Review Article

微流体在局部给药中的应用前景

卷 23, 期 13, 2022

发表于: 05 August, 2022

页: [1239 - 1251] 页: 13

弟呕挨: 10.2174/1389450123666220404154710

价格: $65

摘要

开发有效的给药系统可以做出重大努力。如今,许多这样的新系统已经引起了人们的关注,因为它们主要关注于提高几种药物的生物利用度和生物可及性,最终将副作用降到最低,从而提高治疗的疗效。微流体系统无疑是一项卓越的技术,它目前正在彻底改变当前的化学和生物学研究,提供了小型芯片规模的设备,提供精确剂量,目标精确递送和可控释放。微流体系统由于其在小液体量限定处理和运输方面的潜力,已成为一种有前途的输送工具。最新的微加工技术已应用于多种生物系统。在这里,我们回顾了微流体的基本原理及其在局部给药中的应用。

关键词: 微流体,局部药物输送,药物靶向,眼部输送,大脑输送,组织工程。

[1]
Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: The past and the future. Adv Drug Deliv Rev 2013; 65(1): 104-20.
[http://dx.doi.org/10.1016/j.addr.2012.10.003]
[2]
Couvreur P. Nanoparticles in drug delivery: Past, present and future. Adv Drug Deliv Rev 2013; 65(1): 21-3.
[http://dx.doi.org/10.1016/j.addr.2012.04.010] [PMID: 22580334]
[3]
Singh A, Agarwal R, Diaz-Ruiz CA, et al. Nanoengineered particles for enhanced intra-articular retention and delivery of proteins. Adv Healthc Mater 2014; 3(10): 1562-1567. 1525
[http://dx.doi.org/10.1002/adhm.201400051] [PMID: 24687997]
[4]
Walmsley GG, McArdle A, Tevlin R, et al. Nanotechnology in bone tissue engineering. Nanomedicine 2015; 11(5): 1253-63.
[http://dx.doi.org/10.1016/j.nano.2015.02.013]
[5]
Fontana F, Ferreira MPA, Correia A, Hirvonen J, Santos HA. Microfluidics as a cutting-edge technique for drug delivery applications. J Drug Deliv Sci Technol 2016; 34: 76-87.
[http://dx.doi.org/10.1016/j.jddst.2016.01.010]
[6]
Tang Z, He C, Tian H, et al. Polymeric nanostructured materials for biomedical applications. In: Helder AS, Dongfei L, Hongboo Z, Eds. Prog Polym Sci 2016; 60: 86-128.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.05.005]
[7]
Sebastian V, Arruebo M. Microfluidic production of inorganic nanomaterials for biomedical applications.Microfluidics for pharmaceutical applications: from nano/micro systems fabrication to controlled drug delivery. New Jersey: Elsevier 2018.
[8]
Whitesides GM. The origins and the future of microfluidics. Nature 2006; 442(7101): 368-73.
[http://dx.doi.org/10.1038/nature05058]
[9]
Squires TM, Quake SR. Microfluidics: Fluid physics at the nanoliter scale. Rev Mod Phys 2005; 77(3): 977-1026.
[http://dx.doi.org/10.1103/RevModPhys.77.977]
[10]
Feng Q, Sun J, Jiang X. Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications. Nanoscale 2016; 8(25): 12430-43.
[http://dx.doi.org/10.1039/C5NR07964K]
[11]
Elvira KSI. i Solvas Casadevall X, Wootton RCR, deMello AJ. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat Chem 2013; 5(11): 905-15.
[http://dx.doi.org/10.1038/nchem.1753] [PMID: 24153367]
[12]
Hughes AJ, Lin RKC, Peehl DM, Herr AE. Microfluidic integration for automated targeted proteomic assays. Proc Natl Acad Sci USA 2012; 109(16): 5972-7.
[http://dx.doi.org/10.1073/pnas.1108617109] [PMID: 22474344]
[13]
Yang J, Giessen H, Lalanne P. Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing. Nano Lett 2015; 15(5): 3439-44.
[http://dx.doi.org/10.1021/acs.nanolett.5b00771] [PMID: 25844813]
[14]
Nguyen NT, Shaegh SAM, Kashaninejad N, Phan DT. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv Drug Deliv Rev 2013; 65(11-12): 1403-19.
[http://dx.doi.org/10.1016/j.addr.2013.05.008] [PMID: 23726943]
[15]
Wu MH, Huang S, Lee G-B. Microfluidic cell culture systems for drug research. Lab Chip 2010; 10(8): 939.
[http://dx.doi.org/10.1039/b921695b]
[16]
Kang L, Chung BG, Langer R, Khademhosseini A. Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discov Today 2008; 13(1-2): 1-13.
[http://dx.doi.org/10.1016/j.drudis.2007.10.003] [PMID: 18190858]
[17]
Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. PNAS 2006; 103(6)
[http://dx.doi.org/10.1073/pnas.0507681102]
[18]
Meyvantsson I, Beebe DJ. Cell culture models in microfluidic systems. Annu Rev Anal Chem (Palo Alto, Calif) 2008; 1(1): 423-49.
[http://dx.doi.org/10.1146/annurev.anchem.1.031207.113042]
[19]
Tirella A, Marano M, Vozzi F, Ahluwalia A. A microfluidic gradient maker for toxicity testing of bupivacaine and lidocaine. Toxicol Vitr 2008; 22(8)
[http://dx.doi.org/10.1016/j.tiv.2008.09.016]
[20]
Keenan TM, Folch A. Biomolecular gradients in cell culture systems. Lab Chip 2007; 8.
[PMID: 18094760]
[21]
Chung BG, Choo J. Microfluidic gradient platforms for controlling cellular behavior. Electrophoresis 2010; 31(18): 3014-27.
[http://dx.doi.org/10.1002/elps.201000137] [PMID: 20734372]
[22]
La Van DA, Lynn DM, Langer R. Moving smaller in drug discovery and delivery. Nat Rev Drug Discov 2002; 1(1): 77-84.
[http://dx.doi.org/10.1038/nrd707]
[23]
Weigl BH, Bardell RL, Cabrera CR. Lab-on-a-chip for drug development. Adv Drug Deliv Rev 2003; 55(3): 349-77.
[http://dx.doi.org/10.1016/S0169-409X(02)00223-5]
[24]
Rehfeldt F, Engler AJ, Eckhardt A, Ahmed F, Discher DE. Cell responses to the mechanochemical microenvironment-implications for regenerative medicine and drug delivery. Adv Drug Deliv Rev 2007; 59(13): 1329-39.
[http://dx.doi.org/10.1016/j.addr.2007.08.007] [PMID: 17900747]
[25]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[26]
Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64(14): 1547-68.
[http://dx.doi.org/10.1016/j.addr.2012.04.005]
[27]
Baker M. Tissue models: A living system on a chip. Nature 2011; 471(7340): 661-5.
[http://dx.doi.org/10.1038/471661a] [PMID: 21455183]
[28]
Moraes C, Mehta G, Lesher-Perez SC, Takayama S. Organs-on-a-chip: A focus on compartmentalized microdevices. Ann Biomed Eng 2012; 40(6): 1211-27.
[http://dx.doi.org/10.1007/s10439-011-0455-6] [PMID: 22065201]
[29]
Champion JA, Katare YK, Mitragotri S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 2007; 121(1-2): 3-9.
[http://dx.doi.org/10.1016/j.jconrel.2007.03.022] [PMID: 17544538]
[30]
Gañán-Calvo AM, Montanero JM, Martín-Banderas L, Flores-Mosquera M. Building functional materials for health care and pharmacy from microfluidic principles and Flow Focusing. Adv Drug Deliv Rev 2013; 65(11-12): 1447-69.
[http://dx.doi.org/10.1016/j.addr.2013.08.003] [PMID: 23954401]
[31]
Tsui JH, Lee W, Pun SH, Kim J, Kim DH. Microfluidics-assisted in vitro drug screening and carrier production. Adv Drug Deliv Rev 2013; 65(11-12): 1575-88.
[http://dx.doi.org/10.1016/j.addr.2013.07.004] [PMID: 23856409]
[32]
Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006; 307(1): 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010] [PMID: 16303268]
[33]
Zhao CX. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv Drug Deliv Rev 2013; 65(11-12): 1420-46.
[http://dx.doi.org/10.1016/j.addr.2013.05.009]
[34]
Mathaes R, Winter G, Besheer A, Engert J. Non-spherical micro- and nanoparticles: Fabrication, characterization and drug delivery applications. Expert Opin Drug Deliv 2015; 12(3): 481-92.
[http://dx.doi.org/10.1517/17425247.2015.963055] [PMID: 25327886]
[35]
Kolhar P, Anselmo AC, Gupta V, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci USA 2013; 110(26): 10753-8.
[http://dx.doi.org/10.1073/pnas.1308345110] [PMID: 23754411]
[36]
Studart AR, Shum HC, Weitz DA. Arrested coalescence of particle-coated droplets into nonspherical supracolloidal structures. J Phys Chem B 2009; 113(12): 3914-9.
[http://dx.doi.org/10.1021/jp806795c] [PMID: 19673138]
[37]
Shum HC, Abate AR, Lee D, et al. Droplet microfluidics for fabrication of non-spherical particles. Macromol Rapid Commun 2010; 31(2): 108-18.
[http://dx.doi.org/10.1002/marc.200900590] [PMID: 21590882]
[38]
Kang JS, Lee MH. Overview of therapeutic drug monitoring. Korean J Intern Med (Korean Assoc Intern Med) 2009; 24(1): 1.
[http://dx.doi.org/10.3904/kjim.2009.24.1.1]
[39]
Razzacki SZ, Thwar PK, Yang M, Ugaz VM, Burns MA. Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev 2004; 56(2): 185-98.
[http://dx.doi.org/10.1016/j.addr.2003.08.012] [PMID: 14741115]
[40]
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 2010; 1(1): 149-73.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[41]
Sasahara K, McPhie P, Minton AP. Effect of dextran on protein stability and conformation attributed to macromolecular crowding. J Mol Biol 2003; 326(4): 1227-37.
[http://dx.doi.org/10.1016/S0022-2836(02)01443-2] [PMID: 12589765]
[42]
Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J Control Release 2011; 153(3): 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001]
[43]
Stevenson CL, Santini JT Jr, Langer R. Reservoir-based drug delivery systems utilizing microtechnology. Adv Drug Deliv Rev 2012; 64(14): 1590-602.
[http://dx.doi.org/10.1016/j.addr.2012.02.005] [PMID: 22465783]
[44]
Kumar K, Bhowmik D. Sustained release drug delivery system potential. Pharma Innov 2012; 1(2)
[45]
Tanwar H, Sachdeva R. Transdermal drug delivery system: A review. Int J Pharm Sci Res 2016; 7(6)
[46]
Riahi R, Tamayol A, Shaegh SAM, Ghaemmaghami A, Dokmeci MR, Khademshosseini A. Microfluidics for advanced drug delivery systems. Curr Opin Chem Eng 2015; 7: 101-12.
[http://dx.doi.org/10.1016/j.coche.2014.12.001] [PMID: 31692947]
[47]
Zhang L, Chen Q, Ma Y, Sun J. Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems. ACS Appl Bio Mater 2020; 3(1): 107-20.
[http://dx.doi.org/10.1021/acsabm.9b00853] [PMID: 35019430]
[48]
Kaushik S, Hord AH, Denson DD, et al. Lack of pain associated with microfabricated microneedles. Anesth Analg 2001; 92(2): 502-4.
[http://dx.doi.org/10.1213/00000539-200102000-00041] [PMID: 11159258]
[49]
Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR. Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. J Biomech 2004; 37(8): 1155-63.
[http://dx.doi.org/10.1016/j.jbiomech.2003.12.010] [PMID: 15212920]
[50]
Tuan-Mahmood T-M, McCrudden M, Torrisi BM, et al. Microneedles for intradermal and transdermal delivery. Eur J Pharm Sci 2013; 50(5): 623-37.
[51]
McAllister DV, Wang PM, Davis SP, et al. From the cover: Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proc Natl Acad Sci USA 2003; 100(24): 13755.
[52]
van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release 2012; 161(2): 645-55.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.042] [PMID: 22342643]
[53]
Yu LM, Tay FEH, Guo DG, Xu L, Yap KL. A microfabricated electrode with hollow microneedles for ECG measurement. Sens Actuators A Phys 2009; 151(1): 17-22.
[http://dx.doi.org/10.1016/j.sna.2009.01.020]
[54]
Tandon V, Kang WS, Spencer AJ, et al. Microfabricated infuse-withdraw micropump component for an integrated inner-ear drug-delivery platform. Biomed Microdevices 2015; 17(2): 37.
[http://dx.doi.org/10.1007/s10544-014-9923-8] [PMID: 25686902]
[55]
Tandon V, Kang WS, Robbins TA, et al. Microfabricated reciprocating micropump for intracochlear drug delivery with integrated drug/fluid storage and electronically controlled dosing. Lab Chip 2016; 16(5): 829-46.
[http://dx.doi.org/10.1039/C5LC01396H] [PMID: 26778829]
[56]
Borenstein JT. Intracochlear drug delivery systems. Expert Opin Drug Deliv 2011; 8(9): 1161-74.
[http://dx.doi.org/10.1517/17425247.2011.588207] [PMID: 21615213]
[57]
Swan EEL, Mescher MJ, Sewell WF, Tao SL, Borenstein JT. Inner ear drug delivery for auditory applications. Adv Drug Deliv Rev 2008; 60(15): 1583-99.
[http://dx.doi.org/10.1016/j.addr.2008.08.001] [PMID: 18848590]
[58]
Silverstein H. Use of a new device, the MicroWickTM, to deliver medication to the inner ear
[59]
McCall AA, Swan EEL, Borenstein JT, Sewell WF, Kujawa SG, McKenna MJ. Drug delivery for treatment of inner ear disease: Current state of knowledge. Ear Hear 2010; 31(2): 156-65.
[http://dx.doi.org/10.1097/AUD.0b013e3181c351f2] [PMID: 19952751]
[60]
Pararas EEL, Borkholder DA, Borenstein JT. Microsystems technologies for drug delivery to the inner ear. Adv Drug Deliv Rev 2012; 64(14): 1650-60.
[http://dx.doi.org/10.1016/j.addr.2012.02.004] [PMID: 22386561]
[61]
Lehner E, Menzel M, Gündel D, et al. Microimaging of a novel intracochlear drug delivery device in combination with cochlear implants in the human inner ear. Drug Deliv Transl Res 2021.
[PMID: 33543398]
[62]
Kim ES, Gustenhoven E, Mescher MJ, et al. A microfluidic reciprocating intracochlear drug delivery system with reservoir and active dose control. Lab Chip 2014; 14(4): 710-21.
[http://dx.doi.org/10.1039/C3LC51105G] [PMID: 24302432]
[63]
Sewell WF, Borenstein JT, Chen Z, et al. Development of a microfluidics-based intracochlear drug delivery device. Audiol Neurotol 2009; 14(6): 411-22.
[http://dx.doi.org/10.1159/000241898] [PMID: 19923811]
[64]
Ayoob AM, Borenstein JT. The role of intracochlear drug delivery devices in the management of inner ear disease. Expert Opin Drug Deliv 2015; 12(3): 465-79.
[http://dx.doi.org/10.1517/17425247.2015.974548] [PMID: 25347140]
[65]
Ding D, Kundukad B, Somasundar A, Vijayan S, Khan SA, Doyle PS. Design of mucoadhesive PLGA microparticles for ocular drug delivery. ACS Appl Bio Mater 2018; 1(3): 561-71.
[http://dx.doi.org/10.1021/acsabm.8b00041] [PMID: 34996190]
[66]
Sanjay ST, Zhou W, Dou M, et al. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018; 128: 3-28.
[http://dx.doi.org/10.1016/j.addr.2017.09.013] [PMID: 28919029]
[67]
Souto EB, Dias-Ferreira J, López-Machado A, et al. Advanced formulation approaches for ocular drug delivery: State-of-the-art and recent patents. Pharmaceutics 2019; 11(9): E460.
[http://dx.doi.org/10.3390/pharmaceutics11090460] [PMID: 31500106]
[68]
Lo R, Li PY, Saati S, Agrawal RN, Humayun MS, Meng E. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices 2009; 11(5): 959-70.
[http://dx.doi.org/10.1007/s10544-009-9313-9] [PMID: 19396548]
[69]
Li PY, Shih J, Lo R, et al. An electrochemical intraocular drug delivery device. Sens Actuators A Phys 2008; 143(1): 41-8.
[http://dx.doi.org/10.1016/j.sna.2007.06.034]
[70]
Gensler H, Sheybani R, Li PY, Mann RL, Meng E. An implantable MEMS micropump system for drug delivery in small animals. Biomed Microdevices 2012; 14(3): 483-96.
[http://dx.doi.org/10.1007/s10544-011-9625-4] [PMID: 22273985]
[71]
Pirmoradi FN, Jackson JK, Burt HM, Chiao M. On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip 2011; 11(16): 2744-52.
[http://dx.doi.org/10.1039/c1lc20134d] [PMID: 21698338]
[72]
Filipe HP, Paradiso P, Valente ARB, et al. Microfluidic in vitro drug release from contact lens materials. Acta Ophthalmol 2015; 93: S255.
[http://dx.doi.org/10.1111/j.1755-3768.2015.0578]
[73]
Amoozgar B, Wei X, Hui Lee J, et al. A novel flexible microfluidic meshwork to reduce fibrosis in glaucoma surgery. PLoS One 2017; 12(3): e0172556.
[http://dx.doi.org/10.1371/journal.pone.0172556] [PMID: 28301490]
[74]
Oddo A, Peng B, Tong Z, et al. Advances in Microfluidic Blood-Brain Barrier (BBB). Models Trends Biotechnol 2019; 37(12): 1295-314.
[http://dx.doi.org/10.1016/j.tibtech.2019.04.006] [PMID: 31130308]
[75]
Zhao Y, Demirci U, Chen Y, Chen P. Multiscale brain research on a microfluidic chip. Lab Chip 2020; 20(9): 1531-43.
[http://dx.doi.org/10.1039/C9LC01010F]
[76]
Wilhelm I, Krizbai IA. In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm 2014; 11(7): 1949-63.
[http://dx.doi.org/10.1021/mp500046f] [PMID: 24641309]
[77]
Lee CS, Leong KW. Advances in microphysiological blood-brain barrier (BBB) models towards drug delivery. Curr Opin Biotechnol 2020; 66: 78-87.
[http://dx.doi.org/10.1016/j.copbio.2020.06.009]
[78]
van der Helm MW, van der Meer AD, Eijkel JCT, van den Berg A, Segerink LI. Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers 2016; 4(1): e1142493.
[http://dx.doi.org/10.1080/21688370.2016.1142493] [PMID: 27141422]
[79]
Neeves KB, Lo CT, Foley CP, Saltzman WM, Olbricht WL. Fabrication and characterization of microfluidic probes for convection enhanced drug delivery. J Control Release 2006; 111(3): 252-62.
[http://dx.doi.org/10.1016/j.jconrel.2005.11.018] [PMID: 16476500]
[80]
Foley CP, Nishimura N, Neeves KB, Schaffer CB, Olbricht WL. Flexible microfluidic devices supported by biodegradable insertion scaffolds for convection-enhanced neural drug delivery. Biomed Microdevices 2009; 11(4): 915-24.
[http://dx.doi.org/10.1007/s10544-009-9308-6] [PMID: 19353271]
[81]
Wang X, Hou Y, Ai X, et al. Potential applications of microfluidics based blood brain barrier (BBB)-on-chips for in vitro drug development. Biomed Pharmacother 2020; 132: 110822.
[http://dx.doi.org/10.1016/j.biopha.2020.110822]
[82]
Walter FR, Valkai S, Kincses A, et al. A versatile lab-on-a-chip tool for modeling biological barriers. Sens Actuators B Chem 2016; 222: 1209-19.
[http://dx.doi.org/10.1016/j.snb.2015.07.110]
[83]
Marino A, Tricinci O, Battaglini M, et al. A 3D Real-scale, biomimetic, and biohybrid model of the blood-brain barrier fabricated through two-photon lithography. Small 2018; 14(6): 1702959.
[http://dx.doi.org/10.1002/smll.201702959] [PMID: 29239532]
[84]
Maoz BM, Herland A, FitzGerald EA, et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol 2018; 36(9): 865-74.
[http://dx.doi.org/10.1038/nbt.4226] [PMID: 30125269]
[85]
Bang S, Lee S-R, Ko J, et al. A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci Rep 2017; 7(1): 1-10.
[http://dx.doi.org/10.1038/s41598-017-07416-0]
[86]
Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 1994; 91(6): 2076-80.
[http://dx.doi.org/10.1073/pnas.91.6.2076] [PMID: 8134351]
[87]
Szarowski DH, Andersen MD, Retterer S, et al. Brain responses to micro-machined silicon devices. Brain Res 2003; 983(1-2): 23-35.
[http://dx.doi.org/10.1016/S0006-8993(03)03023-3] [PMID: 12914963]
[88]
Rousche PJ, Pellinen DS, Pivin DP Jr, Williams JC, Vetter RJ, Kipke DR. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng 2001; 48(3): 361-71.
[http://dx.doi.org/10.1109/10.914800] [PMID: 11327505]
[89]
Subbaroyan J, Martin DC, Kipke DR. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J Neural Eng 2005; 2(4): 103-13.
[http://dx.doi.org/10.1088/1741-2560/2/4/006] [PMID: 16317234]
[90]
Uguz I, Proctor CM, Curto VF, et al. A microfluidic ion pump for in vivo drug delivery. Adv Mater 2017; 29(27): 1701217.
[http://dx.doi.org/10.1002/adma.201701217] [PMID: 28503731]
[91]
Hassan S, Zhang YS. Microfluidic technologies for local drug delivery. In: Helder AS, Dongfei L, Hongboo Z, Eds. Microfluidics for pharmaceutical applications: from nano/micro systems fabrication to controlled drug delivery. New Jersey: Elsevier 2019; pp. 281-305.
[http://dx.doi.org/10.1016/B978-0-12-812659-2.00010-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy