.doi.org/10.1002/term.2086] [PMID: 28586545]
[59]
Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70(1): 151-71.
[http://dx.doi.org/10.1016/j.jhep.2018.09.014] [PMID: 30266282]
[60]
Aydın MM, Akçalı KC. Liver fibrosis. Turk J Gastroenterol 2018; 29(1): 14-21.
[http://dx.doi.org/10.5152/tjg.2018.17330] [PMID: 29391303]
[61]
Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells 2020; 9(4): E875.
[http://dx.doi.org/10.3390/cells9040875] [PMID: 32260126]
[62]
Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 2019; 65: 37-55.
[http://dx.doi.org/10.1016/j.mam.2018.09.002] [PMID: 30213667]
[63]
Hirata M, Ishigami M, Matsushita Y, et al. Multifaceted therapeutic benefits of factors derived from dental pulp stem cells for mouse liver fibrosis. Stem Cells Transl Med 2016; 5(10): 1416-24.
[http://dx.doi.org/10.5966/sctm.2015-0353] [PMID: 27280796]
[64]
Yu J, Shen J, Sun TT, Zhang X, Wong N. Obesity, insulin resistance, NASH and hepatocellular carcinoma. Semin Cancer Biol 2013; 23(6)(6 Pt B): 483-91.
[http://dx.doi.org/10.1016/j.semcancer.2013.07.003] [PMID: 23876851]
[65]
Muto H, Ito T, Tanaka T, et al. Conditioned medium from stem cells derived from human exfoliated deciduous teeth ameliorates NASH via the Gut-Liver axis. Sci Rep 2021; 11(1): 18778.
[http://dx.doi.org/10.1038/s41598-021-98254-8] [PMID: 34548598]
[66]
Wakayama H, Hashimoto N, Matsushita Y, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy 2015; 17(8): 1119-29.
[http://dx.doi.org/10.1016/j.jcyt.2015.04.009] [PMID: 26031744]
[67]
Li XX, Yuan XJ, Zhai Y, et al. Treatment with stem cells from human exfoliated deciduous teeth and their derived conditioned medium improves retinal visual function and delays the degeneration of photoreceptors. Stem Cells Dev 2019; 28(22): 1514-26.
[http://dx.doi.org/10.1089/scd.2019.0158] [PMID: 31544584]
[68]
Muhammad SA, Nordin N, Hussin P, Mehat MZ, Abu Kasim NH, Fakurazi S. Protective effects of stem cells from human exfoliated de-ciduous teeth derived conditioned medium on osteoarthritic chondrocytes. PLoS One 2020; 15(9): e0238449.
[http://dx.doi.org/10.1371/journal.pone.0238449] [PMID: 32886713]
[69]
Asadi-Golshan R, Razban V, Mirzaei E, et al. Sensory and motor behavior evidences supporting the usefulness of conditioned medium from dental pulp-derived stem cells in spinal cord injury in rats. Asian Spine J 2018; 12(5): 785-93.
[http://dx.doi.org/10.31616/asj.2018.12.5.785] [PMID: 30213159]
[70]
Asadi-Golshan R, Razban V, Mirzaei E, et al. Efficacy of dental pulp-derived stem cells conditioned medium loaded in collagen hydrogel in spinal cord injury in rats: Stereological evidence. J Chem Neuroanat 2021; 116: 101978.
[http://dx.doi.org/10.1016/j.jchemneu.2021.101978] [PMID: 34098013]
[71]
Mita T, Furukawa-Hibi Y, Takeuchi H, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 2015; 293: 189-97.
[http://dx.doi.org/10.1016/j.bbr.2015.07.043] [PMID: 26210934]
[72]
Chen YR, Lai PL, Chien Y, et al. Improvement of impaired motor functions by human dental exfoliated deciduous teeth stem cell-derived factors in a rat model of parkinson’s disease. Int J Mol Sci 2020; 21(11): E3807.
[http://dx.doi.org/10.3390/ijms21113807] [PMID: 32471263]
[73]
Sakai K, Tsuruta T, Watanabe J, et al. Peripheral nerve regeneration in a novel rat model of dysphagia. Methods Mol Biol 2020; 2155: 107-13.
[http://dx.doi.org/10.1007/978-1-0716-0655-1_9] [PMID: 32474871]
[74]
Tsuruta T, Sakai K, Watanabe J, Katagiri W, Hibi H. Dental pulp-derived stem cell conditioned medium to regenerate peripheral nerves in a novel animal model of dysphagia. PLoS One 2018; 13(12): e0208938.
[http://dx.doi.org/10.1371/journal.pone.0208938] [PMID: 30533035]
[75]
Sugimura-Wakayama Y, Katagiri W, Osugi M, et al. Peripheral nerve regeneration by secretomes of stem cells from human exfoliated deciduous teeth. Stem Cells Dev 2015; 24(22): 2687-99.
[http://dx.doi.org/10.1089/scd.2015.0104] [PMID: 26154068]
[76]
Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: Etiology, diagnosis, and treatment. J Dent Res 2008; 87(4): 296-307.
[http://dx.doi.org/10.1177/154405910808700406] [PMID: 18362309]
[77]
Ogasawara N, Kano F, Hashimoto N, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experi-mental temporomandibular joint osteoarthritis. Osteoarthritis Cartilage 2020; 28(6): 831-41.
[http://dx.doi.org/10.1016/j.joca.2020.03.010] [PMID: 32272195]
[78]
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: A detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7(1): 82.
[http://dx.doi.org/10.1186/s13287-016-0341-0] [PMID: 27259550]
[79]
Yamaguchi S, Shibata R, Yamamoto N, et al. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ische-mia-reperfusion. Sci Rep 2015; 5(1): 16295.
[http://dx.doi.org/10.1038/srep16295] [PMID: 26542315]
[80]
Kato M, Tsunekawa S, Nakamura N, et al. Secreted factors from stem cells of human exfoliated deciduous teeth directly activate endothe-lial cells to promote all processes of angiogenesis. Cells 2020; 9(11): E2385.
[http://dx.doi.org/10.3390/cells9112385] [PMID: 33142678]
[81]
Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Stem cells from human exfoliated deciduous tooth-derived condi-tioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 2013; 19(1-2): 24-9.
[http://dx.doi.org/10.1089/ten.tea.2011.0385] [PMID: 22839964]
[82]
Miura-Yura E, Tsunekawa S, Naruse K, et al. Secreted factors from cultured dental pulp stem cells promoted neurite outgrowth of dorsal root ganglion neurons and ameliorated neural functions in streptozotocin-induced diabetic mice. J Diabetes Investig 2020; 11(1): 28-38.
[http://dx.doi.org/10.1111/jdi.13085] [PMID: 31144464]
[83]
Izumoto-Akita T, Tsunekawa S, Yamamoto A, et al. Secreted factors from dental pulp stem cells improve glucose intolerance in strepto-zotocin-induced diabetic mice by increasing pancreatic β-cell function. BMJ Open Diabetes Res Care 2015; 3(1): e000128.
[http://dx.doi.org/10.1136/bmjdrc-2015-000128] [PMID: 26504525]
[84]
de Cara SPHM, Origassa CST, de Sá Silva F, et al. Angiogenic properties of dental pulp stem cells conditioned medium on endothelial cells in vitro and in rodent orthotopic dental pulp regeneration. Heliyon 2019; 5(4): e01560.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01560] [PMID: 31183428]
[85]
Omori M, Tsuchiya S, Hara K, et al. A new application of cell-free bone regeneration: Immobilizing stem cells from human exfoliated deciduous teeth-conditioned medium onto titanium implants using atmospheric pressure plasma treatment. Stem Cell Res Ther 2015; 6(1): 124.
[http://dx.doi.org/10.1186/s13287-015-0114-1] [PMID: 26088364]
[86]
Hiraki T, Kunimatsu R, Nakajima K, et al. Stem cell-derived conditioned media from human exfoliated deciduous teeth promote bone regeneration. Oral Dis 2020; 26(2): 381-90.
[http://dx.doi.org/10.1111/odi.13244] [PMID: 31808229]
[87]
Gunawardena TNA, Masoudian Z, Rahman MT, Ramasamy TS, Ramanathan A, Abu Kasim NH. Dental derived stem cell conditioned media for hair growth stimulation. PLoS One 2019; 14(5): e0216003.
[http://dx.doi.org/10.1371/journal.pone.0216003] [PMID: 31042749]
[88]
Koga S, Horiguchi Y. Efficacy of a cultured conditioned medium of exfoliated deciduous dental pulp stem cells in erectile dysfunction patients. J Cell Mol Med 2022; 26(1): 195-201.
[http://dx.doi.org/10.1111/jcmm.17072] [PMID: 34845823]
[89]
Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): E1852.
[http://dx.doi.org/10.3390/ijms18091852] [PMID: 28841158]
[90]
Sagaradze G, Grigorieva O, Nimiritsky P, et al. Conditioned medium from human mesenchymal stromal cells: Towards the clinical transla-tion. Int J Mol Sci 2019; 20(7): E1656.
[http://dx.doi.org/10.3390/ijms20071656] [PMID: 30987106]
[91]
Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A. Bioprocessing of mesenchymal stem cells and their derivatives: Toward cell-free therapeutics. Stem Cells Int 2018; 2018: 9415367.
[http://dx.doi.org/10.1155/2018/9415367] [PMID: 30275839]
[92]
Gstraunthaler G, Lindl T, van der Valk J. A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology 2013; 65(5): 791-3.
[http://dx.doi.org/10.1007/s10616-013-9633-8] [PMID: 23975256]
[93]
Pachler K, Lener T, Streif D, et al. A Good Manufacturing Practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles. Cytotherapy 2017; 19(4): 458-72.
[http://dx.doi.org/10.1016/j.jcyt.2017.01.001] [PMID: 28188071]
[94]
Hao Y, Song H, Zhou Z, et al. Promotion or inhibition of extracellular vesicle release: Emerging therapeutic opportunities. J Control Release 2021; 340: 136-48.
[http://dx.doi.org/10.1016/j.jconrel.2021.10.019] [PMID: 34695524]
[95]
Pan BT, Johnstone R. Selective externalization of the transferrin receptor by sheep reticulocytes in vitro. Response to ligands and inhibi-tors of endocytosis. J Biol Chem 1984; 259(15): 9776-82.
[http://dx.doi.org/10.1016/S0021-9258(17)42767-0] [PMID: 6146620]
[96]
Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell 1983; 33(3): 967-78.
[http://dx.doi.org/10.1016/0092-8674(83)90040-5] [PMID: 6307529]
[97]
Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015; 13(1): 17-24.
[http://dx.doi.org/10.1016/j.gpb.2015.02.001] [PMID: 25724326]
[98]
Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009; 21(4): 575-81.
[http://dx.doi.org/10.1016/j.ceb.2009.03.007] [PMID: 19442504]
[99]
Johnstone RM, Bianchini A, Teng K. Reticulocyte maturation and exosome release: Transferrin receptor containing exosomes shows mul-tiple plasma membrane functions. Blood 1989; 74(5): 1844-51.
[http://dx.doi.org/10.1182/blood.V74.5.1844.1844] [PMID: 2790208]
[100]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[101]
Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 2014; 14(3): 195-208.
[http://dx.doi.org/10.1038/nri3622] [PMID: 24566916]
[102]
Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis. Cancer Cell 2016; 30(6): 836-48.
[http://dx.doi.org/10.1016/j.ccell.2016.10.009] [PMID: 27960084]
[103]
Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 2016; 106(Pt A): 148-56.
[http://dx.doi.org/10.1016/j.addr.2016.02.006]
[104]
Nolte-’t Hoen EN, Buschow SI, Anderton SM, Stoorvogel W, Wauben MH. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 2009; 113(9): 1977-81.
[http://dx.doi.org/10.1182/blood-2008-08-174094] [PMID: 19064723]
[105]
Wang X, Gu H, Qin D, et al. Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Sci Rep 2015; 5(1): 13721.
[http://dx.doi.org/10.1038/srep13721] [PMID: 26348153]
[106]
Alexander M, Hu R, Runtsch MC, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 2015; 6(1): 7321.
[http://dx.doi.org/10.1038/ncomms8321] [PMID: 26084661]
[107]
Choi M, Ban T, Rhim T. Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Mol Cells 2014; 37(2): 133-9.
[http://dx.doi.org/10.14348/molcells.2014.2317] [PMID: 24598998]
[108]
Monsel A, Zhu YG, Gennai S, et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med 2015; 192(3): 324-36.
[http://dx.doi.org/10.1164/rccm.201410-1765OC] [PMID: 26067592]
[109]
Zhu YG, Feng XM, Abbott J, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 2014; 32(1): 116-25.
[http://dx.doi.org/10.1002/stem.1504] [PMID: 23939814]
[110]
Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine 2016; 8: 72-82.
[http://dx.doi.org/10.1016/j.ebiom.2016.04.030] [PMID: 27428420]
[111]
Luo L, Avery SJ, Waddington RJ. Exploring a chemotactic role for EVs from progenitor cell populations of human exfoliated deciduous teeth for promoting migration of naïve BMSCs in bone repair process. Stem Cells Int 2021; 2021: 6681771.
[http://dx.doi.org/10.1155/2021/6681771] [PMID: 33815511]
[112]
Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med 2017; 23(9): 1018-27.
[http://dx.doi.org/10.1038/nm.4397] [PMID: 28886007]
[113]
Jonavičė U, Romenskaja D, Kriaučiūnaitė K, et al. Extracellular vesicles from human teeth stem cells trigger ATP release and promote migration of human microglia through P2X4 receptor/MFGE8- dependent mechanisms. Int J Mol Sci 2021; 22(20): 10970.
[http://dx.doi.org/10.3390/ijms222010970] [PMID: 34681627]
[114]
Li Y, Yang YY, Ren JL, Xu F, Chen FM, Li A. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther 2017; 8(1): 198.
[http://dx.doi.org/10.1186/s13287-017-0648-5] [PMID: 28962585]
[115]
Pivoraitė U, Jarmalavičiūtė A, Tunaitis V, et al. Exosomes from human dental pulp stem cells suppress carrageenan-induced acute inflammation in mice. Inflammation 2015; 38(5): 1933-41.
[http://dx.doi.org/10.1007/s10753-015-0173-6] [PMID: 25903966]
[116]
Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, Venalis A, Pivoriūnas A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy 2015; 17(7): 932-9.
[http://dx.doi.org/10.1016/j.jcyt.2014.07.013] [PMID: 25981557]
[117]
Luo P, Jiang C, Ji P, Wang M, Xu J. Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in tem-poromandibular joint chondrocytes via miR-100-5p/mTOR. Stem Cell Res Ther 2019; 10(1): 216.
[http://dx.doi.org/10.1186/s13287-019-1341-7] [PMID: 31358056]
[118]
Wu M, Liu X, Li Z, et al. SHED aggregate exosomes shuttled miR-26a promote angiogenesis in pulp regeneration via TGF-β/SMAD2/3 signalling. Cell Prolif 2021; 54(7): e13074.
[http://dx.doi.org/10.1111/cpr.13074] [PMID: 34101281]
[119]
Wang M, Li J, Ye Y, He S, Song J. SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro. Differentiation 2020; 111: 1-11.
[http://dx.doi.org/10.1016/j.diff.2019.10.003] [PMID: 31630077]
[120]
Wu J, Chen L, Wang R, et al. Exosomes secreted by stem cells from human exfoliated deciduous teeth promote alveolar bone defect repair through the regulation of angiogenesis and osteogenesis. ACS Biomater Sci Eng 2019; 5(7): 3561-71.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00607] [PMID: 33405738]
[121]
Konala VBR, Bhonde R, Pal R. Secretome studies of mesenchymal stromal cells (MSCs) isolated from three tissue sources reveal subtle differences in potency. In Vitro Cell Dev Biol Anim 2020; 56(9): 689-700.
[http://dx.doi.org/10.1007/s11626-020-00501-1] [PMID: 33006709]
[122]
Faget DV, Ren Q, Stewart SA. Unmasking senescence: Context-dependent effects of SASP in cancer. Nat Rev Cancer 2019; 19(8): 439-53.
[http://dx.doi.org/10.1038/s41568-019-0156-2] [PMID: 31235879]
[123]
Berkowitz AL, Miller MB, Mir SA, et al. Glioproliferative Lesion of the Spinal Cord as a Complication of “Stem-Cell Tourism”. N Engl J Med 2016; 375(2): 196-8.
[http://dx.doi.org/10.1056/NEJMc1600188] [PMID: 27331440]
[124]
Thirabanjasak D, Tantiwongse K, Thorner PS. Angiomyeloproliferative lesions following autologous stem cell therapy. J Am Soc Nephrol 2010; 21(7): 1218-22.
[http://dx.doi.org/10.1681/ASN.2009111156] [PMID: 20558536]
[125]
Schmuck EG, Koch JM, Centanni JM, et al. Biodistribution and clearance of human mesenchymal stem cells by quantitative three-dimensional cryo-imaging after intravenous infusion in a rat lung injury model. Stem Cells Transl Med 2016; 5(12): 1668-75.
[http://dx.doi.org/10.5966/sctm.2015-0379] [PMID: 27460855]
[126]
Liu YJ, Su WT, Chen PH. Magnesium and zinc borate enhance osteoblastic differentiation of stem cells from human exfoliated deciduous teeth in vitro. J Biomater Appl 2018; 32(6): 765-74.
[http://dx.doi.org/10.1177/0885328217740730] [PMID: 29119879]
[127]
Lee JY, Nam H, Park YJ, et al. The effects of platelet-rich plasma derived from human umbilical cord blood on the osteogenic differentia-tion of human dental stem cells. In Vitro Cell Dev Biol Anim 2011; 47(2): 157-64.
[http://dx.doi.org/10.1007/s11626-010-9364-5] [PMID: 21082281]
[128]
Paschalidou M, Athanasiadou E, Arapostathis K, et al. Biological effects of low-level laser irradiation (LLLI) on stem cells from human exfoliated deciduous teeth (SHED). Clin Oral Investig 2020; 24(1): 167-80.
[http://dx.doi.org/10.1007/s00784-019-02874-4] [PMID: 31069538]
[129]
Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics 2021; 11(7): 3183-95.
[http://dx.doi.org/10.7150/thno.52570] [PMID: 33537081]
[130]
Viñas JL, Spence M, Gutsol A, et al. Receptor-ligand interaction mediates targeting of endothelial colony forming cell-derived exosomes to the kidney after ischemic injury. Sci Rep 2018; 8(1): 16320.
[http://dx.doi.org/10.1038/s41598-018-34557-7] [PMID: 30397255]
[131]
Cheng G, Li W, Ha L, et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracel-lular delivery of biofunctional proteins. J Am Chem Soc 2018; 140(23): 7282-91.
[http://dx.doi.org/10.1021/jacs.8b03584] [PMID: 29809001]
[132]
Xu F, Fei Z, Dai H, et al. Mesenchymal stem cell-derived extracellular vesicles with high PD-L1 expression for autoimmune diseases treatment. Adv Mater 2022; 34(1): e2106265.
[http://dx.doi.org/10.1002/adma.202106265] [PMID: 34613627]
[133]
Elsharkasy OM, Nordin JZ, Hagey DW, et al. Extracellular vesicles as drug delivery systems: Why and how? Adv Drug Deliv Rev 2020; 159: 332-43.
[http://dx.doi.org/10.1016/j.addr.2020.04.004] [PMID: 32305351]
[134]
Clemmens H, Lambert DW. Extracellular vesicles: Translational challenges and opportunities. Biochem Soc Trans 2018; 46(5): 1073-82.
[http://dx.doi.org/10.1042/BST20180112] [PMID: 30242120]
[135]
van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. Nat Nanotechnol 2019; 14(11): 1007-17.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]
[136]
Gwam C, Mohammed N, Ma X. Stem cell secretome, regeneration, and clinical translation: A narrative review. Ann Transl Med 2021; 9(1): 70.
[http://dx.doi.org/10.21037/atm-20-5030] [PMID: 33553363]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy