Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Evodiamine: A Privileged Structure with Broad-ranging Biological Activities

Author(s): Deping Li, Yan Li, Xiaowen Jiang, Wenwu Liu* and Qingchun Zhao*

Volume 22, Issue 21, 2022

Published on: 31 May, 2022

Page: [2680 - 2701] Pages: 22

DOI: 10.2174/1389557522666220404090835

Price: $65

Abstract

Evodiamine (EVO) is a natural quinolone alkaloid firstly isolated from the fruit of Evodia rutaecarpa, which is one of the most frequently used traditional Chinese herb for treating a variety of ailments, including headaches, abdominal pain, vomiting, diarrhea, amenorrhea difficult menstruation, postpartum hemorrhage, and other diseases. Latest pharmacological studies showed that EVO possesses a broad spectrum of pharmacological activities through different mechanisms. However, its moderate activities and poor physicochemical properties have hampered its clinical application. In this regard, the modification of EVO aiming at seeking derivatives with more potency and better physicochemical properties has been extensively emerging. These derivatives exhibit diverse biological activities, including antitumor, anti-Alzheimer's disease, anti-pulmonary hypertension, anti-fungi, and thermogenic activities via a variety of mechanisms. Moreover, they are described to act as single, dual, or multiple inhibitors or agonists of many proteins, such as topoisomerase I, topoisomerase II, tubulin, histone deacetylase, sirtuins, butyrylcholinesterase, phosphodiesterase 5, and transient receptor potential vanilloid 1. However, hitherto, there is no comprehensive review to systematically summarize the derivatives of EVO. Considering this perspective, this paper aims to provide a comprehensive description of them by focusing on their diverse biological activities. For each biological activity, the mechanisms and the main structureactivity relationships (SARs) will be presented in cases where adequate information is available. Finally, future directions of this class of compounds will be discussed. This review will be helpful in understanding and encouraging further exploration of EVO.

Keywords: Evodiamine, alkaloid, natural products, bioactivity, structure-activity relationship, rutaecarpine, β-carboline.

Graphical Abstract
[1]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[2]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[3]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[4]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[5]
Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7), 1022-1037.
[http://dx.doi.org/10.1021/np030096l] [PMID: 12880330]
[6]
Cragg, G.M.; Newman, D.J.; Snader, K.M. Natural products in drug discovery and development. J. Nat. Prod., 1997, 60(1), 52-60.
[http://dx.doi.org/10.1021/np9604893] [PMID: 9014353]
[7]
Wetzel, S.; Bon, R.S.; Kumar, K.; Waldmann, H. Biology-oriented synthesis. Angew. Chem. Int. Ed. Engl., 2011, 50(46), 10800-10826.
[http://dx.doi.org/10.1002/anie.201007004] [PMID: 22038946]
[8]
Bon, R.S.; Waldmann, H. Bioactivity-guided navigation of chemical space. Acc. Chem. Res., 2010, 43(8), 1103-1114.
[http://dx.doi.org/10.1021/ar100014h] [PMID: 20481515]
[9]
Liao, J.F.; Chiou, W.F.; Shen, Y.C.; Wang, G.J.; Chen, C.F. Anti-inflammatory and anti-infectious effects of Evodia rutaecarpa (Wuzhuyu) and its major bioactive components. Chin. Med., 2011, 6(1), 6.
[http://dx.doi.org/10.1186/1749-8546-6-6] [PMID: 21320305]
[10]
Lee, S.H.; Son, J-K.; Jeong, B-S.; Jeong, T-C.; Chang, H.W.; Lee, E-S.; Jahng, Y. Progress in the studies on rutaecarpine. Molecules, 2008, 13, 272-300.
[11]
Moon, T.C.; Murakami, M.; Kudo, I.; Son, K.H.; Kim, H.P.; Kang, S.S.; Chang, H.W. A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa . Inflamm. Res., 1999, 48(12), 621-625.
[http://dx.doi.org/10.1007/s000110050512] [PMID: 10669112]
[12]
Chiou, W.F.; Sung, Y.J.; Liao, J.F.; Shum, A.Y.; Chen, C.F. Inhibitory effect of dehydroevodiamine and evodiamine on nitric oxide production in cultured murine macrophages. J. Nat. Prod., 1997, 60(7), 708-711.
[http://dx.doi.org/10.1021/np960495z] [PMID: 9249975]
[13]
Ko, H.C.; Wang, Y.H.; Liou, K.T.; Chen, C.M.; Chen, C.H.; Wang, W.Y.; Chang, S.; Hou, Y.C.; Chen, K.T.; Chen, C.F.; Shen, Y.C. Anti-inflammatory effects and mechanisms of the ethanol extract of Evodia rutaecarpa and its bioactive components on neutrophils and microglial cells. Eur. J. Pharmacol., 2007, 555(2-3), 211-217.
[http://dx.doi.org/10.1016/j.ejphar.2006.10.002] [PMID: 17109845]
[14]
Liu, Y.N.; Pan, S.L.; Liao, C.H.; Huang, D.Y.; Guh, J.H.; Peng, C.Y.; Chang, Y.L.; Teng, C.M. Evodiamine represses hypoxia-induced inflammatory proteins expression and hypoxia-inducible factor 1alpha accumulation in RAW264.7. Shock, 2009, 32(3), 263-269.
[http://dx.doi.org/10.1097/SHK.0b013e31819940cb] [PMID: 19106818]
[15]
Hu, X.; Li, D.; Chu, C.; Li, X.; Wang, X.; Jia, Y.; Hua, H.; Xu, F. Antiproliferative effects of alkaloid evodiamine and its derivatives. Int. J. Mol. Sci., 2018, 19(11), 3403-3434.
[http://dx.doi.org/10.3390/ijms19113403] [PMID: 30380774]
[16]
Luo, C.; Ai, J.; Ren, E.; Li, J.; Feng, C.; Li, X.; Luo, X. Research progress on evodiamine, a bioactive alkaloid of Evodiae fructus : Focus on its anti-cancer activity and bioavailability. (Review). Exp. Ther. Med., 2021, 22(5), 1327-1338.
[http://dx.doi.org/10.3892/etm.2021.10762] [PMID: 34630681]
[17]
Tan, Q.; Zhang, J. Evodiamine and its role in chronic diseases. Adv. Exp. Med. Biol., 2016, 929, 315-328.
[http://dx.doi.org/10.1007/978-3-319-41342-6_14] [PMID: 27771931]
[18]
Hu, Y.; Fahmy, H.; Zjawiony, J.K.; Davies, G.E. Inhibitory effect and transcriptional impact of berberine and evodiamine on human white preadipocyte differentiation. Fitoterapia, 2010, 81(4), 259-268.
[http://dx.doi.org/10.1016/j.fitote.2009.09.012] [PMID: 19799972]
[19]
Shi, J.; Yan, J.; Lei, Q.; Zhao, J.; Chen, K.; Yang, D.; Zhao, X.; Zhang, Y. Intragastric administration of evodiamine suppresses NPY and AgRP gene expression in the hypothalamus and decreases food intake in rats. Brain Res., 2009, 1247, 71-78.
[http://dx.doi.org/10.1016/j.brainres.2008.09.091] [PMID: 18955035]
[20]
Wang, T.; Wang, Y.; Yamashita, H. Evodiamine inhibits adipogenesis via the EGFR-PKCalpha-ERK signaling pathway. FEBS Lett., 2009, 583(22), 3655-3659.
[http://dx.doi.org/10.1016/j.febslet.2009.10.046] [PMID: 19854188]
[21]
Wang, T.; Wang, Y.; Kontani, Y.; Kobayashi, Y.; Sato, Y.; Mori, N.; Yamashita, H. Evodiamine improves diet-induced obesity in a uncoupling protein-1-independent manner: Involvement of antiadipogenic mechanism and extracellularly regulated kinase/mitogen-activated protein kinase signaling. Endocrinology, 2008, 149(1), 358-366.
[http://dx.doi.org/10.1210/en.2007-0467] [PMID: 17884939]
[22]
Tian, K.M.; Li, J.J.; Xu, S.W. Rutaecarpine: A promising cardiovascular protective alkaloid from Evodia rutaecarpa (Wu Zhu Yu). Pharmacol. Res., 2019, 141, 541-550.
[http://dx.doi.org/10.1016/j.phrs.2018.12.019] [PMID: 30616017]
[23]
Yuan, S.M.; Gao, K.; Wang, D.M.; Quan, X.Z.; Liu, J.N.; Ma, C.M.; Qin, C.; Zhang, L.F. Evodiamine improves congnitive abilities in SAMP8 and APP(swe)/PS1(ΔE9) transgenic mouse models of Alzheimer’s disease. Acta Pharmacol. Sin., 2011, 32(3), 295-302.
[http://dx.doi.org/10.1038/aps.2010.230] [PMID: 21278785]
[24]
Tominaga, K.; Higuchi, K.; Hamasaki, N.; Tanigawa, T.; Sasaki, E.; Watanabe, T.; Fujiwara, Y.; Oshitani, N.; Arakawa, T.; Ishii, E.; Tezuka, Y.; Nagaoka, T.; Kadota, S. Antibacterial activity of a Chinese herbal medicine, Gosyuyu (Wu-Chu-Yu), against Helicobacter pylori. Nihon rinsho, 2005, 63, 592-599.
[25]
Chiou, W.F.; Ko, H.C.; Wei, B.L. Evodia rutaecarpa and three major alkaloids abrogate influenza A virus (H1N1)-induced chemokines production and cell migration. Evid. Based Complement. Alternat. Med., 2011, 2011, 750513.
[http://dx.doi.org/10.1093/ecam/nep238] [PMID: 21799692]
[26]
Pearce, L.V.; Petukhov, P.A.; Szabo, T.; Kedei, N.; Bizik, F.; Kozikowski, A.P.; Blumberg, P.M. Evodiamine functions as an agonist for the vanilloid receptor TRPV1. Org. Biomol. Chem., 2004, 2(16), 2281-2286.
[http://dx.doi.org/10.1039/b404506h] [PMID: 15305207]
[27]
Kano, Y.; Zong, Q.N.; Komatsu, K. Pharmacological properties of galenical preparation. XIV. Body temperature retaining effect of the Chinese traditional medicine, “goshuyu-to” and component crude drugs. Chem. Pharm. Bull. (Tokyo), 1991, 39(3), 690-692.
[http://dx.doi.org/10.1248/cpb.39.690] [PMID: 2070449]
[28]
Tsai, T.H.; Lee, T.F.; Chen, C.F.; Wang, L.C. Thermoregulatory effects of alkaloids isolated from Wu-Chu-Yu in afebrile and febrile rats. Pharmacol. Biochem. Behav., 1995, 50(2), 293-298.
[http://dx.doi.org/10.1016/0091-3057(94)00317-C] [PMID: 7740070]
[29]
Yamahara, J.; Yamada, T.; Kitani, T.; Naitoh, Y.; Fujimura, H. Antianoxic action of evodiamine, an alkaloid in Evodia rutaecarpa fruit. J. Ethnopharmacol., 1989, 27(1-2), 185-192.
[http://dx.doi.org/10.1016/0378-8741(89)90090-1] [PMID: 2615419]
[30]
Shin, Y.W.; Bae, E.A.; Cai, X.F.; Lee, J.J.; Kim, D.H. In vitro and in vivo antiallergic effect of the fructus of Evodia rutaecarpa and its constituents. Biol. Pharm. Bull., 2007, 30(1), 197-199.
[http://dx.doi.org/10.1248/bpb.30.197] [PMID: 17202687]
[31]
Kobayashi, Y.; Nakano, Y.; Hoshikuma, K.; Yokoo, Y.; Kamiya, T. The bronchoconstrictive action of evodiamine, an indoloquinazoline alkaloid isolated from the fruits of Evodia rutaecarpa , on guinea-pig isolated bronchus: Possible involvement on vanilloid receptors. Planta Med., 2000, 66(6), 526-530.
[http://dx.doi.org/10.1055/s-2000-8615] [PMID: 10985078]
[32]
Lin, H.; Tsai, S.C.; Chen, J.J.; Chiao, Y.C.; Wang, S.W.; Wang, G.J.; Chen, C.F.; Wang, P.S. Effects of evodiamine on the secretion of testosterone in rat testicular interstitial cells. Metabolism, 1999, 48(12), 1532-1535.
[http://dx.doi.org/10.1016/S0026-0495(99)90241-X] [PMID: 10599984]
[33]
Yu, P.L.; Chao, H.L.; Wang, S.W.; Wang, P.S. Effects of evodiamine and rutaecarpine on the secretion of corticosterone by zona fasciculata-reticularis cells in male rats. J. Cell. Biochem., 2009, 108(2), 469-475.
[http://dx.doi.org/10.1002/jcb.22276] [PMID: 19639602]
[34]
Wang, Z.; Sun, L.; Yu, H.; Zhang, Y.; Gong, W.; Jin, H.; Zhang, L.; Liang, H. Binding mode pediction of evodiamine within vanilloid receptor TRPV1. Int. J. Mol. Sci., 2012, 13(7), 8958-8969.
[http://dx.doi.org/10.3390/ijms13078958] [PMID: 22942745]
[35]
Yu, H.; Tu, Y.; Zhang, C.; Fan, X.; Wang, X.; Wang, Z.; Liang, H. Evodiamine as a novel antagonist of aryl hydrocarbon receptor. Biochem. Biophys. Res. Commun., 2010, 402(1), 94-98.
[http://dx.doi.org/10.1016/j.bbrc.2010.09.122] [PMID: 20888792]
[36]
Dong, G.; Sheng, C.; Wang, S.; Miao, Z.; Yao, J.; Zhang, W. Selection of evodiamine as a novel topoisomerase I inhibitor by structure-based virtual screening and hit optimization of evodiamine derivatives as antitumor agents. J. Med. Chem., 2010, 53(21), 7521-7531.
[http://dx.doi.org/10.1021/jm100387d] [PMID: 20942490]
[37]
Jiang, J.; Hu, C. Evodiamine: A novel anti-cancer alkaloid from Evodia rutaecarpa . Molecules, 2009, 14(5), 1852-1859.
[http://dx.doi.org/10.3390/molecules14051852] [PMID: 19471205]
[38]
Lu, J.J.; Bao, J.L.; Chen, X.P.; Huang, M.; Wang, Y.T. Alkaloids isolated from natural herbs as the anticancer agents. Evid. Based Complement. Alternat. Med., 2012, 2012, 485042.
[http://dx.doi.org/10.1155/2012/485042] [PMID: 22988474]
[39]
Yu, H.; Jin, H.; Gong, W.; Wang, Z.; Liang, H. Pharmacological actions of multi-target-directed evodiamine. Molecules, 2013, 18(2), 1826-1843.
[http://dx.doi.org/10.3390/molecules18021826] [PMID: 23434865]
[40]
Gavaraskar, K.; Dhulap, S.; Hirwani, R.R. Therapeutic and cosmetic applications of Evodiamine and its derivatives-A patent review. Fitoterapia, 2015, 106, 22-35.
[http://dx.doi.org/10.1016/j.fitote.2015.07.019] [PMID: 26255828]
[41]
Li, X.; Ge, J.; Zheng, Q.; Zhang, J.; Sun, R.; Liu, R. Evodiamine and rutaecarpine from Tetradium ruticarpum in the treatment of liver diseases. Phytomedicine, 2020, 68, 153180.
[http://dx.doi.org/10.1016/j.phymed.2020.153180] [PMID: 32092638]
[42]
Liu, W.; Liu, X.; Tian, L.; Gao, Y.; Liu, W.; Chen, H.; Jiang, X.; Xu, Z.; Ding, H.; Zhao, Q. Design, synthesis and biological evaluation of harmine derivatives as potent GSK-3β/DYRK1A dual inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2021, 222, 113554.
[http://dx.doi.org/10.1016/j.ejmech.2021.113554] [PMID: 34098466]
[43]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[44]
Liang, X.; Wu, Q.; Luan, S.; Yin, Z.; He, C.; Yin, L.; Zou, Y.; Yuan, Z.; Li, L.; Song, X.; He, M.; Lv, C.; Zhang, W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur. J. Med. Chem., 2019, 171, 129-168.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.034] [PMID: 30917303]
[45]
Kaur, R.; Kaur, G.; Gill, R.K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem., 2014, 87, 89-124.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.051] [PMID: 25240869]
[46]
Peng, X.; Sun, Z.; Kuang, P.; Chen, J. Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment. Eur. J. Med. Chem., 2020, 208, 112831.
[http://dx.doi.org/10.1016/j.ejmech.2020.112831] [PMID: 32961382]
[47]
Wang, Y.; He, J.; Liao, M.; Hu, M.; Li, W.; Ouyang, H.; Wang, X.; Ye, T.; Zhang, Y.; Ouyang, L. An overview of Sirtuins as potential therapeutic target: Structure, function and modulators. Eur. J. Med. Chem., 2019, 161, 48-77.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.028] [PMID: 30342425]
[48]
Satyanarayana, M.; Feng, W.; Cheng, L.; Liu, A.A.; Tsai, Y.C.; Liu, L.F.; LaVoie, E.J. Syntheses and biological evaluation of topoisomerase I-targeting agents related to 11-[2-(N,N-dimethylamino)ethyl]-2,3-dimethoxy-8,9-methylenedioxy-11H-isoquino[4,3-c]cinnolin-12-one (ARC-31). Bioorg. Med. Chem., 2008, 16(16), 7824-7831.
[http://dx.doi.org/10.1016/j.bmc.2008.06.046] [PMID: 18676151]
[49]
Cuya, S.M.; Bjornsti, M.A.; van Waardenburg, R.C.A.M. DNA topoisomerase-targeting chemotherapeutics: What’s new? Cancer Chemother. Pharmacol., 2017, 80(1), 1-14.
[http://dx.doi.org/10.1007/s00280-017-3334-5] [PMID: 28528358]
[50]
Byl, J.A.; Cline, S.D.; Utsugi, T.; Kobunai, T.; Yamada, Y.; Osheroff, N. DNA topoisomerase II as the target for the anticancer drug TOP-53: Mechanistic basis for drug action. Biochemistry, 2001, 40(3), 712-718.
[http://dx.doi.org/10.1021/bi0021838] [PMID: 11170388]
[51]
Chikamori, K.; Grozav, A.G.; Kozuki, T.; Grabowski, D.; Ganapathi, R.; Ganapathi, M.K. DNA topoisomerase II enzymes as molecular targets for cancer chemotherapy. Curr. Cancer Drug Targets, 2010, 10(7), 758-771.
[http://dx.doi.org/10.2174/156800910793605785] [PMID: 20578986]
[52]
Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[53]
Liang, C. X., J.; Song, Huihui; Zhou, Zhiguang; Xue, Yu; Yao, Qizheng Synthesis, in vitro and in vivo antitumor activity and docking studies of new vodiamine derivatives. J. Chem. Pharm. Res., 2014, 6, 1161-1171.
[54]
Fan, X.; Deng, J.; Shi, T.; Wen, H.; Li, J.; Liang, Z.; Lei, F.; Liu, D.; Zhang, H.; Liang, Y.; Hao, X.; Wang, Z. Design, synthesis and bioactivity study of evodiamine derivatives as multifunctional agents for the treatment of hepatocellular carcinoma. Bioorg. Chem., 2021, 114, 105154.
[http://dx.doi.org/10.1016/j.bioorg.2021.105154] [PMID: 34378540]
[55]
Liang, Z.; Lei, F.; Deng, J.; Zhang, H.; Wang, Y.; Li, J.; Shi, T.; Yang, X.; Wang, Z. Design, synthesis and bioactivity evaluation of novel evodiamine derivatives with excellent potency against gastric cancer. Eur. J. Med. Chem., 2022, 228, 113960.
[http://dx.doi.org/10.1016/j.ejmech.2021.113960] [PMID: 34774339]
[56]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[57]
Cheng, B.; Zhu, G.; Meng, L.; Wu, G.; Chen, Q.; Ma, S. Identification and optimization of biphenyl derivatives as novel tubulin inhibitors targeting colchicine-binding site overcoming multidrug resistance. Eur. J. Med. Chem., 2022, 228, 113930.
[http://dx.doi.org/10.1016/j.ejmech.2021.113930] [PMID: 34794817]
[58]
Belleri, M.; Ribatti, D.; Nicoli, S.; Cotelli, F.; Forti, L.; Vannini, V.; Stivala, L.A.; Presta, M. Antiangiogenic and vascular-targeting activity of the microtubule-destabilizing trans-resveratrol derivative 3,5,4′-trimethoxystilbene. Mol. Pharmacol., 2005, 67(5), 1451-1459.
[http://dx.doi.org/10.1124/mol.104.009043] [PMID: 15703378]
[59]
Li, L.; Jiang, S.; Li, X.; Liu, Y.; Su, J.; Chen, J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur. J. Med. Chem., 2018, 151, 482-494.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.011] [PMID: 29649743]
[60]
Peng, Y.; Xiong, R.; Li, Z.; Peng, J.; Xie, Z.Z.; Lei, X.Y.; He, D.; Tang, G. Design, synthesis, and biological evaluation of 3′,4′,5′-trimethoxy evodiamine derivatives as potential antitumor agents. Drug Dev. Res., 2021, 82(7), 1021-1032.
[http://dx.doi.org/10.1002/ddr.21806] [PMID: 33600007]
[61]
Dong, G.; Wang, S.; Miao, Z.; Yao, J.; Zhang, Y.; Guo, Z.; Zhang, W.; Sheng, C. New tricks for an old natural product: Discovery of highly potent evodiamine derivatives as novel antitumor agents by systemic structure-activity relationship analysis and biological evaluations. J. Med. Chem., 2012, 55(17), 7593-7613.
[http://dx.doi.org/10.1021/jm300605m] [PMID: 22867019]
[62]
Stubelius, A.; Lee, S.; Almutairi, A. The chemistry of boronic acids in nanomaterials for drug delivery. Acc. Chem. Res., 2019, 52(11), 3108-3119.
[http://dx.doi.org/10.1021/acs.accounts.9b00292] [PMID: 31599160]
[63]
Fernandes, G.F.S.; Denny, W.A.; Dos Santos, J.L. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur. J. Med. Chem., 2019, 179, 791-804.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.092] [PMID: 31288128]
[64]
Kim, E.J.; Bhuniya, S.; Lee, H.; Kim, H.M.; Cheong, C.; Maiti, S.; Hong, K.S.; Kim, J.S. An activatable prodrug for the treatment of metastatic tumors. J. Am. Chem. Soc., 2014, 136(39), 13888-13894.
[http://dx.doi.org/10.1021/ja5077684] [PMID: 25238144]
[65]
Li, J.; Huang, J.; Lyu, Y.; Huang, J.; Jiang, Y.; Xie, C.; Pu, K. photoactivatable organic semiconducting pro-nanoenzymes. J. Am. Chem. Soc., 2019, 141(9), 4073-4079.
[http://dx.doi.org/10.1021/jacs.8b13507] [PMID: 30741538]
[66]
Yang, W.; Gao, X.; Wang, B. Boronic acid compounds as potential pharmaceutical agents. Med. Res. Rev., 2003, 23(3), 346-368.
[http://dx.doi.org/10.1002/med.10043] [PMID: 12647314]
[67]
Wang, L.; Xie, S.; Ma, L.; Chen, Y.; Lu, W. 10-Boronic acid substituted camptothecin as prodrug of SN-38. Eur. J. Med. Chem., 2016, 116, 84-89.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.063] [PMID: 27060760]
[68]
Li, X.; Wu, S.; Dong, G.; Chen, S.; Ma, Z.; Liu, D.; Sheng, C. Natural product evodiamine with borate trigger unit: Discovery of potent antitumor agents against colon cancer. ACS Med. Chem. Lett., 2020, 11(4), 439-444.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00513] [PMID: 32292547]
[69]
Wang, L.; Fang, K.; Cheng, J.; Li, Y.; Huang, Y.; Chen, S.; Dong, G.; Wu, S.; Sheng, C. Scaffold hopping of natural product evodiamine: Discovery of a novel antitumor scaffold with excellent potency against colon cancer. J. Med. Chem., 2020, 63(2), 696-713.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01626] [PMID: 31880942]
[70]
Baylin, S.B.; Jones, P.A. A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer, 2011, 11(10), 726-734.
[http://dx.doi.org/10.1038/nrc3130] [PMID: 21941284]
[71]
Papavassiliou, K.A.; Papavassiliou, A.G. Histone deacetylases inhibitors: Conjugation to other anti-tumour pharmacophores provides novel tools for cancer treatment. Expert Opin. Investig. Drugs, 2014, 23(3), 291-294.
[http://dx.doi.org/10.1517/13543784.2014.857401] [PMID: 24205827]
[72]
Thurn, K.T.; Thomas, S.; Moore, A.; Munster, P.N. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol., 2011, 7(2), 263-283.
[http://dx.doi.org/10.2217/fon.11.2] [PMID: 21345145]
[73]
Zou, Y.; Cao, Z.; Wang, J.; Chen, X.; Chen, Y.Q.; Li, Y.; Liu, J.; Zhao, Y.; Wang, A.; He, B. A series of novel HDAC inhibitors with anthraquinone as a cap group. Chem. Pharm. Bull. (Tokyo), 2020, 68(7), 613-617.
[http://dx.doi.org/10.1248/cpb.c20-00206] [PMID: 32611998]
[74]
Kim, M.S.; Blake, M.; Baek, J.H.; Kohlhagen, G.; Pommier, Y.; Carrier, F. Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res., 2003, 63(21), 7291-7300.
[PMID: 14612526]
[75]
Catalano, M.G.; Fortunati, N.; Pugliese, M.; Poli, R.; Bosco, O.; Mastrocola, R.; Aragno, M.; Boccuzzi, G. Valproic acid, a histone deacetylase inhibitor, enhances sensitivity to doxorubicin in anaplastic thyroid cancer cells. J. Endocrinol., 2006, 191(2), 465-472.
[http://dx.doi.org/10.1677/joe.1.06970] [PMID: 17088416]
[76]
Huang, Y.; Chen, S.; Wu, S.; Dong, G.; Sheng, C. Evodiamine-inspired dual inhibitors of Histone Deacetylase 1 (HDAC1) and Topoisomerase 2 (TOP2) with potent antitumor activity. Acta Pharm. Sin. B, 2020, 10(7), 1294-1308.
[http://dx.doi.org/10.1016/j.apsb.2019.11.011] [PMID: 32874829]
[77]
Chen, B.; Zang, W.; Wang, J.; Huang, Y.; He, Y.; Yan, L.; Liu, J.; Zheng, W. The chemical biology of sirtuins. Chem. Soc. Rev., 2015, 44(15), 5246-5264.
[http://dx.doi.org/10.1039/C4CS00373J] [PMID: 25955411]
[78]
Bonkowski, M.S.; Sinclair, D.A. Slowing ageing by design: The rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol., 2016, 17(11), 679-690.
[http://dx.doi.org/10.1038/nrm.2016.93] [PMID: 27552971]
[79]
Chalkiadaki, A.; Guarente, L. The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer, 2015, 15(10), 608-624.
[http://dx.doi.org/10.1038/nrc3985] [PMID: 26383140]
[80]
Christodoulou, M.S.; Sacchetti, A.; Ronchetti, V.; Caufin, S.; Silvani, A.; Lesma, G.; Fontana, G.; Minicone, F.; Riva, B.; Ventura, M.; Lahtela-Kakkonen, M.; Jarho, E.; Zuco, V.; Zunino, F.; Martinet, N.; Dapiaggi, F.; Pieraccini, S.; Sironi, M.; Dalla Via, L.; Gia, O.M.; Passarella, D. Quinazolinecarboline alkaloid evodiamine as scaffold for targeting topoisomerase I and sirtuins. Bioorg. Med. Chem., 2013, 21(22), 6920-6928.
[http://dx.doi.org/10.1016/j.bmc.2013.09.030] [PMID: 24103429]
[81]
He, S.; Dong, G.; Wang, Z.; Chen, W.; Huang, Y.; Li, Z.; Jiang, Y.; Liu, N.; Yao, J.; Miao, Z.; Zhang, W.; Sheng, C. Discovery of novel multiacting topoisomerase i/ii and histone deacetylase inhibitors. ACS Med. Chem. Lett., 2015, 6(3), 239-243.
[http://dx.doi.org/10.1021/ml500327q] [PMID: 25815139]
[82]
Wang, S.; Fang, K.; Dong, G.; Chen, S.; Liu, N.; Miao, Z.; Yao, J.; Li, J.; Zhang, W.; Sheng, C. Scaffold diversity inspired by the natural product evodiamine: Discovery of highly potent and multitargeting antitumor agents. J. Med. Chem., 2015, 58(16), 6678-6696.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00910] [PMID: 26226379]
[83]
Chen, S.; Bi, K.; Wu, S.; Li, Y.; Huang, Y.; Sheng, C.; Dong, G. Water-soluble derivatives of evodiamine: Discovery of evodiamine-10-phosphate as an orally active antitumor lead compound. Eur. J. Med. Chem., 2021, 220, 113544.
[http://dx.doi.org/10.1016/j.ejmech.2021.113544] [PMID: 34052678]
[84]
Mocellin, S. Nitric oxide: Cancer target or anticancer agent? Curr. Cancer Drug Targets, 2009, 9(2), 214-236.
[http://dx.doi.org/10.2174/156800909787581015] [PMID: 19275761]
[85]
Carpenter, A.W.; Schoenfisch, M.H. Nitric oxide release: Part II. Therapeutic applications. Chem. Soc. Rev., 2012, 41(10), 3742-3752.
[http://dx.doi.org/10.1039/c2cs15273h] [PMID: 22362384]
[86]
Gladwin, M.T.; Lancaster, J.R., Jr; Freeman, B.A.; Schechter, A.N. Nitric oxide’s reactions with hemoglobin: A view through the SNO-storm. Nat. Med., 2003, 9(5), 496-500.
[http://dx.doi.org/10.1038/nm0503-496] [PMID: 12724752]
[87]
Pervin, S.; Singh, R.; Chaudhuri, G. Nitric oxide, N omega-hydroxy-L-arginine and breast cancer. Nitric Oxide, 2008, 19(2), 103-106.
[http://dx.doi.org/10.1016/j.niox.2008.04.016] [PMID: 18474257]
[88]
Song, Q.; Tan, S.; Zhuang, X.; Guo, Y.; Zhao, Y.; Wu, T.; Ye, Q.; Si, L.; Zhang, Z. Nitric oxide releasing d-α-tocopheryl polyethylene glycol succinate for enhancing antitumor activity of doxorubicin. Mol. Pharm., 2014, 11(11), 4118-4129.
[http://dx.doi.org/10.1021/mp5003009] [PMID: 25222114]
[89]
Han, C.; Huang, Z.; Zheng, C.; Wan, L.; Zhang, L.; Peng, S.; Ding, K.; Ji, H.; Tian, J.; Zhang, Y. Novel hybrids of (phenylsulfonyl)furoxan and anilinopyrimidine as potent and selective epidermal growth factor receptor inhibitors for intervention of non-small-cell lung cancer. J. Med. Chem., 2013, 56(11), 4738-4748.
[http://dx.doi.org/10.1021/jm400463q] [PMID: 23668441]
[90]
Ai, Y.; Kang, F.; Huang, Z.; Xue, X.; Lai, Y.; Peng, S.; Tian, J.; Zhang, Y. Synthesis of CDDO-amino acid-nitric oxide donor trihybrids as potential antitumor agents against both drug-sensitive and drug-resistant colon cancer. J. Med. Chem., 2015, 58(5), 2452-2464.
[http://dx.doi.org/10.1021/jm5019302] [PMID: 25675144]
[91]
Liu, M.M.; Chen, X.Y.; Huang, Y.Q.; Feng, P.; Guo, Y.L.; Yang, G.; Chen, Y. Hybrids of phenylsulfonylfuroxan and coumarin as potent antitumor agents. J. Med. Chem., 2014, 57(22), 9343-9356.
[http://dx.doi.org/10.1021/jm500613m] [PMID: 25350923]
[92]
Zhao, N.; Tian, K.T.; Cheng, K.G.; Han, T.; Hu, X.; Li, D.H.; Li, Z.L.; Hua, H.M. Antiproliferative activity and apoptosis inducing effects of nitric oxide donating derivatives of evodiamine. Bioorg. Med. Chem., 2016, 24(13), 2971-2978.
[http://dx.doi.org/10.1016/j.bmc.2016.05.001] [PMID: 27178387]
[93]
Szabo, C. Gasotransmitters in cancer: From pathophysiology to experimental therapy. Nat. Rev. Drug Discov., 2016, 15(3), 185-203.
[http://dx.doi.org/10.1038/nrd.2015.1] [PMID: 26678620]
[94]
Hellmich, M.R.; Szabo, C. Hydrogen sulfide and cancer. Handb. Exp. Pharmacol., 2015, 230, 233-241.
[http://dx.doi.org/10.1007/978-3-319-18144-8_12] [PMID: 26162838]
[95]
Chegaev, K.; Rolando, B.; Cortese, D.; Gazzano, E.; Buondonno, I.; Lazzarato, L.; Fanelli, M.; Hattinger, C.M.; Serra, M.; Riganti, C.; Fruttero, R.; Ghigo, D.; Gasco, A. H2S-Donating doxorubicins may overcome cardiotoxicity and multidrug resistance. J. Med. Chem., 2016, 59(10), 4881-4889.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00184] [PMID: 27120394]
[96]
Feng, W.; Teo, X.Y.; Novera, W.; Ramanujulu, P.M.; Liang, D.; Huang, D.; Moore, P.K.; Deng, L.W.; Dymock, B.W. Discovery of new H2S releasing phosphordithioates and 2,3-dihydro-2-phenyl-2-sulfanylenebenzo[d][1,3,2]oxazaphospholes with improved antiproliferative activity. J. Med. Chem., 2015, 58(16), 6456-6480.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00848] [PMID: 26147240]
[97]
Yang, C.T.; Chen, L.; Xu, S.; Day, J.J.; Li, X.; Xian, M. Recent development of hydrogen sulfide releasing/stimulating reagents and their potential applications in cancer and glycometabolic disorders. Front. Pharmacol., 2017, 8, 664.
[http://dx.doi.org/10.3389/fphar.2017.00664] [PMID: 29018341]
[98]
De Cicco, P.; Panza, E.; Ercolano, G.; Armogida, C.; Sessa, G.; Pirozzi, G.; Cirino, G.; Wallace, J.L.; Ianaro, A. ATB-346, a novel hydrogen sulfide-releasing anti-inflammatory drug, induces apoptosis of human melanoma cells and inhibits melanoma development in vivo . Pharmacol. Res., 2016, 114, 67-73.
[http://dx.doi.org/10.1016/j.phrs.2016.10.019] [PMID: 27777130]
[99]
Ianaro, A.; Cirino, G.; Wallace, J.L. Hydrogen sulfide-releasing anti-inflammatory drugs for chemoprevention and treatment of cancer. Pharmacol. Res., 2016, 111, 652-658.
[http://dx.doi.org/10.1016/j.phrs.2016.07.041] [PMID: 27475881]
[100]
Hasegawa, U.; Tateishi, N.; Uyama, H.; van der Vlies, A.J. Hydrolysis-sensitive dithiolethione prodrug micelles. Macromol. Biosci., 2015, 15(11), 1512-1522.
[http://dx.doi.org/10.1002/mabi.201500156] [PMID: 26102371]
[101]
Hu, X.; Jiao, R.; Li, H.; Wang, X.; Lyu, H.; Gao, X.; Xu, F.; Li, Z.; Hua, H.; Li, D. Antiproliferative hydrogen sulfide releasing evodiamine derivatives and their apoptosis inducing properties. Eur. J. Med. Chem., 2018, 151, 376-388.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.009] [PMID: 29635169]
[102]
Song, S.; Chen, Z.; Li, S.; Huang, Y.; Wan, Y.; Song, H. Design, synthesis and evaluation of N13-substituted evodiamine derivatives against human cancer cell lines. Molecules, 2013, 18(12), 15750-15768.
[http://dx.doi.org/10.3390/molecules181215750] [PMID: 24352027]
[103]
Chien, C.C.; Wu, M.S.; Shen, S.C.; Ko, C.H.; Chen, C.H.; Yang, L.L.; Chen, Y.C. Activation of JNK contributes to evodiamine-induced apoptosis and G2/M arrest in human colorectal carcinoma cells: A structure-activity study of evodiamine. PLoS One, 2014, 9(6), e99729.
[http://dx.doi.org/10.1371/journal.pone.0099729] [PMID: 24959718]
[104]
Singh, R.K.; Kumar, S.; Prasad, D.N.; Bhardwaj, T.R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur. J. Med. Chem., 2018, 151, 401-433.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.001] [PMID: 29649739]
[105]
Hu, X.; Wang, Y.; Xue, J.; Han, T.; Jiao, R.; Li, Z.; Liu, W.; Xu, F.; Hua, H.; Li, D. Design and synthesis of novel nitrogen mustard-evodiamine hybrids with selective antiproliferative activity. Bioorg. Med. Chem. Lett., 2017, 27(22), 4989-4993.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.014] [PMID: 29037951]
[106]
Abeysinghe, A.A.D.T.; Deshapriya, R.D.U.S.; Udawatte, C. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci., 2020, 256, 117996.
[http://dx.doi.org/10.1016/j.lfs.2020.117996] [PMID: 32585249]
[107]
Mohamed, T.; Rao, P.P. Alzheimer’s disease: Emerging trends in small molecule therapies. Curr. Med. Chem., 2011, 18(28), 4299-4320.
[http://dx.doi.org/10.2174/092986711797200435] [PMID: 21861820]
[108]
Xie, J.; Liang, R.; Wang, Y.; Huang, J.; Cao, X.; Niu, B. Progress in target drug molecules for Alzheimer’s disease. Curr. Top. Med. Chem., 2020, 20(1), 4-36.
[http://dx.doi.org/10.2174/1568026619666191203113745] [PMID: 31797761]
[109]
Adlard, P.A.; James, S.A.; Bush, A.I.; Masters, C.L. beta-Amyloid as a molecular therapeutic target in Alzheimer’s disease. Drugs Today (Barc), 2009, 45(4), 293-304.
[http://dx.doi.org/10.1358/dot.2009.045.004.1353853] [PMID: 19499094]
[110]
Craig, L.A.; Hong, N.S.; McDonald, R.J. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci. Biobehav. Rev., 2011, 35(6), 1397-1409.
[http://dx.doi.org/10.1016/j.neubiorev.2011.03.001] [PMID: 21392524]
[111]
Huang, G.; Kling, B.; Darras, F.H.; Heilmann, J.; Decker, M. Identification of a neuroprotective and selective butyrylcholinesterase inhibitor derived from the natural alkaloid evodiamine. Eur. J. Med. Chem., 2014, 81, 15-21.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.002] [PMID: 24819955]
[112]
Pang, S.; Sun, C.; Gao, S.; Yang, Y.; Pan, X.; Zhang, L. Evodiamine derivatives improve cognitive abilities in APPswe/PS1ΔE9 transgenic mouse models of Alzheimer’s disease. Animal Model. Exp. Med., 2020, 3(2), 193-199.
[http://dx.doi.org/10.1002/ame2.12126] [PMID: 32613178]
[113]
Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacol. Rev., 2006, 58(3), 488-520.
[http://dx.doi.org/10.1124/pr.58.3.5] [PMID: 16968949]
[114]
Pissarnitski, D. Phosphodiesterase 5 (PDE 5) inhibitors for the treatment of male erectile disorder: Attaining selectivity versus PDE6. Med. Res. Rev., 2006, 26(3), 369-395.
[http://dx.doi.org/10.1002/med.20053] [PMID: 16388517]
[115]
Maurice, D.H.; Ke, H.; Ahmad, F.; Wang, Y.; Chung, J.; Manganiello, V.C. Advances in targeting cyclic nucleotide phosphodiesterases. Nat. Rev. Drug Discov., 2014, 13(4), 290-314.
[http://dx.doi.org/10.1038/nrd4228] [PMID: 24687066]
[116]
Baillie, G.S.; Tejeda, G.S.; Kelly, M.P. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: Inhibition and beyond. Nat. Rev. Drug Discov., 2019, 18(10), 770-796.
[http://dx.doi.org/10.1038/s41573-019-0033-4] [PMID: 31388135]
[117]
Kokkonen, K.; Kass, D.A. Nanodomain regulation of cardiac cyclic nucleotide signaling by phosphodiesterases. Annu. Rev. Pharmacol. Toxicol., 2017, 57, 455-479.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104756] [PMID: 27732797]
[118]
Rodríguez, C.I.; Setaluri, V. Cyclic AMP (cAMP) signaling in melanocytes and melanoma. Arch. Biochem. Biophys., 2014, 563, 22-27.
[http://dx.doi.org/10.1016/j.abb.2014.07.003] [PMID: 25017568]
[119]
Rotella, D.P. Phosphodiesterase 5 inhibitors: Current status and potential applications. Nat. Rev. Drug Discov., 2002, 1(9), 674-682.
[http://dx.doi.org/10.1038/nrd893] [PMID: 12209148]
[120]
Rybalkin, S.D.; Rybalkina, I.G.; Shimizu-Albergine, M.; Tang, X.B.; Beavo, J.A. PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J., 2003, 22(3), 469-478.
[http://dx.doi.org/10.1093/emboj/cdg051] [PMID: 12554648]
[121]
Zoraghi, R.; Bessay, E.P.; Corbin, J.D.; Francis, S.H. Structural and functional features in human PDE5A1 regulatory domain that provide for allosteric cGMP binding, dimerization, and regulation. J. Biol. Chem., 2005, 280(12), 12051-12063.
[http://dx.doi.org/10.1074/jbc.M413611200] [PMID: 15677448]
[122]
Wang, H.; Robinson, H.; Ke, H. Conformation changes, N-terminal involvement, and cGMP signal relay in the phosphodiesterase-5 GAF domain. J. Biol. Chem., 2010, 285(49), 38149-38156.
[http://dx.doi.org/10.1074/jbc.M110.141614] [PMID: 20861010]
[123]
Wang, H.; Liu, Y.; Huai, Q.; Cai, J.; Zoraghi, R.; Francis, S.H.; Corbin, J.D.; Robinson, H.; Xin, Z.; Lin, G.; Ke, H. Multiple conformations of phosphodiesterase-5: Implications for enzyme function and drug development. J. Biol. Chem., 2006, 281(30), 21469-21479.
[http://dx.doi.org/10.1074/jbc.M512527200] [PMID: 16735511]
[124]
Wu, D.; Zhang, T.; Chen, Y.; Huang, Y.; Geng, H.; Yu, Y.; Zhang, C.; Lai, Z.; Wu, Y.; Guo, X.; Chen, J.; Luo, H.B. Discovery and optimization of chromeno[2,3-c]pyrrol-9(2H)-ones as novel selective and orally bioavailable phosphodiesterase 5 inhibitors for the treatment of pulmonary arterial hypertension. J. Med. Chem., 2017, 60(15), 6622-6637.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00523] [PMID: 28686445]
[125]
Zhang, T.; Lai, Z.; Yuan, S.; Huang, Y.Y.; Dong, G.; Sheng, C.; Ke, H.; Luo, H.B. Discovery of evodiamine derivatives as highly selective PDE5 inhibitors targeting a unique allosteric pocket. J. Med. Chem., 2020, 63(17), 9828-9837.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00983] [PMID: 32794708]
[126]
Venkatachalam, K.; Montell, C. TRP channels. Annu. Rev. Biochem., 2007, 76, 387-417.
[http://dx.doi.org/10.1146/annurev.biochem.75.103004.142819] [PMID: 17579562]
[127]
Patapoutian, A.; Tate, S.; Woolf, C.J. Transient receptor potential channels: Targeting pain at the source. Nat. Rev. Drug Discov., 2009, 8(1), 55-68.
[http://dx.doi.org/10.1038/nrd2757] [PMID: 19116627]
[128]
Jara-Oseguera, A.; Simon, S.A.; Rosenbaum, T. TRPV1: On the road to pain relief. Curr. Mol. Pharmacol., 2008, 1(3), 255-269.
[http://dx.doi.org/10.2174/1874467210801030255] [PMID: 20021438]
[129]
Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell, 2009, 139(2), 267-284.
[http://dx.doi.org/10.1016/j.cell.2009.09.028] [PMID: 19837031]
[130]
De Petrocellis, L.; Schiano Moriello, A.; Fontana, G.; Sacchetti, A.; Passarella, D.; Appendino, G.; Di Marzo, V. Effect of chirality and lipophilicity in the functional activity of evodiamine and its analogues at TRPV1 channels. Br. J. Pharmacol., 2014, 171(10), 2608-2620.
[http://dx.doi.org/10.1111/bph.12320] [PMID: 23902373]
[131]
Yang, C.J.; Li, H.X.; Wang, J.R.; Zhang, Z.J.; Wu, T.L.; Liu, Y.Q.; Tang, C.; Chu, Q.R.; Du, S.S.; He, Y.H. Design, synthesis and biological evaluation of novel evodiamine and rutaecarpine derivatives against phytopathogenic fungi. Eur. J. Med. Chem., 2022, 227, 113937.
[http://dx.doi.org/10.1016/j.ejmech.2021.113937] [PMID: 34710744]
[132]
Hu, J.; Sun, L.; Zhao, D.; Zhang, L.; Ye, M.; Tan, Q.; Fang, C.; Wang, H.; Zhang, J. Supermolecular evodiamine loaded water-in-oil nanoemulsions: Enhanced physicochemical and biological characteristics. Eur. J. Pharm. Biopharm., 2014, 88(2), 556-564.
[http://dx.doi.org/10.1016/j.ejpb.2014.06.007] [PMID: 24964356]
[133]
Tan, Q.; Liu, S.; Chen, X.; Wu, M.; Wang, H.; Yin, H.; He, D.; Xiong, H.; Zhang, J. Design and evaluation of a novel evodiamine-phospholipid complex for improved oral bioavailability. AAPS PharmSciTech, 2012, 13(2), 534-547.
[http://dx.doi.org/10.1208/s12249-012-9772-9] [PMID: 22454136]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy