Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Pathogenic Roles of m6A Modification in Viral Infection and Virus-driven Carcinogenesis

Author(s): Jia-Feng Wang, Wei Cai, Fen-Sheng Qiu and Chen-Huan Yu*

Volume 22, Issue 10, 2022

Published on: 24 June, 2022

Page: [1009 - 1017] Pages: 9

DOI: 10.2174/2772432817666220412112759

Price: $65

Open Access Journals Promotions 2
Abstract

N6-methyladenosine (m6A) is a prevalent modification of RNA in eukaryotes, bacteria, and viruses. It is highly conserved and can affect the structure, localization, and biology functions of RNA. In recent years, multiple m6A methylation sites have been identified in the viral RNA genome and transcripts of DNA viruses. This modification occurs commonly during the primary infection and is dynamically regulated by a methyltransferase (writers), demethylase (eraser) and m6A-binding proteins (readers) within the host cells. The abnormal m6A modification not only affects the replication of pathogenic viruses and host immune response but also contributes to the pathogenesis of virus-induced cancers. In this review, we highlight recent advances on the mechanism of m6A modification on viral replication, host immune response and carcinogenesis to provide a novel insight for epigenetic prevention of viral infection and virus-driven carcinogenesis.

Keywords: m6A modification, viral replication, transcript stability, immune escape, carcinogenesis, virus-driven carcinogenesis, viral infection.

Next »
Graphical Abstract
[1]
Desrosiers, R.; Friderici, K.; Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA, 1974, 71(10), 3971-3975.
[http://dx.doi.org/10.1073/pnas.71.10.3971] [PMID: 4372599]
[2]
Perry, R.P.; Kelley, D.E. Existence of methylated messenger RNA in mouse L cells. Cell, 1974, 1(1), 37-42.
[http://dx.doi.org/10.1016/0092-8674(74)90153-6] [PMID: 4370211]
[3]
Shimba, S.; Bokar, J.A.; Rottman, F.; Reddy, R. Accurate and efficient N-6-adenosine methylation in spliceosomal U6 small nuclear RNA by HeLa cell extract in vitro. Nucleic Acids Res., 1995, 23(13), 2421-2426.
[http://dx.doi.org/10.1093/nar/23.13.2421] [PMID: 7630720]
[4]
Luo, G.Z.; MacQueen, A.; Zheng, G.; Duan, H.; Dore, L.C.; Lu, Z.; Liu, J.; Chen, K.; Jia, G.; Bergelson, J.; He, C. Unique features of the m6A methylome in Arabidopsis thaliana. Nat. Commun., 2014, 5(1), 5630.
[http://dx.doi.org/10.1038/ncomms6630] [PMID: 25430002]
[5]
Liang, Z.; Riaz, A.; Chachar, S.; Ding, Y.; Du, H.; Gu, X. Epigenetic modifications of mRNA and DNA in plants. Mol. Plant, 2020, 13(1), 14-30.
[http://dx.doi.org/10.1016/j.molp.2019.12.007] [PMID: 31863849]
[6]
Baquero-Perez, B.; Geers, D.; Díez, J. From A to m6A: The emerging viral epitranscriptome. Viruses, 2021, 13(6), 1049.
[http://dx.doi.org/10.3390/v13061049] [PMID: 34205979]
[7]
Ishitani, R.; Yokoyama, S.; Nureki, O. Structure, dynamics, and function of RNA modification enzymes. Curr. Opin. Struct. Biol., 2008, 18(3), 330-339.
[http://dx.doi.org/10.1016/j.sbi.2008.05.003] [PMID: 18539024]
[8]
Schaefer, M.R. The regulation of rna modification systems: The next frontier in epitranscriptomics? Genes (Basel), 2021, 12(3), 345.
[http://dx.doi.org/10.3390/genes12030345] [PMID: 33652758]
[9]
Sánchez-Vásquez, E.; Alata Jimenez, N.; Vázquez, N.A.; Strobl-Mazzulla, P.H. Emerging role of dynamic RNA modifications during animal development. Mech. Dev., 2018, 154, 24-32.
[http://dx.doi.org/10.1016/j.mod.2018.04.002] [PMID: 29654887]
[10]
Levi, O.; Arava, Y.S. RNA modifications as a common denominator between tRNA and mRNA. Curr. Genet., 2021, 67(4), 545-551.
[http://dx.doi.org/10.1007/s00294-021-01168-1] [PMID: 33683402]
[11]
Liu, H.; Xu, Y.; Yao, B.; Sui, T.; Lai, L.; Li, Z. A novel N6-methyladenosine (m6A)-dependent fate decision for the lncRNA THOR. Cell Death Dis., 2020, 11(8), 613.
[http://dx.doi.org/10.1038/s41419-020-02833-y] [PMID: 32792482]
[12]
Zheng, L.; Tang, X.; Lu, M.; Sun, S.; Xie, S.; Cai, J.; Zan, J. microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting m6A Reader YTHDF1 to inhibit p65 mRNA translation. Int. Immunopharmacol., 2020, 88, 106937.
[http://dx.doi.org/10.1016/j.intimp.2020.106937] [PMID: 32890792]
[13]
Zheng, X.; Peng, Q.; Wang, L.; Zhang, X.; Huang, L.; Wang, J.; Qin, Z. Serine/arginine-rich splicing factors: The bridge linking alternative splicing and cancer. Int. J. Biol. Sci., 2020, 16(13), 2442-2453.
[http://dx.doi.org/10.7150/ijbs.46751] [PMID: 32760211]
[14]
Watabe, E.; Togo-Ohno, M.; Ishigami, Y.; Wani, S.; Hirota, K.; Kimura-Asami, M.; Hasan, S.; Takei, S.; Fukamizu, A.; Suzuki, Y.; Suzuki, T.; Kuroyanagi, H. m6 A-mediated alternative splicing coupled with nonsense-mediated mRNA decay regulates SAM synthetase homeostasis. EMBO J., 2021, 40(14), e106434.
[http://dx.doi.org/10.15252/embj.2020106434] [PMID: 34152017]
[15]
Mendel, M.; Delaney, K.; Pandey, R.R.; Chen, K.M.; Wenda, J.M.; Vågbø, C.B.; Steiner, F.A.; Homolka, D.; Pillai, R.S. Splice site m6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell, 2021, 184(12), 3125-3142.e25.
[http://dx.doi.org/10.1016/j.cell.2021.03.062] [PMID: 33930289]
[16]
Wen, K.; Zhang, Y.; Li, Y.; Wang, Q.; Sun, J. Comprehensive analysis of transcriptome-wide m(6)A methylome in the anterior capsule of the lens of high myopia patients. Epigenetics, 2020, 1-14.
[PMID: 33108260]
[17]
Sun, H.; Li, K.; Zhang, X.; Liu, J.; Zhang, M.; Meng, H.; Yi, C. m6Am-seq reveals the dynamic m6Am methylation in the human transcriptome. Nat. Commun., 2021, 12(1), 4778.
[http://dx.doi.org/10.1038/s41467-021-25105-5] [PMID: 34362929]
[18]
Chen, X.; Wang, J.; Tahir, M.; Zhang, F.; Ran, Y.; Liu, Z.; Wang, J. Current insights into the implications of m6A RNA methylation and autophagy interaction in human diseases. Cell Biosci., 2021, 11(1), 147.
[http://dx.doi.org/10.1186/s13578-021-00661-x] [PMID: 34315538]
[19]
Ma, S.; Yan, J.; Barr, T.; Zhang, J.; Chen, Z.; Wang, L.S.; Sun, J.C.; Chen, J.; Caligiuri, M.A.; Yu, J. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J. Exp. Med., 2021, 218(8), e20210279.
[http://dx.doi.org/10.1084/jem.20210279] [PMID: 34160549]
[20]
Srinivas, K.P.; Depledge, D.P.; Abebe, J.S.; Rice, S.A.; Mohr, I.; Wilson, A.C. Widespread remodeling of the m6A RNA-modification landscape by a viral regulator of RNA processing and export. Proc. Natl. Acad. Sci. USA, 2021, 118(30), e2104805118.
[http://dx.doi.org/10.1073/pnas.2104805118] [PMID: 34282019]
[21]
Jiang, X.; Liu, B.; Nie, Z.; Duan, L.; Xiong, Q.; Jin, Z.; Yang, C.; Chen, Y. The role of m6A modification in the biological functions and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 74.
[http://dx.doi.org/10.1038/s41392-020-00450-x] [PMID: 33611339]
[22]
Tong, J.; Flavell, R.A.; Li, H.B. RNA m6A modification and its function in diseases. Front. Med., 2018, 12(4), 481-489.
[http://dx.doi.org/10.1007/s11684-018-0654-8] [PMID: 30097961]
[23]
Zeng, C.; Huang, W.; Li, Y.; Weng, H. Roles of METTL3 in cancer: Mechanisms and therapeutic targeting. J. Hematol. Oncol., 2020, 13(1), 117.
[http://dx.doi.org/10.1186/s13045-020-00951-w] [PMID: 32854717]
[24]
Liu, S.; Zhuo, L.; Wang, J.; Zhang, Q.; Li, Q.; Li, G.; Yan, L.; Jin, T.; Pan, T.; Sui, X.; Lv, Q.; Xie, T. METTL3 plays multiple functions in biological processes. Am. J. Cancer Res., 2020, 10(6), 1631-1646.
[PMID: 32642280]
[25]
Zhu, Z.M.; Huo, F.C.; Pei, D.S. Function and evolution of RNA N6-methyladenosine modification. Int. J. Biol. Sci., 2020, 16(11), 1929-1940.
[http://dx.doi.org/10.7150/ijbs.45231] [PMID: 32398960]
[26]
Fisher, A.J.; Beal, P.A. Structural basis for eukaryotic mRNA modification. Curr. Opin. Struct. Biol., 2018, 53, 59-68.
[http://dx.doi.org/10.1016/j.sbi.2018.05.003] [PMID: 29913347]
[27]
Tang, J.; Han, T.; Tong, W.; Zhao, J.; Wang, W.N. 6-methyladenosine (m6A) methyltransferase KIAA1429 accelerates the gefitinib resistance of non-small-cell lung cancer. Cell Death Discov., 2021, 7(1), 108.
[http://dx.doi.org/10.1038/s41420-021-00488-y] [PMID: 34001850]
[28]
Lan, N.; Lu, Y.; Zhang, Y.; Pu, S.; Xi, H.; Nie, X.; Liu, J.; Yuan, W. FTO - a common genetic basis for obesity and cancer. Front. Genet., 2020, 11, 559138.
[http://dx.doi.org/10.3389/fgene.2020.559138] [PMID: 33304380]
[29]
Wang, J.; Wang, J.; Gu, Q.; Ma, Y.; Yang, Y.; Zhu, J.; Zhang, Q. The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell Int., 2020, 20(1), 347.
[http://dx.doi.org/10.1186/s12935-020-01450-1] [PMID: 32742194]
[30]
Zheng, G.; Dahl, J.A.; Niu, Y.; Fedorcsak, P.; Huang, C.M.; Li, C.J.; Vågbø, C.B.; Shi, Y.; Wang, W.L.; Song, S.H.; Lu, Z.; Bosmans, R.P.; Dai, Q.; Hao, Y.J.; Yang, X.; Zhao, W.M.; Tong, W.M.; Wang, X.J.; Bogdan, F.; Furu, K.; Fu, Y.; Jia, G.; Zhao, X.; Liu, J.; Krokan, H.E.; Klungland, A.; Yang, Y.G.; He, C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell, 2013, 49(1), 18-29.
[http://dx.doi.org/10.1016/j.molcel.2012.10.015] [PMID: 23177736]
[31]
Fei, Q.; Zou, Z.; Roundtree, I.A.; Sun, H.L.; He, C. YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators. PLoS Biol., 2020, 18(4), e3000664.
[http://dx.doi.org/10.1371/journal.pbio.3000664] [PMID: 32267835]
[32]
Xiao, W.; Adhikari, S.; Dahal, U.; Chen, Y.S.; Hao, Y.J.; Sun, B.F.; Sun, H.Y.; Li, A.; Ping, X.L.; Lai, W.Y.; Wang, X.; Ma, H.L.; Huang, C.M.; Yang, Y.; Huang, N.; Jiang, G.B.; Wang, H.L.; Zhou, Q.; Wang, X.J.; Zhao, Y.L.; Yang, Y.G. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol. Cell, 2016, 61(4), 507-519.
[http://dx.doi.org/10.1016/j.molcel.2016.01.012] [PMID: 26876937]
[33]
Fischl, H.; Neve, J.; Wang, Z.; Patel, R.; Louey, A.; Tian, B.; Furger, A. hnRNPC regulates cancer-specific alternative cleavage and polyadenylation profiles. Nucleic Acids Res., 2019, 47(14), 7580-7591.
[http://dx.doi.org/10.1093/nar/gkz461] [PMID: 31147722]
[34]
Dong, G.; Yu, J.; Shan, G.; Su, L.; Yu, N.; Yang, S. N6-methyladenosine methyltransferase METTL3 Promotes angiogenesis and atherosclerosis by upregulating the JAK2/STAT3 pathway via m6A reader IGF2BP1. Front. Cell Dev. Biol., 2021, 9, 731810.
[http://dx.doi.org/10.3389/fcell.2021.731810] [PMID: 34950654]
[35]
Xie, F.; Huang, C.; Liu, F.; Zhang, H.; Xiao, X.; Sun, J.; Zhang, X.; Jiang, G. CircPTPRA blocks the recognition of RNA N6-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Mol. Cancer, 2021, 20(1), 68.
[http://dx.doi.org/10.1186/s12943-021-01359-x] [PMID: 33853613]
[36]
Yang, B.; Wang, J.Q.; Tan, Y.; Yuan, R.; Chen, Z.S.; Zou, C. RNA methylation and cancer treatment. Pharmacol. Res., 2021, 174, 105937.
[http://dx.doi.org/10.1016/j.phrs.2021.105937] [PMID: 34648969]
[37]
Zhang, X.; Hao, H.; Ma, L.; Zhang, Y.; Hu, X.; Chen, Z.; Liu, D.; Yuan, J.; Hu, Z.; Guan, W. Methyltransferase-like 3 modulates severe acute respiratory syndrome coronavirus-2 RNA N6-methyladenosine modification and replication. MBio, 2021, 12(4), e0106721.
[http://dx.doi.org/10.1128/mBio.01067-21] [PMID: 34225491]
[38]
Li, N.; Hui, H.; Bray, B.; Gonzalez, G.M.; Zeller, M.; Anderson, K.G.; Knight, R.; Smith, D.; Wang, Y.; Carlin, A.F.; Rana, T.M. METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection. Cell Rep., 2021, 35(6), 109091.
[http://dx.doi.org/10.1016/j.celrep.2021.109091] [PMID: 33961823]
[39]
Lichinchi, G.; Gao, S.; Saletore, Y.; Gonzalez, G.M.; Bansal, V.; Wang, Y.; Mason, C.E.; Rana, T.M. Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat. Microbiol., 2016, 1(4), 16011.
[http://dx.doi.org/10.1038/nmicrobiol.2016.11] [PMID: 27572442]
[40]
Tirumuru, N.; Zhao, B.S.; Lu, W.; Lu, Z.; He, C.; Wu, L.N. (6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. eLife, 2016, 5, 5.
[http://dx.doi.org/10.7554/eLife.15528] [PMID: 27371828]
[41]
Kennedy, E.M.; Bogerd, H.P.; Kornepati, A.V.; Kang, D.; Ghoshal, D.; Marshall, J.B.; Poling, B.C.; Tsai, K.; Gokhale, N.S.; Horner, S.M.; Cullen, B.R. Posttranscriptional m(6)A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe, 2016, 19(5), 675-685.
[http://dx.doi.org/10.1016/j.chom.2016.04.002] [PMID: 27117054]
[42]
Tan, B.; Gao, S.J. RNA epitranscriptomics: Regulation of infection of RNA and DNA viruses by N6 -methyladenosine (m6 A). Rev. Med. Virol., 2018, 28(4), e1983.
[http://dx.doi.org/10.1002/rmv.1983] [PMID: 29698584]
[43]
Courtney, D.G.; Kennedy, E.M.; Dumm, R.E.; Bogerd, H.P.; Tsai, K.; Heaton, N.S.; Cullen, B.R. Epitranscriptomic Enhancement of influenza a virus gene expression and replication. Cell Host Microbe, 2017, 22(3), 377-386.e5.
[http://dx.doi.org/10.1016/j.chom.2017.08.004] [PMID: 28910636]
[44]
Hao, H.; Hao, S.; Chen, H.; Chen, Z.; Zhang, Y.; Wang, J.; Wang, H.; Zhang, B.; Qiu, J.; Deng, F.; Guan, W. N6-methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Res., 2019, 47(1), 362-374.
[http://dx.doi.org/10.1093/nar/gky1007] [PMID: 30364964]
[45]
Xue, M.; Zhao, B.S.; Zhang, Z.; Lu, M.; Harder, O.; Chen, P.; Lu, Z.; Li, A.; Ma, Y.; Xu, Y.; Liang, X.; Zhou, J.; Niewiesk, S.; Peeples, M.E.; He, C.; Li, J. Viral N6-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus. Nat. Commun., 2019, 10(1), 4595.
[http://dx.doi.org/10.1038/s41467-019-12504-y] [PMID: 31597913]
[46]
Dai, D.L.; Li, X.; Wang, L.; Xie, C.; Jin, Y.; Zeng, M.S.; Zuo, Z.; Xia, T.L. Identification of an N6-methyladenosine-mediated positive feedback loop that promotes Epstein-Barr virus infection. J. Biol. Chem., 2021, 296, 100547.
[http://dx.doi.org/10.1016/j.jbc.2021.100547] [PMID: 33741341]
[47]
Lang, F.; Singh, R.K.; Pei, Y.; Zhang, S.; Sun, K.; Robertson, E.S. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis. PLoS Pathog., 2019, 15(6), e1007796.
[http://dx.doi.org/10.1371/journal.ppat.1007796] [PMID: 31226160]
[48]
Xiao, H.; Zhang, Y.; Sun, L.; Zhao, Z.; Liu, W.; Luo, B. EBV downregulates the m6A “writer” WTAP in EBV-associated gastric carcinoma. Virus Res., 2021, 304, 198510.
[http://dx.doi.org/10.1016/j.virusres.2021.198510] [PMID: 34329695]
[49]
Tan, B.; Liu, H.; Zhang, S.; da Silva, S.R.; Zhang, L.; Meng, J.; Cui, X.; Yuan, H.; Sorel, O.; Zhang, S.W.; Huang, Y.; Gao, S.J. Viral and cellular N6-methyladenosine and N6,2′-O-dimethyladenosine epitranscriptomes in the KSHV life cycle. Nat. Microbiol., 2018, 3(1), 108-120.
[http://dx.doi.org/10.1038/s41564-017-0056-8] [PMID: 29109479]
[50]
Hesser, C.R.; Karijolich, J.; Dominissini, D.; He, C.; Glaunsinger, B.A. N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi’s sarcoma-associated herpesvirus infection. PLoS Pathog., 2018, 14(4), e1006995.
[http://dx.doi.org/10.1371/journal.ppat.1006995] [PMID: 29659627]
[51]
Lichinchi, G.; Zhao, B.S.; Wu, Y.; Lu, Z.; Qin, Y.; He, C.; Rana, T.M. Dynamics of human and viral RNA methylation during zika virus infection. Cell Host Microbe, 2016, 20(5), 666-673.
[http://dx.doi.org/10.1016/j.chom.2016.10.002] [PMID: 27773536]
[52]
Gokhale, N.S.; McIntyre, A.B.R.; McFadden, M.J.; Roder, A.E.; Kennedy, E.M.; Gandara, J.A.; Hopcraft, S.E.; Quicke, K.M.; Vazquez, C.; Willer, J.; Ilkayeva, O.R.; Law, B.A.; Holley, C.L.; Garcia-Blanco, M.A.; Evans, M.J.; Suthar, M.S.; Bradrick, S.S.; Mason, C.E.; Horner, S.M. N6-methyladenosine in flaviviridae viral RNA genomes regulates infection. Cell Host Microbe, 2016, 20(5), 654-665.
[http://dx.doi.org/10.1016/j.chom.2016.09.015] [PMID: 27773535]
[53]
Imam, H.; Khan, M.; Gokhale, N.S.; McIntyre, A.B.R.; Kim, G.W.; Jang, J.Y.; Kim, S.J.; Mason, C.E.; Horner, S.M.; Siddiqui, A. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proc. Natl. Acad. Sci. USA, 2018, 115(35), 8829-8834.
[http://dx.doi.org/10.1073/pnas.1808319115] [PMID: 30104368]
[54]
Tartey, S.; Takeuchi, O. Pathogen recognition and Toll-like receptor targeted therapeutics in innate immune cells. Int. Rev. Immunol., 2017, 36(2), 57-73.
[http://dx.doi.org/10.1080/08830185.2016.1261318] [PMID: 28060562]
[55]
Majzoub, K.; Wrensch, F.; Baumert, T.F. The innate antiviral response in animals: An evolutionary perspective from flagellates to humans. Viruses, 2019, 11(8), E758.
[http://dx.doi.org/10.3390/v11080758] [PMID: 31426357]
[56]
Winkler, R.; Gillis, E.; Lasman, L.; Safra, M.; Geula, S.; Soyris, C.; Nachshon, A.; Tai-Schmiedel, J.; Friedman, N.; Le-Trilling, V.T.K.; Trilling, M.; Mandelboim, M.; Hanna, J.H.; Schwartz, S.; Stern-Ginossar, N. m6A modification controls the innate immune response to infection by targeting type I interferons. Nat. Immunol., 2019, 20(2), 173-182.
[http://dx.doi.org/10.1038/s41590-018-0275-z] [PMID: 30559377]
[57]
Lichinchi, G.; Rana, T.M. Profiling of N(6)-methyladenosine in zika virus RNA and host cellular mRNA. Methods Mol. Biol., 1870, 2019, 209-218.
[58]
Soliman, S.H.A.; Orlacchio, A.; Verginelli, F. Viral manipulation of the host epigenome as a driver of virus-induced oncogenesis. Microorganisms, 2021, 9(6), 1179.
[http://dx.doi.org/10.3390/microorganisms9061179] [PMID: 34070716]
[59]
Hatano, Y.; Ideta, T.; Hirata, A.; Hatano, K.; Tomita, H.; Okada, H.; Shimizu, M.; Tanaka, T.; Hara, A. Virus-driven carcinogenesis. Cancers (Basel), 2021, 13(11), 2625.
[http://dx.doi.org/10.3390/cancers13112625] [PMID: 34071792]
[60]
Pietropaolo, V.; Prezioso, C.; Moens, U. Role of virus-induced host cell epigenetic changes in cancer. Int. J. Mol. Sci., 2021, 22(15), 8346.
[http://dx.doi.org/10.3390/ijms22158346] [PMID: 34361112]
[61]
Kgatle, M.M.; Spearman, C.W.; Kalla, A.A.; Hairwadzi, H.N. DNA oncogenic virus-induced oxidative stress, genomic damage, and aberrant epigenetic alterations. Oxid. Med. Cell. Longev., 2017, 2017, 3179421.
[http://dx.doi.org/10.1155/2017/3179421] [PMID: 28740569]
[62]
Zheng, Q.; Hou, J.; Zhou, Y.; Li, Z.; Cao, X. The RNA helicase DDX46 inhibits innate immunity by entrapping m6A-demethylated antiviral transcripts in the nucleus. Nat. Immunol., 2017, 18(10), 1094-1103.
[http://dx.doi.org/10.1038/ni.3830] [PMID: 28846086]
[63]
Chen, L.; Xu, M.; Zhong, W.; Hu, Y.; Wang, G. Knockdown of DDX46 suppresses the proliferation and invasion of gastric cancer through inactivating Akt/GSK-3β/β-catenin pathway. Exp. Cell Res., 2021, 399(1), 112448.
[http://dx.doi.org/10.1016/j.yexcr.2020.112448] [PMID: 33347858]
[64]
Han, D.; Liu, J.; Chen, C.; Dong, L.; Liu, Y.; Chang, R.; Huang, X.; Liu, Y.; Wang, J.; Dougherty, U.; Bissonnette, M.B.; Shen, B.; Weichselbaum, R.R.; Xu, M.M.; He, C. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature, 2019, 566(7743), 270-274.
[http://dx.doi.org/10.1038/s41586-019-0916-x] [PMID: 30728504]
[65]
Li, H.B.; Tong, J.; Zhu, S.; Batista, P.J.; Duffy, E.E.; Zhao, J.; Bailis, W.; Cao, G.; Kroehling, L.; Chen, Y.; Wang, G.; Broughton, J.P.; Chen, Y.G.; Kluger, Y.; Simon, M.D.; Chang, H.Y.; Yin, Z.; Flavell, R.A. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature, 2017, 548(7667), 338-342.
[http://dx.doi.org/10.1038/nature23450] [PMID: 28792938]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy