Generic placeholder image

Current Drug Safety

Editor-in-Chief

ISSN (Print): 1574-8863
ISSN (Online): 2212-3911

Review Article

Skin Cancer Management: Current Scenario And Future Perspectives

Author(s): Mehak Jindal, Malkiet Kaur, Manju Nagpal*, Manjinder Singh, Geeta Aggarwal and Gitika Arora Dhingra

Volume 18, Issue 2, 2023

Published on: 12 October, 2022

Page: [143 - 158] Pages: 16

DOI: 10.2174/1574886317666220413113959

Price: $65

Abstract

Skin cancer is a life-threatening disease and has caused significant loss to human health across the globe. Its prevalence has been increasing every year and is one of the common malignancies in the case of organ transplant recipients, of which 95% constitute basal cell and squamous cell carcinomas. The prime factor causing skin cancer is UV radiation. Around the 20th century, sunlight was the primary cause of skin cancer. A novel hypothesis by US scientists stated that cutaneous melanoma was mainly due to recurrent exposure to the sun, whereas keratinocyte cancer occurred due to progressive accumulation of sun exposure. Management of skin cancer is done via various approaches, including cryotherapy, radiotherapy, and photodynamic therapy. Post-discovery of X-rays, radiotherapy has proven to treat skin cancers to some extent, but the indications are uncertain since it depends upon the type of tumour and surgical treatment required for the patient. Due to various limitations of skin cancer treatment and increased severity, there is a requirement for cost-effective, novel, and efficient treatment. Various nanocarriers such as SLNs, magnetic nanoparticles, gold nanoparticles, carbon nanotubes, etc., are the potential carriers in the management and prognosis of both non-melanoma and melanoma skin cancer. Various research and review databases and patent reports have been studied, and information compiled to extract the results. The review also discusses the role of various nanocarriers in treating and diagnosing skin cancer.

Keywords: Melanoma, carcinoma, photodynamic therapy, nanoparticles, liposomes, fitzpatrick phototype system.

[1]
Penta D, Somashekar BS, Meeran SM. Epigenetics of skin cancer: Interventions by selected bioactive phytochemicals. Photodermatol Photoimmunol Photomed 2018; 34(1): 42-9.
[http://dx.doi.org/10.1111/phpp.12353] [PMID: 28976029]
[2]
Mintie CA, Singh CK, Ahmad N. Whole fruit phytochemicals combating skin damage and carcinogenesis. Transl Oncol 2020; 13(2): 146-56.
[http://dx.doi.org/10.1016/j.tranon.2019.10.014] [PMID: 31865177]
[3]
Fears TR, Scotto J, Schneiderman MA. Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. Am J Epidemiol 1977; 105(5): 420-7.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a112400] [PMID: 860705]
[4]
Iqbal J, Abbasi BA, Ahmad R, et al. Potential phytochemicals in the fight against skin cancer: Current landscape and future perspectives. Biomed Pharmacother 2019; 109: 1381-93.
[http://dx.doi.org/10.1016/j.biopha.2018.10.107] [PMID: 30551389]
[5]
O’Reilly Zwald F, Brown M. Skin cancer in solid organ transplant recipients: Advances in therapy and management: Part II. Management of skin cancer in solid organ transplant recipients. J Am Acad Dermatol 2011; 65(2): 263-79.
[http://dx.doi.org/10.1016/j.jaad.2010.11.063] [PMID: 21763562]
[6]
Pitot HC, Dragan YP. Facts and theories concerning the mechanisms of carcinogenesis. FASEB J 1991; 5(9): 2280-6.
[http://dx.doi.org/10.1096/fasebj.5.9.1860619] [PMID: 1860619]
[7]
Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol 2015; 151(10): 1081-6.
[http://dx.doi.org/10.1001/jamadermatol.2015.1187] [PMID: 25928283]
[8]
Lear W, Dahlke E, Murray CA. Basal cell carcinoma: Review of epidemiology, pathogenesis, and associated risk factors. J Cutan Med Surg 2007; 11(1): 19-30.
[http://dx.doi.org/10.2310/7750.2007.00011] [PMID: 17274935]
[9]
Motley R, Kersey P, Lawrence C. Multiprofessional guidelines for the management of the patient with primary cutaneous squamous cell carcinoma. Br J Dermatol 2002; 146(1): 18-25.
[http://dx.doi.org/10.1046/j.0007-0963.2001.04615.x] [PMID: 11841362]
[10]
High WA, Robinson WA. Genetic mutations involved in melanoma: A summary of our current understanding. Adv Dermatol 2007; 23: 61-79.
[http://dx.doi.org/10.1016/j.yadr.2007.07.009] [PMID: 18159896]
[11]
Rodríguez S, Arenas M, Gutierrez C, et al. Recommendations of the Spanish brachytherapy group (GEB) of Spanish Society of Radiation Oncology (SEOR) and the Spanish Society of Medical Physics (SEFM) for high-dose rate (HDR) non melanoma skin cancer brachytherapy. Med 2018; 20(4): 431-42.
[http://dx.doi.org/10.1007/s12094-017-1733-z] [PMID: 28808925]
[12]
Karagas MR, Zens MS, Li Z, et al. Early-onset basal cell carcinoma and indoor tanning: A population-based study. Pediatrics 2014; 134(1): e4-e12.
[http://dx.doi.org/10.1542/peds.2013-3559] [PMID: 24958589]
[13]
Haenssle HA, Mograby N, Ngassa A, et al. Association of patient risk factors and frequency of nevus-associated cutaneous melanomas. JAMA Dermatol 2016; 152(3): 291-8.
[http://dx.doi.org/10.1001/jamadermatol.2015.3775] [PMID: 26536613]
[14]
Tuma B, Yamada S, Atallah ÁN, Araujo FM, Hirata SH. Dermoscopy of black skin: A cross-sectional study of clinical and dermoscopic features of melanocytic lesions in individuals with type V/VI skin compared to those with type I/II skin. J Am Acad Dermatol 2015; 73(1): 114-9.
[http://dx.doi.org/10.1016/j.jaad.2015.03.043] [PMID: 25982540]
[15]
Bradford PT, Goldstein AM, McMaster ML, Tucker MA. Acral lentiginous melanoma: Incidence and survival patterns in the United States, 1986-2005. Arch Dermatol 2009; 145(4): 427-34.
[http://dx.doi.org/10.1001/archdermatol.2008.609] [PMID: 19380664]
[16]
Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med 1999; 340(17): 1341-8.
[http://dx.doi.org/10.1056/NEJM199904293401707] [PMID: 10219070]
[17]
Miyamura Y, Coelho SG, Schlenz K, et al. The deceptive nature of UVA tanning versus the modest protective effects of UVB tanning on human skin. Pigment Cell Melanoma Res 2011; 24(1): 136-47.
[http://dx.doi.org/10.1111/j.1755-148X.2010.00764.x] [PMID: 20979596]
[18]
Sheehan JM, Potten CS, Young AR. Tanning in human skin types II and III offers modest photoprotection against erythema. Photochem Photobiol 1998; 68(4): 588-92.
[http://dx.doi.org/10.1111/j.1751-1097.1998.tb02518.x] [PMID: 9796443]
[19]
Milon A, Bulliard JL, Vuilleumier L, Danuser B, Vernez D. Estimating the contribution of occupational solar ultraviolet exposure to skin cancer. Br J Dermatol 2014; 170(1): 157-64.
[http://dx.doi.org/10.1111/bjd.12604] [PMID: 23980934]
[20]
Scrivener Y, Grosshans E, Cribier B. Variations of basal cell carcinomas according to gender, age, location and histopathological subtype. Br J Dermatol 2002; 147(1): 41-7.
[http://dx.doi.org/10.1046/j.1365-2133.2002.04804.x] [PMID: 12100183]
[21]
Olsen CM, Zens MS, Stukel TA, et al. Nevus density and melanoma risk in women: A pooled analysis to test the divergent pathway hypothesis. Int J Cancer 2009; 124(4): 937-44.
[http://dx.doi.org/10.1002/ijc.24011] [PMID: 19035450]
[22]
Chang YM, Barrett JH, Bishop DT, et al. Sun exposure and melanoma risk at different latitudes: A pooled analysis of 5700 cases and 7216 controls. Int J Epidemiol 2009; 38(3): 814-30.
[http://dx.doi.org/10.1093/ije/dyp166] [PMID: 19359257]
[23]
Richards TB, Johnson CJ, Tatalovich Z, et al. Association between cutaneous melanoma incidence rates among white US residents and county-level estimates of solar ultraviolet exposure. J Am Acad Dermatol 2011; 65(5) (Suppl. 1): S50-7.
[http://dx.doi.org/10.1016/j.jaad.2011.04.035] [PMID: 22018067]
[24]
Wong JR, Harris JK, Rodriguez-Galindo C, Johnson KJ. Incidence of childhood and adolescent melanoma in the United States: 1973-2009. Pediatrics 2013; 131(5): 846-54.
[http://dx.doi.org/10.1542/peds.2012-2520] [PMID: 23589817]
[25]
Gallagher RP, Elwood JM, Yang CP. Is chronic sunlight exposure important in accounting for increases in melanoma incidence? Int J Cancer 1989; 44(5): 813-5.
[http://dx.doi.org/10.1002/ijc.2910440511] [PMID: 2583861]
[26]
Garland FC, White MR, Garland CF, Shaw E, Gorham ED. Occupational sunlight exposure and melanoma in the U.S. Navy. Arch Environ Health 1990; 45(5): 261-7.
[http://dx.doi.org/10.1080/00039896.1990.10118743] [PMID: 2256710]
[27]
Pukkala E, Martinsen JI, Lynge E, et al. Occupation and cancer - follow-up of 15 million people in five Nordic countries. Acta Oncol 2009; 48(5): 646-790.
[http://dx.doi.org/10.1080/02841860902913546] [PMID: 19925375]
[28]
Yang GB, Barnholtz-Sloan JS, Chen Y, Bordeaux JS. Risk and survival of cutaneous melanoma diagnosed subsequent to a previous cancer. Arch Dermatol 2011; 147(12): 1395-402.
[http://dx.doi.org/10.1001/archdermatol.2011.1133] [PMID: 22184761]
[29]
Omland SH, Gniadecki R, Hædersdal M, Helweg-Larsen J, Omland LH. Skin cancer risk in hematopoietic stem-cell transplant recipients compared with background population and renal transplant recipients: A population-based cohort study. JAMA Dermatol 2016; 152(2): 177-83.
[http://dx.doi.org/10.1001/jamadermatol.2015.3902] [PMID: 26454261]
[30]
Grinde B, Patil GG. Biophilia: Does visual contact with nature impact on health and well-being? Int J Environ Res Public Health 2009; 6(9): 2332-43.
[http://dx.doi.org/10.3390/ijerph6092332] [PMID: 19826546]
[31]
Thompson Coon J, Boddy K, Stein K, Whear R, Barton J, Depledge MH. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. Environ Sci Technol 2011; 45(5): 1761-72.
[http://dx.doi.org/10.1021/es102947t] [PMID: 21291246]
[32]
Protection S. Cancer trends progress report—2009/2010 update. National Cancer Institute 2010.
[33]
Kann L, Kinchen S, Shanklin SL, et al. Youth risk behavior surveillance--United States, 2013. MMWR Suppl 2014; 63(4): 1-168.
[PMID: 24918634]
[34]
El Ghissassi F, Baan R, Straif K, et al. A review of human carcinogens--part D: Radiation. Lancet Oncol 2009; 10(8): 751-2.
[http://dx.doi.org/10.1016/S1470-2045(09)70213-X] [PMID: 19655431]
[35]
Gerber B, Mathys P, Moser M, Bressoud D, Braun-Fahrländer C. Ultraviolet emission spectra of sunbeds. Photochem Photobiol 2002; 76(6): 664-8.
[http://dx.doi.org/10.1562/0031-8655(2002)076<0664:UESOS>2.0.CO;2] [PMID: 12511047]
[36]
Hornung RL, Magee KH, Lee WJ, Hansen LA, Hsieh YC. Tanning facility use: Are we exceeding food and drug administration limits? J Am Acad Dermatol 2003; 49(4): 655-61.
[http://dx.doi.org/10.1067/S0190-9622(03)01586-X] [PMID: 14512912]
[37]
Casari A, Chester J, Pellacani G. Actinic keratosis and non-invasive diagnostic techniques: An update. Biomedicines 2018; 6(1): 8.
[http://dx.doi.org/10.3390/biomedicines6010008] [PMID: 29316678]
[38]
Menge TD, Pellacani G. Advances in noninvasive imaging of melanaoma. Ingenta connect 2016; 35(1): 18-24.
[39]
Humphreys TR, Shah K, Wysong A, Lexa F, MacFarlane D. The role of imaging in the management of patients with nonmelanoma skin cancer: When is imaging necessary? J Am Acad Dermatol 2017; 76(4): 591-607.
[http://dx.doi.org/10.1016/j.jaad.2015.10.009] [PMID: 28325389]
[40]
MacFarlane D, Shah K, Wysong A, Wortsman X, Humphreys TR. The role of imaging in the management of patients with nonmelanoma skin cancer: Diagnostic modalities and applications. J Am Acad Dermatol 2017; 76(4): 579-88.
[http://dx.doi.org/10.1016/j.jaad.2015.10.010] [PMID: 28325388]
[41]
Deinlein T, Richtig G, Schwab C, et al. The use of dermatoscopy in diagnosis and therapy of nonmelanocytic skin cancer. J Dtsch Dermatol Ges 2016; 14(2): 144-51.
[http://dx.doi.org/10.1111/ddg.12903] [PMID: 26819109]
[42]
Ulrich M, Themstrup L, de Carvalho N, et al. Dynamic optical coherence tomography in dermatology. Dermatology 2016; 232(3): 298-311.
[http://dx.doi.org/10.1159/000444706] [PMID: 27104356]
[43]
Mu EW, Lewin JM, Stevenson ML, Meehan SA, Carucci JA, Gareau DS. Use of digitally stained multimodal confocal mosaic images to screen for nonmelanoma skin cancer. JAMA Dermatol 2016; 152(12): 1335-41.
[http://dx.doi.org/10.1001/jamadermatol.2016.2997] [PMID: 27603676]
[44]
Malvehy J, Pellacani G. Dermoscopy, confocal microscopy and other non-invasive tools for the diagnosis of non-melanoma skin cancers and other skin conditions. Acta Derm Venereol 2017; 218(97) (Suppl. 218): 22-30.
[http://dx.doi.org/10.2340/00015555-2720] [PMID: 28676883]
[45]
Apalla Z, Nashan D, Weller RB, Castellsagué X. Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther (Heidelb) 2017; 7(1) (Suppl. 1): 5-19.
[http://dx.doi.org/10.1007/s13555-016-0165-y] [PMID: 28150105]
[46]
DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin 2014; 64(1): 52-62.
[http://dx.doi.org/10.3322/caac.21203] [PMID: 24114568]
[47]
Neville JA, Welch E, Leffell DJ. Management of nonmelanoma skin cancer in 2007. Nat Clin Pract Oncol 2007; 4(8): 462-9.
[http://dx.doi.org/10.1038/ncponc0883] [PMID: 17657251]
[48]
Abide JM, Nahai F, Bennett RG. The meaning of surgical margins. Plast Reconstr Surg 1984; 73(3): 492-7.
[http://dx.doi.org/10.1097/00006534-198403000-00030] [PMID: 6701225]
[49]
Telfer NR, Colver GB, Morton CA. Guidelines for the management of basal cell carcinoma. Br J Dermatol 2008; 159(1): 35-48.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08666.x] [PMID: 18593385]
[50]
Silverman MK, Kopf AW, Bart RS, Grin CM, Levenstein MS. Recurrence rates of treated basal cell carcinomas. Part 3: Surgical excision. J Dermatol Surg Oncol 1992; 18(6): 471-6.
[http://dx.doi.org/10.1111/j.1524-4725.1992.tb03307.x] [PMID: 1592998]
[51]
Rhodes AR, Weinstock MA, Fitzpatrick TB, Mihm MC Jr, Sober AJ. Risk factors for cutaneous melanoma. A practical method of recognizing predisposed individuals. JAMA 1987; 258(21): 3146-54.
[http://dx.doi.org/10.1001/jama.1987.03400210088032] [PMID: 3312689]
[52]
Lee JH, Choi JW, Kim YS. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: A meta-analysis. Br J Dermatol 2011; 164(4): 776-84.
[http://dx.doi.org/10.1111/j.1365-2133.2010.10185.x] [PMID: 21166657]
[53]
Marsden JR, Newton-Bishop JA, Burrows L, et al. Revised UK guidelines for the management of cutaneous melanoma 2010. J Plast Reconstr Aesthet Surg 2010; 63(9): 1401-19.
[http://dx.doi.org/10.1016/j.bjps.2010.07.006] [PMID: 20728418]
[54]
Hogue L, Harvey VM. Basal cell carcinoma, squamous cell carcinoma, and cutaneous melanoma in skin of color patients. Dermatol Clin 2019; 37(4): 519-26.
[http://dx.doi.org/10.1016/j.det.2019.05.009] [PMID: 31466591]
[55]
Zghal NS, Derbel N. Melanoma skin cancer detection based on image processing. Curr Med Imaging Rev 2020; 16(1): 50-8.
[http://dx.doi.org/10.2174/1573405614666180911120546] [PMID: 31989893]
[56]
Kass AW, Witkin A, Terzopoulos D. Active contour modes. Int J Comput Vis 1988; 1(4): 321-31.
[http://dx.doi.org/10.1007/BF00133570]
[57]
Park EJ, Pezzuto JM. Botanicals in cancer chemoprevention. Cancer Metastasis Rev 2002; 21(3-4): 231-55.
[http://dx.doi.org/10.1023/A:1021254725842] [PMID: 12549763]
[58]
Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta, Gen Subj 2013; 1830(6): 3670-95.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008]
[59]
Ng CY, Yen H, Hsiao HY, Su SC. Phytochemicals in skin cancer prevention and treatment: An updated review. Int J Mol Sci 2018; 19(4): 941.
[http://dx.doi.org/10.3390/ijms19040941] [PMID: 29565284]
[60]
Wang S, Shen P, Zhou J, Lu Y. Diet phytochemicals and cutaneous carcinoma chemoprevention: A review. Pharmacol Res 2017; 119: 327-46.
[http://dx.doi.org/10.1016/j.phrs.2017.02.021] [PMID: 28242334]
[61]
Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils--a review. Food Chem Toxicol 2008; 46(2): 446-75.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[62]
Gautam N, Mantha AK, Mittal S. Essential oils and their constituents as anticancer agents: A mechanistic view. BioMed Res Int 2014; 2014: 154106.
[63]
Liu C, He SQ, Chen XQ, et al. Research advances in the treatment of melanoma by treat melanoma. Curr Top Med Chem 2015; 16(2): 242-50.
[http://dx.doi.org/10.2174/1568026615666150812121439] [PMID: 26265352]
[64]
Pal HC, Hunt KM, Diamond A, Elmets CA, Afaq F. Phytochemicals for the management of melanoma. Mini Rev Med Chem 2016; 16(12): 953-79.
[http://dx.doi.org/10.2174/1389557516666160211120157] [PMID: 26864554]
[65]
Mukherjee S, Ray S, Thakur RS. Design and evaluation of itraconazole loaded solid lipid nanoparticulate system for improving the anti-fungal therapy. Pak J Pharm Sci 2009; 22(2): 131-8.
[PMID: 19339221]
[66]
Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002; 54 (Suppl. 1): S131-55.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[67]
Geetha T, Kapila M, Prakash O, Deol PK, Kakkar V, Kaur IP. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer. J Drug Target 2015; 23(2): 159-69.
[http://dx.doi.org/10.3109/1061186X.2014.965717] [PMID: 25268273]
[68]
Orthaber K, Pristovnik M, Skok K, Perić B, Maver U. Skin cancer and its treatment: Novel treatment approaches with emphasis on nano-technology. J Nanomat 2017; 2017.
[69]
Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8): 711-23.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[70]
Bharadwaj R, Das PJ, Pal P, Mazumder B. Topical delivery of paclitaxel for treatment of skin cancer. Drug Dev Ind Pharm 2016; 42(9): 1482-94.
[http://dx.doi.org/10.3109/03639045.2016.1151028] [PMID: 26850463]
[71]
Zheng L, Gou M, Zhou S, et al. Antitumor activity of monomethoxy poly(ethylene glycol)-poly (ε-caprolactone) micelle-encapsulated doxorubicin against mouse melanoma. Oncol Rep 2011; 25(6): 1557-64.
[PMID: 21455590]
[72]
Polegato BF, Minicucci MF, Azevedo PS, et al. Acute doxorubicin-induced cardiotoxicity is associated with matrix metalloproteinase-2 alterations in rats. Cell Physiol Biochem 2015; 35(5): 1924-33.
[http://dx.doi.org/10.1159/000374001] [PMID: 25871735]
[73]
Wang S, Chen T, Chen R, Hu Y, Chen M, Wang Y. Emodin loaded solid lipid nanoparticles: Preparation, characterization and antitumor activity studies. Int J Pharm 2012; 430(1-2): 238-46.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.027] [PMID: 22465546]
[74]
Clemente N, Ferrara B, Gigliotti CL, et al. E. Solid lipid nanoparticles carrying temozolomide for melanoma treatment. Preliminary in vitro and in vivo studies. Int J Mol Sci 2018; 19(2): 255.
[http://dx.doi.org/10.3390/ijms19020255] [PMID: 29364157]
[75]
Jiang G, Li R, Tang J, et al. Formulation of temozolomide-loaded nanoparticles and their targeting potential to melanoma cells. Oncol Rep 2017; 37(2): 995-1001.
[http://dx.doi.org/10.3892/or.2016.5342] [PMID: 28035395]
[76]
Goto PL, Siqueira-Moura MP, Tedesco AC. Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photo-dynamic inactivation of melanoma cells. Int J Pharm 2017; 518(1-2): 228-41.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.004] [PMID: 28063902]
[77]
Abdel Fadeel DA, Kamel R, Fadel M. PEGylated lipid nanocarrier for enhancing photodynamic therapy of skin carcinoma using curcumin: In-vitro/in-vivo studies and histopathological examination. Sci Rep 2020; 10(1): 10435.
[http://dx.doi.org/10.1038/s41598-020-67349-z] [PMID: 32591621]
[78]
Mi Y, Liu X, Zhao J, Ding J, Feng SS. Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials 2012; 33(30): 7519-29.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.100] [PMID: 22809649]
[79]
He X, Liu F, Liu L, Duan T, Zhang H, Wang Z. Lectin-conjugated Fe2O3@Au core@Shell nanoparticles as dual mode contrast agents for in vivo detection of tumor. Mol Pharm 2014; 11(3): 738-45.
[http://dx.doi.org/10.1021/mp400456j] [PMID: 24472046]
[80]
Basti H, Ben Tahar L, Smiri LS, et al. Catechol derivatives-coated Fe3O4 and γ-Fe2O3 nanoparticles as potential MRI contrast agents. J Colloid Interface Sci 2010; 341(2): 248-54.
[http://dx.doi.org/10.1016/j.jcis.2009.09.043] [PMID: 19853857]
[81]
Wang ZY, Song J, Zhang DS. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells. World J Gastroenterol 2009; 15(24): 2995-3002.
[http://dx.doi.org/10.3748/wjg.15.2995] [PMID: 19554652]
[82]
Zhou J, Li J, Ding X, et al. Multifunctional Fe2O3@PPy-PEG nanocomposite for combination cancer therapy with MR imaging. Nanotechnology 2015; 26(42): 425101.
[http://dx.doi.org/10.1088/0957-4484/26/42/425101] [PMID: 26422003]
[83]
Williams HM. The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases. Bioscience Horizons: Int J Stud Res 2017; 10: hzx009.
[http://dx.doi.org/10.1093/biohorizons/hzx009]
[84]
Alvi IA, Madan J, Kaushik D, Sardana S, Pandey RS, Ali A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: Preparation, characterization, in-vitro release, and cytotoxicity analysis. Anticancer Drugs 2011; 22(8): 774-82.
[http://dx.doi.org/10.1097/CAD.0b013e328346c7d6] [PMID: 21799471]
[85]
Dorrani M, Garbuzenko OB, Minko T, Michniak-Kohn B. Development of edge-activated liposomes for siRNA delivery to human basal epidermis for melanoma therapy. J Control Release 2016; 228: 150-8.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.010] [PMID: 26965957]
[86]
Chen Z, Zhang T, Wu B, Zhang X. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes. Int J Nanomedicine 2016; 11: 991-1002. ß
[87]
Blueschke G, Boico A, Negussie AH. Enhanced drug delivery to the skin using liposomes. Plast Reconst Surg 2018; 6(7): e1739.
[88]
Petrilli R, Eloy JO, Saggioro FP, et al. Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection. J Control Release 2018; 283: 151-62.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.038] [PMID: 29864476]
[89]
Hafeez A, Kazmi I. Dacarbazine nanoparticle topical delivery system for the treatment of melanoma. Sci Rep 2017; 7(1): 16517.
[http://dx.doi.org/10.1038/s41598-017-16878-1] [PMID: 29184162]
[90]
Tarhini AA, Agarwala SS. Cutaneous melanoma: Available therapy for metastatic disease. Dermatol Ther 2006; 19(1): 19-25.
[http://dx.doi.org/10.1111/j.1529-8019.2005.00052.x] [PMID: 16405566]
[91]
Liu Q, Xu N, Liu L, et al. Dacarbazine-loaded hollow mesoporous silica nanoparticles grafted with folic acid for enhancing antimetastatic melanoma response. ACS Appl Mater Interfaces 2017; 9(26): 21673-87.
[http://dx.doi.org/10.1021/acsami.7b05278] [PMID: 28590113]
[92]
Dianzani C, Zara GP, Maina G. Drug delivery nanoparticles in skin cancers. BioMed Res Int 2014; 2014: 895986.
[93]
Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 2007; 65(3): 259-69.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.009] [PMID: 17196803]
[94]
Reddy BP, Yadav HK, Nagesha DK, Raizaday A, Karim A. Polymeric micelles as novel carriers for poorly soluble drugs. J Nanosci Nanotechnol 2015; 15(6): 4009-18.
[http://dx.doi.org/10.1166/jnn.2015.9713] [PMID: 26369007]
[95]
Zhang L, Radovic-Moreno AF, Alexis F, et al. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconju-gates. ChemMedChem 2007; 2(9): 1268-71.
[http://dx.doi.org/10.1002/cmdc.200700121] [PMID: 17600796]
[96]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[97]
Coimbra M, Rijcken CJ, Stigter M, Hennink WE, Storm G, Schiffelers RM. Antitumor efficacy of dexamethasone-loaded core-crosslinked polymeric micelles. J Control Release 2012; 163(3): 361-7.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.014] [PMID: 23041274]
[98]
Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006; 103(16): 6315-20.
[http://dx.doi.org/10.1073/pnas.0601755103] [PMID: 16606824]
[99]
Batheja P, Sheihet L, Kohn J, Singer AJ, Michniak-Kohn B. Topical drug delivery by a polymeric nanosphere gel: Formulation optimization and in vitro and in vivo skin distribution studies. J Control Release 2011; 149(2): 159-67.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.005] [PMID: 20950659]
[100]
Liang F, Chen B. A review on biomedical applications of single-walled carbon nanotubes. Curr Med Chem 2010; 17(1): 10-24.
[http://dx.doi.org/10.2174/092986710789957742] [PMID: 19941481]
[101]
Tessonnier JP, Su DS. Recent progress on the growth mechanism of carbon nanotubes: A review. ChemSusChem 2011; 4(7): 824-47.
[http://dx.doi.org/10.1002/cssc.201100175] [PMID: 21732543]
[102]
Polizu S, Savadogo O, Poulin P, Yahia L. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J Nanosci Nanotechnol 2006; 6(7): 1883-904.
[http://dx.doi.org/10.1166/jnn.2006.197] [PMID: 17025102]
[103]
McDevitt MR, Chattopadhyay D, Kappel BJ, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007; 48(7): 1180-9.
[http://dx.doi.org/10.2967/jnumed.106.039131] [PMID: 17607040]
[104]
Naderi N, Madani SY, Ferguson E, Mosahebi A, Seifalian AM. Carbon nanotubes in the diagnosis and treatment of malignant melanoma. Anticancer Agents Med Chem 2013; 13(1): 171-85.
[http://dx.doi.org/10.2174/187152013804487335] [PMID: 22721386]
[105]
Ogbodu RO, Ndhundhuma I, Karsten A, Nyokong T. Photodynamic therapy effect of zinc monoamino phthalocyanine–folic acid conjugate adsorbed on single walled carbon nanotubes on melanoma cells. Spectrochimi Acta A Mol Biomol Spectrosc 2015; 137: 1120-5.
[http://dx.doi.org/10.1016/j.saa.2014.09.033]
[106]
Ghaderi S, Ramesh B, Seifalian AM. Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: A review. J Drug Target 2011; 19(7): 475-86.
[http://dx.doi.org/10.3109/1061186X.2010.526227] [PMID: 20964619]
[107]
Algar WR, Tavares AJ, Krull UJ. Beyond labels: A review of the application of quantum dots as integrated components of assays, bi-oprobes, and biosensors utilizing optical transduction. Anal Chim Acta 2010; 673(1): 1-25.
[http://dx.doi.org/10.1016/j.aca.2010.05.026] [PMID: 20630173]
[108]
Fakhri A, Tahami S, Nejad PA. Preparation and characterization of Fe3O4-Ag2O quantum dots decorated cellulose nanofibers as a carrier of anticancer drugs for skin cancer. J Photochem Photobiol B 2017; 175: 83-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.08.032] [PMID: 28865318]
[109]
Zavaleta CL, Smith BR, Walton I, et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci USA 2009; 106(32): 13511-6.
[http://dx.doi.org/10.1073/pnas.0813327106] [PMID: 19666578]
[110]
Woodard JR, Hilldore AJ, Lan SK, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 2007; 28(1): 45-54.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.021] [PMID: 16963118]
[111]
Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf B Biointerfaces 2008; 66(2): 274-80.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.004] [PMID: 18722754]
[112]
Safwat MA, Soliman GM, Sayed D, Attia MA. Fluorouracil-loaded gold nanoparticles for the treatment of skin cancer: Development, in vitro characterization, and in vivo evaluation in a mouse skin cancer xenograft model. Mol Pharm 2018; 15(6): 2194-205.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00047] [PMID: 29701979]
[113]
Grabowska-Jadach I, Kalinowska D, Drozd M, Pietrzak M. Synthesis, characterization and application of plasmonic hollow gold nanoshells in a photothermal therapy-New particles for theranostics. Biomed Pharmacother 2019; 111: 1147-55.
[http://dx.doi.org/10.1016/j.biopha.2019.01.037] [PMID: 30841428]
[114]
Hou X, Zhou H, Wang L, et al. Multifunctional near-infrared dye-magnetic nanoparticles for bioimaging and cancer therapy. Cancer Lett 2017; 390: 168-75.
[http://dx.doi.org/10.1016/j.canlet.2016.12.026] [PMID: 28040545]
[115]
Sun M, Peng D, Hao H, et al. Thermally triggered in situ assembly of gold nanoparticles for cancer multimodal imaging and photothermal therapy. ACS Appl Mater Interfaces 2017; 9(12): 10453-60.
[http://dx.doi.org/10.1021/acsami.6b16408] [PMID: 28271705]
[116]
Mioc M, Pavel IZ, Ghiulai R, et al. The cytotoxic effects of betulin-conjugated gold nanoparticles as stable formulations in normal and melanoma cells. Front Pharmacol 2018; 9: 429.
[http://dx.doi.org/10.3389/fphar.2018.00429] [PMID: 29773989]
[117]
Hearing V, Yamaguchi Y, Passeron T. Treatment of skin conditions by Dickkopf1 (DKK1). US Patent 8,476,236, 2013.
[118]
Privitera JR. Natural liniment for treatment of skin cancers. US Patent 8,333,961, 2012.
[119]
Chan A, Neyndorff H. Photodynamic therapy for the treatment of non-melanoma skin cancer. US Patent 10/310668,
[120]
Sawaya FJ. Composition for treatment, inhibition and attenuation of melanoma virus and prevention of skin cancers. US Patent 16/109719, 2020.
[121]
Kouji H, Odagami T. Treatment of hyperproliferative and pre-cancerous skin diseases using an inhibitor of cbp/catenin. US Patent 14/436672, 2015.
[122]
Xu X, Liu S, Rook A, Karande P. Resiquimod topical and injectable compositions for the treatment of neoplastic skin conditions. US Patent 15/740147, 2018.
[123]
Suddes AJ, Catchpole OJ. Propolis and extracts thereof for the treatment of skin cancers and improvement of skin health. US Patent 15/326127, 2017.
[124]
Suh KS, Sarojini S, Tuna M, et al. Method for treating skin cancer using radiation therapy. US Patent 10195466, 2019.
[125]
Lowy I. Methods of treating skin cancer by administering a PD-1 inhibitor. US Patent 10457725, 2019.
[126]
Brenneisen P, Seal S. Coated nanoparticle therapy for skin cancer. US Patent 13/903931, 2013.
[127]
Sánchez PC, Gallego GG, de Tejada Morgan IS, et al. Use of 2, 5-dihydroxybenzene compounds and derivatives for the treatment of skin cancer. US Patent 8101660, 2012.
[128]
Twilley D, Lall N. Extracts and compositions of helichrysum odoratissimum for preventing and treating skin cancers. WO Patent 2015/049666, 2015.
[129]
Stockfleth E. Use of a polyphenol for the treatment of a cancerous or precancerous lesion of the skin. US Patent 8455022, 2013.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy