Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Quantum Dots as Theranostic Agents: Recent Advancements, Surface Modifications, and Future Applications

Author(s): Bhushan Phafat and Sankha Bhattacharya*

Volume 23, Issue 12, 2023

Published on: 10 August, 2022

Page: [1257 - 1272] Pages: 16

DOI: 10.2174/1389557522666220405202222

Abstract

The use of quantum technology to deliver drugs has the potential to increase the efficacy of many rare disease treatments. Semiconductor nanoparticles are a new type of treatment for life-threatening disorders. The term "quantum dots" refers to semiconductor nanoparticles. These quantum dots have a one-of-a-kind shape, size, fluorescence characteristics, and shape-dependent optoelectronic capacities. As a result, we believe that quantum dots (QDs) has the potential to be destined as medication carriers, biosensors, etc. Due to improvements in research, medicinal, and clinical domains, an in-depth examination of quantum dots is now possible. Quantum dots are also classed as carbon-based quantum dots, graphene-based quantum dots, and cadmium-based quantum dots, with variations in their main structure, leading to the discovery of more comparable and diversified quantum dots. Semiconductor quantum dots, or QDs, have also made tremendous progress in the field of fluorescence bioimaging research. After examining their in vitro and in vivo applications, we may currently use QDs as agents for gene transport, medication delivery, and enhancing the biocompatibility of other medications. This article discusses the significant breakthroughs and challenges in the field of quantum dots as biosensors for bioimaging, surface changes, quantum dots in the treatment of numerous diseases, and future features of quantum dots and their improvements in biomedical applications.

Keywords: Quantum dots, semiconductor, biosensors, gene delivery, drug delivery, bioimaging.

Graphical Abstract
[1]
Yang, L.; Wei, J.; Ma, Z.; Song, P.; Ma, J.; Zhao, Y.; Huang, Z.; Zhang, M.; Yang, F.; Wang, X. The fabrication of micro/nano structures by laser machining. Nanomaterials (Basel), 2019, 9(12), 1789.
[http://dx.doi.org/10.3390/nano9121789] [PMID: 31888222]
[2]
Özyalçin, B.; Sanlier, N. The effect of diet components on cancer with epigenetic mechanisms. Trends Food Sci. Technol., 2020, 102, 138-145.
[3]
Bechstedt, F.; Fuchs, F.; Kresse, G. Ab‐initio theory of semiconductor band structures: New developments and progress. Physica Status Solidi, 2009, 246(8), 1877-1892.
[http://dx.doi.org/10.1002/pssb.200945074]
[4]
Mashinchian, O.; Johari-Ahar, M.; Ghaemi, B.; Rashidi, M.; Barar, J.; Omidi, Y. Impacts of quantum dots in molecular detection and bioimaging of cancer. Bioimpacts, 2014, 4(3), 149-166.
[http://dx.doi.org/10.15171/bi.2014.008] [PMID: 25337468]
[5]
Hu, Z. Development of an integrated microspectrometer using arrayed waveguide grating (AWG)., PhD diss., University of Glasgow. 2012.
[6]
Wang, Y.; Suna, A.; McHugh, J.; Hilinski, E.F.; Lucas, P.A.; Johnson, R.D. Optical transient bleaching of quantum‐confined CdS clusters: The effects of surface‐trapped electron–hole pairs. J. Chem. Phys., 1990, 92(11), 6927-6939.
[http://dx.doi.org/10.1063/1.458280]
[7]
Ko, Y.J.; Kim, W.J.; Kim, K.; Kwon, I.C. Advances in the strategies for designing receptor-targeted molecular imaging probes for cancer research. J. Control. Release, 2019, 305, 1-17.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.030] [PMID: 31054991]
[8]
Bai, X.; Purcell-Milton, F.; Gun’ko, Y.K. Optical properties, synthesis, and potential applications of Cu-based ternary or quaternary anisotropic quantum dots, polytypic nanocrystals, and core/shell heterostructures. Nanomaterials (Basel), 2019, 9(1), 85.
[http://dx.doi.org/10.3390/nano9010085] [PMID: 30634642]
[9]
Wang, B.; Li, J.; Tang, Z.; Yang, B.; Lu, S. Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes. Sci. Bull. (Beijing), 2019, 64(17), 1285-1292.
[http://dx.doi.org/10.1016/j.scib.2019.07.021]
[10]
Zhang, Z.Y.; Yang, Y.H.; Ding, H.; Wang, D.; Chen, W.; Lin, H. Design powerful predictor for mRNA subcellular location prediction in Homo sapiens. Brief. Bioinform., 2021, 22(1), 526-535.
[http://dx.doi.org/10.1093/bib/bbz177] [PMID: 31994694]
[11]
Adel, R.; Ebrahim, S.; Shokry, A.; Soliman, M.; Khalil, M. Nanocomposite of CuInS/ZnS and nitrogen-doped graphene quantum dots for cholesterol sensing. ACS Omega, 2021, 6(3), 2167-2176.
[http://dx.doi.org/10.1021/acsomega.0c05416] [PMID: 33521456]
[12]
Indriyati; Primadona, I.; Permatasari, F.A.; Irham, M.A.; Nasir, M.; Iskandar, F. Recent advances and rational design strategies of carbon dots towards highly efficient solar evaporation. Nanoscale, 2021, 13(16), 7523-7532.
[http://dx.doi.org/10.1039/D1NR00023C] [PMID: 33870394]
[13]
Kovalenko, M.V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D.V.; Kagan, C.R.; Klimov, V.I.; Rogach, A.L.; Reiss, P.; Milliron, D.J.; Guyot-Sionnnest, P.; Konstantatos, G.; Parak, W.J.; Hyeon, T.; Korgel, B.A.; Murray, C.B.; Heiss, W. Prospects of nanoscience with nanocrystals. ACS Nano, 2015, 9(2), 1012-1057.
[http://dx.doi.org/10.1021/nn506223h] [PMID: 25608730]
[14]
Kanelidis, I. Polymer-nanocrystal composites: Copolymers, polymeric particles and hybrid systems., PhD dissertation., Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften Chemie Dissertationen. 2018.
[15]
Metz, A.W.; Ireland, J.R.; Zheng, J.G.; Lobo, R.P.; Yang, Y.; Ni, J.; Stern, C.L.; Dravid, V.P.; Bontemps, N.; Kannewurf, C.R.; Poeppelmeier, K.R.; Marks, T.J. Transparent conducting oxides: Texture and microstructure effects on charge carrier mobility in MOCVD-derived CdO thin films grown with a thermally stable, low-melting precursor. J. Am. Chem. Soc., 2004, 126(27), 8477-8492.
[http://dx.doi.org/10.1021/ja039232z] [PMID: 15238005]
[16]
Farshbaf, M.; Davaran, S.; Rahimi, F.; Annabi, N.; Salehi, R.; Akbarzadeh, A. Carbon quantum dots: Recent progresses on synthesis, surface modification and applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(7), 1331-1348.
[http://dx.doi.org/10.1080/21691401.2017.1377725] [PMID: 28933188]
[17]
Jiang, Y.; Wang, X.; Pan, A. Properties of excitons and photogenerated charge carriers in metal halide perovskites. Adv. Mater., 2019, 31(47), e1806671.
[http://dx.doi.org/10.1002/adma.201806671] [PMID: 31106917]
[18]
Wang, T.; Nie, C.; Ao, Z.; Wang, S.; An, T. Recent progress in gC 3 N 4 quantum dots: Synthesis, properties and applications in photocatalytic degradation of organic pollutants. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(2), 485-502.
[http://dx.doi.org/10.1039/C9TA11368A]
[19]
Yi, Z.; Li, X.; Zhang, H.; Ji, X.; Sun, W.; Yu, Y.; Liu, Y.; Huang, J.; Sarshar, Z.; Sain, M. High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging. Talanta, 2021, 222, 121663.
[http://dx.doi.org/10.1016/j.talanta.2020.121663] [PMID: 33167278]
[20]
Sim, S.; Wong, N.K. Nanotechnology and its use in imaging and drug delivery (Review). Biomed. Rep., 2021, 14(5), 42.
[http://dx.doi.org/10.3892/br.2021.1418] [PMID: 33728048]
[21]
Adetunji, C.O.; Inobeme, J.; Akram, M.; Inobeme, A.; Shahzad, K.; Munirat, M.; Islam, S.; Majeed, N.; Okonkwo, S.O. Applications of geochemistry in livestock: Health and nutritional perspective. In: Inamuddin; Ahamed, M.I.; Boddula, R.; Altalhi, T.; Eds.Geochemistry: Concepts and Applications; Wiley Online Library: Hoboken, New Jersey, USA, 2021, 12, p. 37-55.
[http://dx.doi.org/10.1002/9781119710134.ch3]
[22]
Su, C.H. Energy band gap, intrinsic carrier concentration, and Fermi level of CdTe bulk crystal between 304 and 1067 K. J. Appl. Phys., 2008, 103(8), 084903.
[http://dx.doi.org/10.1063/1.2899087]
[23]
Moyen, E.; Jun, H.; Kim, H.M.; Jang, J. Surface engineering of room temperature-grown inorganic perovskite quantum dots for highly efficient inverted light-emitting diodes. ACS Appl. Mater. Interfaces, 2018, 10(49), 42647-42656.
[http://dx.doi.org/10.1021/acsami.8b15212] [PMID: 30419162]
[24]
Mrad, R.; Kruglik, S.G.; Ben Brahim, N.; Ben Chaâbane, R.; Negrerie, M. Raman tweezers microspectroscopy of functionalized 4.2 nm diameter CdSe nanocrystals in water reveals changed ligand vibrational modes by a metal cation. J. Phys. Chem. C, 2019, 123(40), 24912-24918.
[http://dx.doi.org/10.1021/acs.jpcc.9b06756]
[25]
Singh, A.K.; Kumar, A.; Srivastava, A.; Yadav, A.N.; Haldar, K.; Gupta, V.; Singh, K. Lightweight reduced graphene oxide-ZnO nanocomposite for enhanced dielectric loss and excellent electromagnetic interference shielding. Compos. Part B Eng., 2019, 172, 234-242.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.062];
a) Ko, J.; Chang, J.H.; Jeong, B.G.; Kim, H.J.; Joung, J.F.; Park, S.; Choi, D.H.; Bae, W.K.; Bang, J. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands. ACS App. Mat. Interfaces, 2020, 12(37), 42153-42160.
[26]
El-Shabasy, R.M.; Elsadek, M.F.; Ahmed, B.M.; Farahat, M.F.; Mosleh, K.M.; Taher, M.M. Recent developments in carbon quantum dots: Properties, fabrication techniques, and bio-applications. Processes (Basel), 2021, 9(2), 388.
[http://dx.doi.org/10.3390/pr9020388]
[27]
Pilch, J.; Kowalik, P.; Bujak, P.; Nowicka, A.M.; Augustin, E. Quantum dots as a good carriers of unsymmetrical bisacridines for modulating cellular uptake and the biological response in lung and colon cancer cells. Nanomaterials (Basel), 2021, 11(2), 462.
[http://dx.doi.org/10.3390/nano11020462] [PMID: 33670297]
[28]
Jampilek, J.; Kralova, K. Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Materials (Basel), 2021, 14(5), 1059.
[http://dx.doi.org/10.3390/ma14051059] [PMID: 33668271]
[29]
Gombos, I.; Crul, T.; Piotto, S.; Güngör, B.; Török, Z.; Balogh, G.; Péter, M.; Slotte, J.P.; Campana, F.; Pilbat, A.M.; Hunya, A.; Tóth, N.; Literati-Nagy, Z.; Vígh, L., Jr; Glatz, A.; Brameshuber, M.; Schütz, G.J.; Hevener, A.; Febbraio, M.A.; Horváth, I.; Vígh, L. Membrane-lipid therapy in operation: The HSP co-inducer BGP-15 activates stress signal transduction pathways by remodeling plasma membrane rafts. PLoS One, 2011, 6(12), e28818.
[http://dx.doi.org/10.1371/journal.pone.0028818] [PMID: 22174906]
[30]
Safari, H.; Lee, J.K.; Eniola-adefeso, O. Effect of shape, rigidity, size and flow on targeting. In: Nanoparticles for biomedical applications; Chung, E.J.; Leon, L.; Rinaldi, C., Eds.; Elsevier: Amsterdam, Netherlands, 2020; pp. 55-66.
[31]
Thomas, M.; Klibanov, A.M. Non-viral gene therapy: Polycation-mediated DNA delivery. Appl. Microbiol. Biotechnol., 2003, 62(1), 27-34.
[http://dx.doi.org/10.1007/s00253-003-1321-8] [PMID: 12719940]
[32]
Tuschl, T.; Borkhardt, A. Small interfering RNAs: A revolutionary tool for the analysis of gene function and gene therapy. Mol. Interv., 2002, 2(3), 158-167.
[http://dx.doi.org/10.1124/mi.2.3.158] [PMID: 14993376]
[33]
Taghavi, S.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Hybrid carbon-based materials for gene delivery in cancer therapy. J. Control. Release, 2020, 318, 158-175.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.030] [PMID: 31862358]
[34]
Chinnathambi, S.; Shirahata, N. Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater., 2019, 20(1), 337-355.
[http://dx.doi.org/10.1080/14686996.2019.1590731] [PMID: 31068983]
[35]
Gopalan, D.; Pandey, A.; Udupa, N.; Mutalik, S. Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: Role of surface engineered nanocarriers. J. Control. Release, 2020, 319, 183-200.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.034] [PMID: 31866505]
[36]
Bothwell, S.W.; Janigro, D.; Patabendige, A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS, 2019, 16(1), 9.
[http://dx.doi.org/10.1186/s12987-019-0129-6] [PMID: 30967147]
[37]
Janib, S.M.; Moses, A.S.; MacKay, J.A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev., 2010, 62(11), 1052-1063.
[http://dx.doi.org/10.1016/j.addr.2010.08.004] [PMID: 20709124]
[38]
Parthasarathy, V.; Fery-Forgues, S.; Campioli, E.; Recher, G.; Terenziani, F.; Blanchard-Desce, M. Dipolar versus octupolar triphenylamine-based fluorescent organic nanoparticles as brilliant one- and two-photon emitters for (bio)imaging. Small, 2011, 7(22), 3219-3229.
[http://dx.doi.org/10.1002/smll.201100726] [PMID: 21972222]
[39]
Wegner, K.D.; Hildebrandt, N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev., 2015, 44(14), 4792-4834.
[http://dx.doi.org/10.1039/C4CS00532E] [PMID: 25777768]
[40]
Singh, P.; Singh, R.K.; Kumar, R. Journey of ZnO quantum dots from undoped to rare-earth and transition metal-doped and their applications. RSC Advances, 2021, 11(4), 2512-2545.
[http://dx.doi.org/10.1039/D0RA08670C]
[41]
Hien, N.T.; Yu, Y.Y.; Park, K.C.; Ca, N.X.; Chi, T.T.; Hien, B.T.; Thanh, L.D.; Do, P.V.; Tan, P.M.; Ha, P.T. Influence of Eu doping on the structural and optical properties of Zn1-xEuxSe quantum dots. J. Phys. Chem. Solids, 2021, 148, 109729.
[http://dx.doi.org/10.1016/j.jpcs.2020.109729]
[42]
Cheng, H.J.; Ng, K.K.; Qian, X.; Ji, F.; Lu, Z.K.; Teo, W.P.; Hong, X.; Nasrallah, F.A.; Ang, K.K.; Chuang, K.H.; Guan, C.; Yu, H.; Chew, E.; Zhou, J.H. Task-related brain functional network reconfigurations relate to motor recovery in chronic subcortical stroke. Sci. Rep., 2021, 11(1), 8442.
[http://dx.doi.org/10.1038/s41598-021-87789-5] [PMID: 33875691]
[43]
Kang, I.; Yoo, J.M.; Kim, D.; Kim, J.; Cho, M.K.; Lee, S.E.; Kim, D.J.; Lee, B.C.; Lee, J.Y.; Kim, J.J.; Shin, N.; Choi, S.W.; Lee, Y.H.; Ko, H.S.; Shin, S.; Hong, B.H.; Kang, K.S. Graphene quantum dots alleviate impaired functions in Niemann-pick disease type C in vivo. Nano Lett., 2021, 21(5), 2339-2346.
[http://dx.doi.org/10.1021/acs.nanolett.0c03741] [PMID: 33472003]
[44]
Ghaderi, S.; Ramesh, B.; Seifalian, A.M. Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: A review. J. Drug Target., 2011, 19(7), 475-486.
[http://dx.doi.org/10.3109/1061186X.2010.526227] [PMID: 20964619]
[45]
Schiffman, J.D.; Balakrishna, R.G. Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sens. Actuators B Chem., 2018, 258, 1191-1214.
[http://dx.doi.org/10.1016/j.snb.2017.11.189]
[46]
Nguyen, V.H.; Lee, B.J. Protein corona: A new approach for nanomedicine design. Int. J. Nanomed., 2017, 12, 3137-3151.
[http://dx.doi.org/10.2147/IJN.S129300] [PMID: 28458536]
[47]
Li, L.; Chen, Y.; Xu, G.; Liu, D.; Yang, Z.; Chen, T.; Wang, X.; Jiang, W.; Xue, D.; Lin, G. In vivo comparison of the biodistribution and toxicity of InP/ZnS quantum dots with different surface modifications. Int. J. Nanomed., 2020, 15, 1951-1965.
[http://dx.doi.org/10.2147/IJN.S241332] [PMID: 32256071]
[48]
Zheng, N.; Yan, J.; Qian, W.; Song, C.; Zuo, Z.; He, C. Comparison of developmental toxicity of different surface modified CdSe/ZnS QDs in zebrafish embryos. J. Environ. Sci. (China), 2021, 100, 240-249.
[http://dx.doi.org/10.1016/j.jes.2020.07.019] [PMID: 33279036]
[49]
Trinh, T.X.; Kim, J. Status quo in data availability and predictive models of nano-mixture toxicity. Nanomaterials (Basel), 2021, 11(1), 124.
[http://dx.doi.org/10.3390/nano11010124] [PMID: 33430414];
(a) Salleh, A.; Fauzi, M.B. The in vivo, in vitro and in ovo evaluation of quantum dots in wound healing: A review. Polymers, 2021, 13(2), 191.
[50]
Zhan, N.; Palui, G.; Mattoussi, H. Preparation of compact biocompatible quantum dots using multicoordinating molecular-scale ligands based on a zwitterionic hydrophilic motif and lipoic acid anchors. Nat. Protoc., 2015, 10(6), 859-874.
[http://dx.doi.org/10.1038/nprot.2015.050] [PMID: 25974095]
[51]
Howes, P.D.; Chandrawati, R.; Stevens, M.M. Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. Science, 2014, 346(6205), 1247390.
[http://dx.doi.org/10.1126/science.1247390] [PMID: 25278614]
[52]
Yang, W.; Su, R.; Luo, D.; Hu, Q.; Zhang, F.; Xu, Z.; Wang, Z.; Tang, J.; Lv, Z.; Yang, X.; Tu, Y.; Zhang, W.; Zhong, H.; Gong, Q.; Russell, T.P.; Zhu, R. Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy, 2020, 67, 104189.
[http://dx.doi.org/10.1016/j.nanoen.2019.104189]
[53]
Wang, L.; Xu, D.; Gao, J.; Chen, X.; Duo, Y.; Zhang, H. Semiconducting quantum dots: Modification and applications in biomedical science. Sci. China Mater., 2020, 63(9), 1631-1650.
[http://dx.doi.org/10.1007/s40843-020-1330-7]
[54]
Nabil, M.; Mohamed, S.A.; Easawi, K.; Obayya, S.S.; Negm, S.; Talaat, H.; El-Mansy, M.K. Surface modification of CdSe nanocrystals: Application to polymer solar cell. Curr. Appl. Phys., 2020, 20(3), 470-476.
[http://dx.doi.org/10.1016/j.cap.2020.01.001]
[55]
Jun, I.; Han, S.J.; Shin, H.S.; Kim, J.; Kim, E.K.; Kim, T.I.; Yoon, S.C.; Seo, K.Y. Comparison of ophthalmic toxicity of light-emitting diode and organic light-emitting diode light sources. Sci. Rep., 2020, 10(1), 11582.
[http://dx.doi.org/10.1038/s41598-020-68565-3] [PMID: 32665663]
[56]
Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; Huang, W.; Xu, W.; Huang, B.; Wang, H.; Wang, W.; Zhang, W.; Li, N.; Xie, Z.; Ding, L.; You, W.; Zhao, Y.; Yang, X.; Liu, Y.; Wang, Q.; Huang, L.; Yang, Y.; Xu, G.; Luo, B.; Wang, W.; Liu, P.; Guo, W.; Yang, X. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis., 2021, 21(1), 39-51.
[http://dx.doi.org/10.1016/S1473-3099(20)30831-8] [PMID: 33069281]
[57]
Ma, Y.Y.; Jin, K.T.; Wang, S.B.; Wang, H.J.; Tong, X.M.; Huang, D.S.; Mou, X.Z. Molecular imaging of cancer with nanoparticle-based theranostic probes. Contrast Media Mol. Imaging, 2017, 2017, 1026270.
[http://dx.doi.org/10.1155/2017/1026270] [PMID: 29097909];
a) Zou, W.; Li, L.; Chen, Y.; Chen, T.; Yang, Z.; Wang, J.; Liu, D.; Lin, G.; Wang, X. In vivo toxicity evaluation of PEGylated CuInS2/ZnS quantum dots in BALB/c mice. Front. Pharmacol., 2019, 10, 437.
[58]
Wang, A.J.; Zhu, X.Y.; Chen, Y.; Yuan, P.X.; Luo, X.; Feng, J.J. A label-free electrochemical immunosensor based on rhombic dodecahedral Cu3Pt nanoframes with advanced oxygen reduction performance for highly sensitive alpha-fetoprotein detection. Sens. Actuators B Chem., 2019, 288, 721-727.
[http://dx.doi.org/10.1016/j.snb.2019.03.061]
[59]
Zhang, W.H.; Ma, W.; Long, Y.T. Redox-mediated indirect fluorescence immunoassay for the detection of disease biomarkers using dopamine-functionalized quantum dots. Anal. Chem., 2016, 88(10), 5131-5136.
[http://dx.doi.org/10.1021/acs.analchem.6b00048] [PMID: 27086777]
[60]
Bera, D.; Qian, L.; Tseng, T.K.; Holloway, P.H. Quantum dots and their multimodal applications: A review. Materials (Basel), 2010, 3(4), 2260-2345.
[http://dx.doi.org/10.3390/ma3042260]
[61]
Filali, S.; Pirot, F.; Miossec, P. Biological applications and toxicity minimization of semiconductor quantum dots. Trends Biotechnol., 2020, 38(2), 163-177.
[http://dx.doi.org/10.1016/j.tibtech.2019.07.013] [PMID: 31473014]
[62]
Kahmann, S.; Tekelenburg, E.K.; Duim, H.; Kamminga, M.E.; Loi, M.A. Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden-Popper perovskites. Nat. Commun., 2020, 11(1), 2344.
[http://dx.doi.org/10.1038/s41467-020-15970-x] [PMID: 32393785]
[63]
Tejwan, N.; Saha, S.K.; Das, J. Multifaceted applications of green carbon dots synthesized from renewable sources. Adv. Colloid Interface Sci., 2020, 275, 102046.
[http://dx.doi.org/10.1016/j.cis.2019.102046] [PMID: 31757388]
[64]
Tsoi, K.M.; Dai, Q.; Alman, B.A.; Chan, W.C. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res., 2013, 46(3), 662-671.
[http://dx.doi.org/10.1021/ar300040z] [PMID: 22853558]
[65]
Singh, R.D.; Shandilya, R.; Bhargava, A.; Kumar, R.; Tiwari, R.; Chaudhury, K.; Srivastava, R.K.; Goryacheva, I.Y.; Mishra, P.K. Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: From biology to clinical translation. Front. Genet., 2018, 9, 616.
[http://dx.doi.org/10.3389/fgene.2018.00616] [PMID: 30574163]
[66]
Gour, A.; Ramteke, S.; Jain, N.K. Pharmaceutical applications of quantum dots. AAPS PharmSciTech, 2021, 22(7), 233.
[http://dx.doi.org/10.1208/s12249-021-02103-w] [PMID: 34476619]
[67]
Tade, R.S.; More, M.P.; Nangare, S.N.; Patil, P.O. Graphene Quantum Dots (GQDs) nanoarchitectonics for theranostic application in lung cancer. J. Drug Target., 2022, 30(3), 269-286.
[http://dx.doi.org/10.1080/1061186X.2021.1987442] [PMID: 34595987]
[68]
Dutta, M.; Stroscio, M.A.; Qian, J.; Wu, T.; Brenneman, K.; Sen, B.; Poduri, S.; Xu, K.; Meshik, X.; Ranginwala, S.M.; Shukla, P. Nanosensors based on DNA and RNA aptamers and semiconductor quantum dots; Dek. Encyclop. Nanosci. Nanotech, 2014.
[69]
Burris, K.P.; Wu, T.C.; Vasudev, M.; Stroscio, M.A.; Millwood, R.J.; Stewart, C.N., Jr Mega-nano detection of foodborne pathogens and transgenes using molecular beacon and semiconductor quantum dot technologies. IEEE Trans. Nanobiosci., 2013, 12(3), 233-238.
[http://dx.doi.org/10.1109/TNB.2013.2263392] [PMID: 23722479]
[70]
Brenneman, K.L.; Poduri, S.; Stroscio, M.A.; Dutta, M. Optical detection of lead (II) ions using DNA-based nanosensor. IEEE Sens. J., 2013, 13(5), 1783-1786.
[http://dx.doi.org/10.1109/JSEN.2013.2241757]
[71]
Azizi, S.; Gholivand, M.B.; Amiri, M.; Manouchehri, I.; Moradian, R. Carbon dots-thionine modified aptamer-based biosensor for highly sensitive cocaine detection. J. Electroanal. Chem. (Lausanne), 2022, 907, 116062.
[http://dx.doi.org/10.1016/j.jelechem.2022.116062]
[72]
Wu, T.C.; Dutta, M.; Stroscio, M.A. Agarose gel investigation of quantum dots conjugated with short ssDNA. IEEE Trans. Nanobiosci., 2013, 12(4), 282-288.
[http://dx.doi.org/10.1109/TNB.2013.2268540] [PMID: 25140361]
[73]
Meshik, X.; Xu, K.; Dutta, M.; Stroscio, M.A. Optical detection of lead and potassium ions using a quantum-dot-based aptamer nanosensor. IEEE Trans. Nanobioscience, 2014, 13(2), 161-164.
[http://dx.doi.org/10.1109/TNB.2014.2317315] [PMID: 24771595]
[74]
Meshik, X.; Farid, S.; Choi, M.; Lan, Y.; Mukherjee, S.; Datta, D.; Dutta, M.; Stroscio, M.A. Biomedical applications of quantum dots, nucleic acid-based aptamers, and nanostructures in biosensors. Crit. Rev. Biomed. Eng., 2015, 43(4), 277-296.
[http://dx.doi.org/10.1615/CritRevBiomedEng.2016016448] [PMID: 27480460]
[75]
Meshik, X.; Choi, M.; Baker, A.; Malchow, R.P.; Covnot, L.; Doan, S.; Mukherjee, S.; Farid, S.; Dutta, M.; Stroscio, M.A. Modulation of voltage-gated conductances of retinal horizontal cells by UV-excited TiO2 nanoparticles. Nanomedicine, 2017, 13(3), 1031-1040.
[http://dx.doi.org/10.1016/j.nano.2016.11.008] [PMID: 27888095]
[76]
Datta, D.; Sarkar, K.; Mukherjee, S.; Meshik, X.; Stroscio, M.A.; Dutta, M. Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor. Nanotec., 2017, 28(32), 325502.
[http://dx.doi.org/10.1088/1361-6528/aa79e0] [PMID: 28718456]
[77]
Ghosh, S.; Datta, D.; Cheema, M.; Dutta, M.; Stroscio, M.A. Aptasensor based optical detection of glycated albumin for diabetes mellitus diagnosis. Nanotechnology, 2017, 28(43), 435505.
[http://dx.doi.org/10.1088/1361-6528/aa893a] [PMID: 28853715]
[78]
Ghosh, S.; Datta, D.; Chaudhry, S.; Dutta, M.; Stroscio, M.A. Rapid detection of tumor necrosis factor-alpha using quantum dot-based optical aptasensor. IEEE Trans. Nanobioscience, 2018, 17(4), 417-423.
[http://dx.doi.org/10.1109/TNB.2018.2852261] [PMID: 29994717]
[79]
Lan, Y.; Farid, S.; Meshik, X.; Xu, K.; Choi, M.; Ranginwala, S.; Wang, Y.Y.; Burke, P.; Dutta, M.; Stroscio, M.A. Detection of immunoglobulin E with a graphene-based field-effect transistor aptasensor. J. Sens., 2018, 2018
[http://dx.doi.org/10.1155/2018/3019259]
[80]
Ghosh, S.; Metlushko, A.; Chaudhry, S.; Dutta, M.; Stroscio, M.A. Detection of c-reactive protein using network-deployable DNA aptamer based optical nanosensor. In 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), May 19-22Chicago, IL, USA 2019, p. 1-4.
[http://dx.doi.org/10.1109/BHI.2019.8834479]
[81]
Ghosh, S.; Chen, Y.; Sebastian, J.; George, A.; Dutta, M.; Stroscio, M.A. A study on the response of FRET based DNA aptasensors in intracellular environment. Sci. Rep., 2020, 10(1), 13250.
[http://dx.doi.org/10.1038/s41598-020-70261-1] [PMID: 32764678]
[82]
Ma, J.; Lian, Z.; He, C.; Wang, J.; Yu, R. Application of novel quantum dot-based molecularly imprinted fluorescence sensor in rapid detection. Se Pu, 2021, 39(8), 775-780.
[http://dx.doi.org/10.3724/SP.J.1123.2021.02025] [PMID: 34212579]
[83]
Qi, K.; Selvaraj, R.; Wang, L. Editorial: Functionalized inorganic semiconductor nanomaterials: Characterization, properties, and applications. Front Chem., 2020, 8, 616728.
[http://dx.doi.org/10.3389/fchem.2020.616728] [PMID: 33262974]
[84]
Ghosh, S.; Chen, Y.; George, A.; Dutta, M.; Stroscio, M.A. Fluorescence resonant energy transfer-based quantum dot sensor for the detection of calcium ions. Front Chem., 2020, 8, 594.
[http://dx.doi.org/10.3389/fchem.2020.00594] [PMID: 32903607]
[85]
Stroscio, M.A.; Dutta, M. Integrated biological-semiconductor devices. Proc. IEEE, 2005, 93(10), 1772-1783.
[http://dx.doi.org/10.1109/JPROC.2005.853543]
[86]
Wang, Z.; Zhang, N.; Brenneman, K.; Wu, T.C.; Jung, H.; Biswas, S.; Sen, B.; Reinhardt, K.; Liao, S.; Stroscio, M.A.; Dutta, M. Optoelectronic applications of colloidal quantum dots. In: Quantum Dot Devices; Wang, Z., Ed.; Springer: New York, NY, 2012; pp. 351-367.
[87]
Pratap, P.; Abell, J.; Zhao, Y.; Nichols, B.; Zakar, E.; Stroscio, M.; Dutta, M.; Xu, K.; Purahmad, M.; Brenneman, K.; Meshik, X. Design and applications of nanomaterial-based and biomolecule-based nanodevices and nanosensors. Technical Report.University of California-Irvine; , 2014.
[88]
Villalva, M.D.; Agarwal, V.; Ulanova, M.; Sachdev, P.S.; Braidy, N. Quantum dots as a theranostic approach in Alzheimer’s disease: A systematic review. Nanomedicine (Lond.), 2021, 16(18), 1595-1611.
[http://dx.doi.org/10.2217/nnm-2021-0104] [PMID: 34180261]
[89]
Sivasankarapillai, V.S.; Jose, J.; Shanavas, M.S.; Marathakam, A.; Uddin, M.S.; Mathew, B. Silicon quantum dots: Promising theranostic probes for the future. Curr. Drug Targets, 2019, 20(12), 1255-1263.
[http://dx.doi.org/10.2174/1389450120666190405152315] [PMID: 30961492];
a) Ji, W.; Jing, P.; Xu, W.; Yuan, X.; Wang, Y.; Zhao, J.; Jen, A.K.Y. High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure. Appl. Phy. Lett., 2013, 103(5), 053106.
[90]
Devi, P.; Saini, S.; Kim, K.H. The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron., 2019, 141, 111158.
[http://dx.doi.org/10.1016/j.bios.2019.02.059] [PMID: 31323605]
[91]
Souza, S.O.; Lira, R.B.; Cunha, C.R.A.; Santos, B.S.; Fontes, A.; Pereira, G. Methods for intracellular delivery of quantum dots. Top. Curr. Chem. (Cham), 2021, 379(1), 1.
[http://dx.doi.org/10.1007/s41061-020-00313-7] [PMID: 33398442]

© 2024 Bentham Science Publishers | Privacy Policy