Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Flavonoids: The Innocuous Agents Offering Protection against Alzheimer’s Disease Through Modulation of Proinflammatory and Apoptotic Pathways

Author(s): Moumita Biswas, Aritrajoy Das and Soumalee Basu*

Volume 22, Issue 9, 2022

Published on: 17 May, 2022

Page: [769 - 789] Pages: 21

DOI: 10.2174/1568026622666220330011645

Price: $65

Abstract

Background: Beginning from mild cognitive impairment in patients suffering from Alzheimer’s disease (AD), dementia sets in with the progress of the disease. The pathological changes in the brain begin fifteen to twenty years before AD related dementia develops. Presence of senile plaques and neurofibrillary tangles are considered the hallmarks of AD brain. Chronic inflammation resulting from the disruption of the equilibrium between anti-inflammatory and pro-inflammatory signalling emerges as another important feature of AD and also other neurodegenerative diseases. Substantial studies demonstrate that this sustained immune response in the brain is associated with neuronal loss, along with facilitation and aggravation of Aβ and NFT pathologies. Although it is well accepted that neuroinflammation and oxidative stress have both detrimental and beneficial influences on the brain tissues, the involvement of microglia and astrocytes in the onset and progress of the neurodegenerative process in AD is becoming increasingly recognized. Although the cause of neuronal loss is known to be apoptosis, the mechanism of promotion of neuronal death remains undisclosed.

Objective: Controlling the activation of the resident immune cells and/or the excessive production of pro-inflammatory and pro-oxidant factors could be effective as therapeutics. Among the phytonutrients, the neuroprotective role of flavonoids is beyond doubt. This review is an exploration of the literature on the role of flavonoids in these aspects.

Conclusion: Flavonoids are not only effective in ameliorating the adverse consequences of oxidative stress but also impede the development of late onset Alzheimer’s disease by modulating affected signalling pathways and boosting signalling crosstalk

Keywords: Plant Secondary Metabolites, Polyphenols, Oxidative Stress, Amyloidogenesis, Anti- and Pro-inflammatory Signalling, Flavonoids, Innocuous agents, Alzheimer’s disease, Apoptotic

Graphical Abstract
[1]
Hippius, H.; Neundörfer, G. The discovery of Alzheimer’s disease. Dialogues Clin. Neurosci., 2003, 5(1), 101-108.
[http://dx.doi.org/10.31887/DCNS.2003.5.1/hhippius] [PMID: 22034141]
[2]
Park, J.H.; Hong, J.H.; Lee, S.W.; Ji, H.D.; Jung, J.A.; Yoon, K.W.; Lee, J.I.; Won, K.S.; Song, B.; Kim Il, H.W. The effect of chronic cerebral hypoperfusion on the pathology of Alzheimer’s disease: A positron emission tomography study in rats. Sci. Rep., 2019, 9, 1-9.
[3]
Mottahedin, A.; Ardalan, M.; Chumak, T.; Riebe, I.; Ek, J.; Mallard, C. Effect of neuroinflammation on synaptic organization and function in the developing brain: Implications for neurodevelopmental and neurodegenerative disorders. Front. Cell. Neurosci., 2017, 11, 190.
[http://dx.doi.org/10.3389/fncel.2017.00190] [PMID: 28744200]
[4]
Dickson, D.W.; Farlo, J.; Davies, P.; Crystal, H.; Fuld, P.; Yen, S.H.C. Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am. J. Pathol., 1988, 132(1), 86-101.
[PMID: 2456021]
[5]
Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.; Ihara, Y. Visualization of A β 42(43) and A β 40 in senile plaques with end-specific A β monoclonals: Evidence that an initially deposited species is A β 42(43). Neuron, 1994, 13(1), 45-53.
[http://dx.doi.org/10.1016/0896-6273(94)90458-8] [PMID: 8043280]
[6]
Head, E.; Lott, I.T. Down syndrome and beta-amyloid deposition. Curr. Opin. Neurol., 2004, 17(2), 95-100.
[http://dx.doi.org/10.1097/00019052-200404000-00003] [PMID: 15021233]
[7]
Aizenstein, H.J.; Nebes, R.D.; Saxton, J.A.; Price, J.C.; Mathis, C.A.; Tsopelas, N.D.; Ziolko, S.K.; James, J.A.; Snitz, B.E.; Houck, P.R.; Bi, W.; Cohen, A.D.; Lopresti, B.J.; DeKosky, S.T.; Halligan, E.M.; Klunk, W.E. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch. Neurol., 2008, 65(11), 1509-1517.
[http://dx.doi.org/10.1001/archneur.65.11.1509] [PMID: 19001171]
[8]
Zhao, B.; Chrest, F.J.; Horton, W.E., Jr; Sisodia, S.S.; Kusiak, J.W. Expression of mutant amyloid precursor proteins induces apoptosis in PC12 cells. J. Neurosci. Res., 1997, 47(3), 253-263.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19970201)47:3253:AID-JNR33.0.CO;2-H] [PMID: 9039647]
[9]
Lemere, C.A.; Lopera, F.; Kosik, K.S.; Lendon, C.L.; Ossa, J.; Saido, T.C.; Yamaguchi, H.; Ruiz, A.; Martinez, A.; Madrigal, L.; Hincapie, L.; Arango, J.C.; Anthony, D.C.; Koo, E.H.; Goate, A.M.; Selkoe, D.J.; Arango, J.C. The E280A presenilin 1 Alzheimer mutation produces increased A β 42 deposition and severe cerebellar pathology. Nat. Med., 1996, 2(10), 1146-1150.
[http://dx.doi.org/10.1038/nm1096-1146] [PMID: 8837617]
[10]
Boteva, K.; Vitek, M.; Mitsuda, H.; de Silva, H.; Xu, P-T.; Small, G.; Gilbert, J.R. Mutation analysis of presenillin 1 gene in Alzheimer’s disease. Lancet, 1996, 347(8994), 130-131.
[http://dx.doi.org/10.1016/S0140-6736(96)90261-5] [PMID: 8538334]
[11]
Borenstein, A.R.; Copenhaver, C.I.; Mortimer, J.A. Early-life risk factors for Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2006, 20(1), 63-72.
[http://dx.doi.org/10.1097/01.wad.0000201854.62116.d7] [PMID: 16493239]
[12]
Daviglus, M.L.; Plassman, B.L.; Pirzada, A.; Bell, C.C.; Bowen, P.E.; Burke, J.R.; Connolly, E.S., Jr; Dunbar-Jacob, J.M.; Granieri, E.C.; McGarry, K.; Patel, D.; Trevisan, M.; Williams, J.W. Jr Risk factors and preventive interventions for Alzheimer disease: State of the science. Arch. Neurol., 2011, 68(9), 1185-1190.
[http://dx.doi.org/10.1001/archneurol.2011.100] [PMID: 21555601]
[13]
Davis, J.M.; Murphy, E.A.; Carmichael, M.D. Effects of the dietary flavonoid quercetin upon performance and health. Curr. Sports Med. Rep., 2009, 8(4), 206-213.
[http://dx.doi.org/10.1249/JSR.0b013e3181ae8959] [PMID: 19584608]
[14]
Li, Y.L.; Guo, H.; Zhao, Y.Q.; Li, A.F.; Ren, Y.Q.; Zhang, J.W. Quercetin protects neuronal cells from oxidative stress and cognitive degradation induced by amyloid β-peptide treatment. Mol. Med. Rep., 2017, 16(2), 1573-1577.
[http://dx.doi.org/10.3892/mmr.2017.6704] [PMID: 28586024]
[15]
Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules, 2019, 10(1), 1-20.
[http://dx.doi.org/10.3390/biom10010059] [PMID: 31905923]
[16]
Shen, X.Y.; Luo, T.; Li, S.; Ting, O.Y.; He, F.; Xu, J.; Wang, H.Q. Quercetin inhibits okadaic acid-induced tau protein hyperphosphorylation through the Ca2+-calpain-p25-CDK5 pathway in HT22 cells. Int. J. Mol. Med., 2018, 41(2), 1138-1146.
[PMID: 29207020]
[17]
Qi, Y.; Yi, P.; He, T.; Song, X.; Liu, Y.; Li, Q.; Zheng, J.; Song, R.; Liu, C.; Zhang, Z.; Peng, W.; Zhang, Y. Quercetin-Loaded selenium nanoparticles inhibit amyloid-β aggregation and exhibit antioxidant activity. Colloids Surf. A Physicochem. Eng. Asp., 2020, 602, 602.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125058]
[18]
Arts, I.C.W.; Hollman, P.C.H.; Kromhout, D. Chocolate as a source of tea flavonoids. Lancet, 1999, 354(9177), 488.
[http://dx.doi.org/10.1016/S0140-6736(99)02267-9] [PMID: 10465183]
[19]
Del Río, J.A.; Fuster, M.D.; Gómez, P.; Porras, I.; García-Lidón, A.; Ortuño, A. Citrus limon: A source of flavonoids of pharmaceutical interest. Food Chem., 2004, 84(3), 457-461.
[http://dx.doi.org/10.1016/S0308-8146(03)00272-3]
[20]
Makris, D.P.; Kallithraka, S.; Kefalas, P. Flavonols in grapes, grape products and wines: burden, profile and influential parameters. J. Food Compos. Anal., 2006, 19(5), 396-404.
[http://dx.doi.org/10.1016/j.jfca.2005.10.003]
[21]
Slimestad, R.; Fossen, T.; Vågen, I.M. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem., 2007, 55(25), 10067-10080.
[http://dx.doi.org/10.1021/jf0712503] [PMID: 17997520]
[22]
Slimestad, R.; Fossen, T.; Verheul, M.J. The flavonoids of tomatoes. J. Agric. Food Chem., 2008, 56(7), 2436-2441.
[http://dx.doi.org/10.1021/jf073434n] [PMID: 18318499]
[23]
Selvaraj, S.; Krishnaswamy, S.; Devashya, V.; Sethuraman, S.; Krishnan, U.M. Flavonoid-metal ion complexes: A novel class of therapeutic agents. Med. Res. Rev., 2014, 34(4), 677-702.
[http://dx.doi.org/10.1002/med.21301] [PMID: 24037904]
[24]
Youdim, K.A.; Dobbie, M.S.; Kuhnle, G.; Proteggente, A.R.; Abbott, N.J.; Rice-Evans, C. Interaction between flavonoids and the blood-brain barrier: In vitro studies. J. Neurochem., 2003, 85(1), 180-192.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01652.x] [PMID: 12641740]
[25]
Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol., 2014, 2, 377-392.
[26]
Anulika, N.; Ignatius, E.; Ezenweani, R.; Osasere, O-I. The chemistry of natural product: Plant secondary metabolites. Nat. Prod., 2016, 4, 1.
[27]
Treutter, D. Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regul., 2001, 34(1), 71-89.
[http://dx.doi.org/10.1023/A:1013378702940]
[28]
Bhattacharya, A.; Sood, P.; Citovsky, V. The roles of plant phenolics in defence and communication during agrobacterium and rhizobium infection. Mol. Plant Pathol., 2010, 11(5), 705-719.
[http://dx.doi.org/10.1111/j.1364-3703.2010.00625.x] [PMID: 20696007]
[29]
Pizzi, A.; Cameron, F.A. Flavonoid tannins - structural wood components for drought-resistance mechanisms of plants. Wood Sci. Technol., 1986, 20, 119-124.
[30]
Ryan, K.G.; Swinny, E.E.; Winefield, C.; Markham, K.R. Flavonoids and UV photoprotection in Arabidopsis mutants. Z. Naturforsch. C J. Biosci., 2001, 56(9-10), 745-754.
[http://dx.doi.org/10.1515/znc-2001-9-1013] [PMID: 11724379]
[31]
Hassan, S.; Mathesius, U. The role of flavonoids in root-rhizosphere signalling: Opportunities and challenges for improving plant-microbe interactions. J. Exp. Bot., 2012, 63(9), 3429-3444.
[http://dx.doi.org/10.1093/jxb/err430] [PMID: 22213816]
[32]
Cesco, S.; Neumann, G.; Tomasi, N.; Pinton, R.; Weisskopf, L. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil, 2010, 329(1-2), 1-25.
[http://dx.doi.org/10.1007/s11104-009-0266-9]
[33]
Iwashina, T. The structure and distribution of the flavonoids in plants. J. Plant Res., 2000, 113(3), 287-299.
[http://dx.doi.org/10.1007/PL00013940]
[34]
Narayana, K.R.A.J.; Reddy, M.S.; Chaluvadi, M.R.; Krishna, D.R. Educational forum bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J. Pharmacol., 2001, 33, 2-16.
[35]
Han, R.M.; Tian, Y.X.; Liu, Y.; Chen, C.H.; Ai, X.C.; Zhang, J.P.; Skibsted, L.H. Comparison of flavonoids and isoflavonoids as antioxidants. J. Agric. Food Chem., 2009, 57(9), 3780-3785.
[http://dx.doi.org/10.1021/jf803850p] [PMID: 19296660]
[36]
Promden, W.; Monthakantirat, O.; Umehara, K.; Noguchi, H.; De-Eknamkul, W. Structure and antioxidant activity relationships of isoflavonoids from Dalbergia parviflora. Molecules, 2014, 19(2), 2226-2237.
[http://dx.doi.org/10.3390/molecules19022226] [PMID: 24561331]
[37]
Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; Giampieri, F.; Battino, M.; Sobarzo-Sanchez, E.; Nabavi, S.F.; Yousefi, B.; Jeandet, P.; Xu, S.; Shirooie, S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol. Adv., 2020, 38, 107316.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.005] [PMID: 30458225]
[38]
Elisa, P.; Enrico, B.; Marco, Z.; Carlo, P.; Alberto, B.; Sonia, P.; Angelo, V. Plant Flavonoids-biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci., 2013, 14, 14950-14973.
[39]
Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[40]
Yoshie-Stark, Y.; Hsieh, Y. Distribution of flavonoids and related compounds from seaweeds in Japan. J. Tokyo Univ. Fish., 2003, 89, 1-6.
[41]
Sava, C.; Sîrbu, R. Analytical study of the determination of flavonoids in black sea algae. Ovidius Univ. Ann Chem., 2010, 21(1), 29-34.
[42]
Dugo, P.; Presti, M.L.; Öhman, M.; Fazio, A.; Dugo, G.; Mondello, L. Determination of flavonoids in citrus juices by micro-HPLC-ESI/MS. J. Sep. Sci., 2005, 28(11), 1149-1156.
[http://dx.doi.org/10.1002/jssc.200500053] [PMID: 16116991]
[43]
Nogata, Y.; Sakamoto, K.; Shiratsuchi, H.; Ishii, T.; Yano, M.; Ohta, H. Flavonoid composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochem., 2006, 70(1), 178-192.
[http://dx.doi.org/10.1271/bbb.70.178] [PMID: 16428836]
[44]
Yeap Foo, L.; Lu, Y. Isolation and identification of procyanidins in apple pomace. Food Chem., 1999, 64(4), 511-518.
[http://dx.doi.org/10.1016/S0308-8146(98)00150-2]
[45]
Dalluge, J.J.; Nelson, B.C. Determination of tea catechins. J. Chromatogr. A, 2000, 881(1-2), 411-424.
[http://dx.doi.org/10.1016/S0021-9673(00)00062-5] [PMID: 10905724]
[46]
Zhu, M.; Han, S.; Fink, A.L. Oxidized quercetin inhibits α-synuclein fibrillization. Biochim. Biophys. Acta, 2013, 1830(4), 2872-2881.
[http://dx.doi.org/10.1016/j.bbagen.2012.12.027] [PMID: 23295967]
[47]
Cordeiro, L.M.; Machado, M.L.; da Silva, A.F.; Obetine Baptista, F.B.; da Silveira, T.L.; Soares, F.A.A.; Arantes, L.P. Rutin protects Huntington’s disease through the insulin/IGF1 (IIS) signaling pathway and autophagy activity: Study in Caenorhabditis elegans model. Food Chem. Toxicol., 2020, 141, 111323.
[http://dx.doi.org/10.1016/j.fct.2020.111323] [PMID: 32278002]
[48]
Vepsäläinen, S.; Koivisto, H.; Pekkarinen, E.; Mäkinen, P.; Dobson, G.; McDougall, G.J.; Stewart, D.; Haapasalo, A.; Karjalainen, R.O.; Tanila, H.; Hiltunen, M. Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J. Nutr. Biochem., 2013, 24(1), 360-370.
[http://dx.doi.org/10.1016/j.jnutbio.2012.07.006] [PMID: 22995388]
[49]
Sies, H. On the history of oxidative stress: Concept and some aspects of current development. Curr. Opin. Toxicol., 2018, 7, 122-126.
[http://dx.doi.org/10.1016/j.cotox.2018.01.002]
[50]
Gu, F.; Zhu, M.; Shi, J.; Hu, Y.; Zhao, Z. Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice. Neurosci. Lett., 2008, 440(1), 44-48.
[http://dx.doi.org/10.1016/j.neulet.2008.05.050] [PMID: 18539391]
[51]
Völkel, W.; Sicilia, T.; Pähler, A.; Gsell, W.; Tatschner, T.; Jellinger, K.; Leblhuber, F.; Riederer, P.; Lutz, W.K.; Götz, M.E. Increased brain levels of 4-hydroxy-2-nonenal glutathione conjugates in severe Alzheimer’s disease. Neurochem. Int., 2006, 48(8), 679-686.
[http://dx.doi.org/10.1016/j.neuint.2005.12.003] [PMID: 16483694]
[52]
Butterfield, D.A.; Reed, T.; Perluigi, M.; De Marco, C.; Coccia, R.; Cini, C.; Sultana, R. Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neurosci. Lett., 2006, 397(3), 170-173.
[http://dx.doi.org/10.1016/j.neulet.2005.12.017] [PMID: 16413966]
[53]
Praticò, D. The neurobiology of isoprostanes and Alzheimer’s disease. Biochim. Biophys. Acta, 2010, 1801(8), 930-933.
[http://dx.doi.org/10.1016/j.bbalip.2010.01.009] [PMID: 20116452]
[54]
Miller, E.; Morel, A.; Saso, L.; Saluk, J. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxid. Med. Cell. Longev., 2014, 2014, 572491.
[http://dx.doi.org/10.1155/2014/572491]
[55]
Wagner, C.; Fachinetto, R.; Dalla Corte, C.L.; Brito, V.B.; Severo, D.; de Oliveira Costa Dias, G.; Morel, A.F.; Nogueira, C.W.; Rocha, J.B.T. Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res., 2006, 1107(1), 192-198.
[http://dx.doi.org/10.1016/j.brainres.2006.05.084] [PMID: 16828712]
[56]
Jang, Y.J.; Kang, N.J.; Lee, K.W.; Lee, H.J. Protective effects of red wine flavonols on 4-hydroxynonenal-induced apoptosis in PC12 cells. Ann. N. Y. Acad. Sci., 2009, 1171(1), 170-175.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04720.x] [PMID: 19723052]
[57]
Thapa, A.; Carroll, N.J. Dietary modulation of oxidative stress in Alzheimer’s disease. Int. J. Mol. Sci., 2017, 18(7), 1583.
[http://dx.doi.org/10.3390/ijms18071583]
[58]
Jeong, E.J.; Hwang, L.; Lee, M.; Lee, K.Y.; Ahn, M.J.; Sung, S.H. Neuroprotective biflavonoids of Chamaecyparis obtusa leaves against glutamate-induced oxidative stress in HT22 hippocampal cells. Food Chem. Toxicol., 2014, 64, 397-402.
[http://dx.doi.org/10.1016/j.fct.2013.12.003] [PMID: 24315869]
[59]
Yadav, U.C.S.; Ramana, K.V. Regulation of NF-κB-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxid. Med. Cell. Longev., 2013, 2013, 690545.
[http://dx.doi.org/10.1155/2013/690545] [PMID: 23710287]
[60]
Cumaoglu, A.; Agkaya, A. of, Z.Ö.-T.J.; 2019. Effect of the lipid peroxidation product 4-hydroxynonenal on neuroinflammation in microglial cells: Protective role of quercetin and. Turk. J. Pharm. Sci., 2019, 16, 54-61.
[http://dx.doi.org/10.4274/tjps.58966] [PMID: 32454696]
[61]
Gibson, G.E.; Starkov, A.; Blass, J.P.; Ratan, R.R.; Beal, M.F. Cause and consequence: Mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim. Biophys. Acta, 2010, 1802(1), 122-134.
[http://dx.doi.org/10.1016/j.bbadis.2009.08.010] [PMID: 19715758]
[62]
Akbar, M.; Essa, M.M.; Daradkeh, G.; Abdelmegeed, M.A.; Choi, Y.; Mahmood, L.; Song, B.J. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res., 2016, 1637, 34-55.
[http://dx.doi.org/10.1016/j.brainres.2016.02.016] [PMID: 26883165]
[63]
Wang, D.M.; Li, S.Q.; Wu, W.L.; Zhu, X.Y.; Wang, Y.; Yuan, H.Y. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem. Res., 2014, 39(8), 1533-1543.
[http://dx.doi.org/10.1007/s11064-014-1343-x] [PMID: 24893798]
[64]
Wang, K.; Chen, Z.; Huang, L.; Meng, B. International; 2017. Naringenin reduces oxidative stress and improves mitochondrial dysfunction via activation of the nrf2/are signaling pathway in neurons. 2017, 40, 1582-1590.
[65]
Jagannatha, K.S.; Rao, R.V.; Shanmugavelu, P.; Menon, R. Trace elements in Alzheimer’s brain: A new hypothesis. Alzheimers Rep., 1999, 2(4), 241-246.
[66]
Hagemeier, J.; Geurts, J.J.; Zivadinov, R. Brain iron accumulation in aging and neurodegenerative disorders. Expert Rev. Neurother., 2012, 12(12), 1467-1480.
[http://dx.doi.org/10.1586/ern.12.128] [PMID: 23237353]
[67]
Smith, M.A.; Harris, P.L.; Sayre, L.M.; Perry, G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. USA, 1997, 94(18), 9866-9868.
[http://dx.doi.org/10.1073/pnas.94.18.9866] [PMID: 9275217]
[68]
Van Bergen, P.; Rauhala, P.; Spooner, C.M.; Chiueh, C.C. Hemoglobin and iron-evoked oxidative stress in the brain: Protection by bile pigments, manganese and S-nitrosoglutathione. Free Radic. Res., 1999, 31(6), 631-640.
[http://dx.doi.org/10.1080/10715769900301201] [PMID: 10630686]
[69]
Mira, L.; Fernandez, M.T.; Santos, M.; Rocha, R.; Florêncio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res., 2002, 36(11), 1199-1208.
[http://dx.doi.org/10.1080/1071576021000016463] [PMID: 12592672]
[70]
Wang, B.; Zhong, Y.; Gao, C.; Li, J. Myricetin ameliorates scopolamine-induced memory impairment in mice via inhibiting acetylcholinesterase and down-regulating brain iron. Biochem. Biophys. Res. Commun., 2017, 490(2), 336-342.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.045] [PMID: 28619513]
[71]
Sharma, D.R.; Wani, W.Y.; Sunkaria, A.; Kandimalla, R.J.; Verma, D.; Cameotra, S.S.; Gill, K.D. Quercetin protects against chronic aluminum-induced oxidative stress and ensuing biochemical, cholinergic, and neurobehavioral impairments in rats. Neurotox. Res., 2013, 23(4), 336-357.
[PMID: 22918785]
[72]
Chen, X.; Yu, C.; Kang, R.; Tang, D.; Yu, C.; Kang, R. D.T. Iron metabolism in ferroptosis. Front. Cell Dev. Biol., 2020, 8, 1-14.
[http://dx.doi.org/10.3389/fcell.2020.590226]
[73]
Xie, Y.; Song, X.; Sun, X.; Huang, J.; Zhong, M.; Lotze, M.T.; Zeh, H.J., III; Kang, R.; Tang, D. Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem. Biophys. Res. Commun., 2016, 473(4), 775-780.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.052] [PMID: 27037021]
[74]
Liu, T.; Zhang, L.; Joo, D.; Sun, S-C. NF-KB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 1-9.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 27718095]
[75]
Albensi, B.C. What is nuclear factor kappa B (NF-κB) Doing in and to the mitochondrion? Front. Cell Dev. Biol., 2019, 7, 154.
[http://dx.doi.org/10.3389/fcell.2019.00154] [PMID: 31448275]
[76]
Li, Z.; Ni, C.; Xia, C.; Jaw, J.; Wang, Y.; Cao, Y.; Xu, M.; Guo, X. Calcineurin/nuclear factor-κB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats. Mol. Med. Rep., 2017, 15(1), 201-209.
[http://dx.doi.org/10.3892/mmr.2016.5967] [PMID: 27909728]
[77]
Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-kappaB signaling pathways in neurological inflammation: A mini review. Front. Mol. Neurosci., 2015, 8, 77.
[http://dx.doi.org/10.3389/fnmol.2015.00077] [PMID: 26733801]
[78]
Zhao, J.; Bi, W.; Xiao, S.; Lan, X.; Cheng, X.; Zhang, J.; Lu, D.; Wei, W.; Wang, Y.; Li, H.; Fu, Y.; Zhu, L. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci. Rep., 2019, 9(1), 5790.
[http://dx.doi.org/10.1038/s41598-019-42286-8] [PMID: 30962497]
[79]
Han, M.H.; Lee, W.S.; Nagappan, A.; Hong, S.H.; Jung, J.H.; Park, C.; Kim, H.J.; Kim, G-Y.; Kim, G.; Jung, J-M.; Ryu, C.H.; Shin, S.C.; Hong, S.C.; Choi, Y.H. Flavonoids isolated from flowers of Lonicera japonica thunb. Inhibit inflammatory responses in BV2 microglial cells by suppressing TNF-α and IL-β through PI3K/Akt/NF-kb signaling pathways. Phytother. Res., 2016, 30(11), 1824-1832.
[http://dx.doi.org/10.1002/ptr.5688] [PMID: 27534446]
[80]
Seo, O.N.; Kim, G.S.; Park, S.; Lee, J.H.; Kim, Y.H.; Lee, W.S.; Lee, S.J.; Kim, C.Y.; Jin, J.S.; Choi, S.K.; Shin, S.C. Determination of polyphenol components of Lonicera japonica thunb. Using liquid chromatography-tandem mass spectrometry: Contribution to the overall antioxidant activity. Food Chem., 2012, 134(1), 572-577.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.124]
[81]
Mairuae, N.; Cheepsunthorn, P.; Cheepsunthorn, C.L.; Tongjaroenbuangam, W. Okra (Abelmoschus Esculentus Linn) inhibits lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells. Trop. J. Pharm. Res., 2017, 16(6), 1285-1292.
[http://dx.doi.org/10.4314/tjpr.v16i6.11]
[82]
Khan, A.; Ali, T.; Rehman, S.U.; Khan, M.S.; Alam, S.I.; Ikram, M.; Muhammad, T.; Saeed, K.; Badshah, H.; Kim, M.O. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front. Pharmacol., 2018, 9, 1383.
[http://dx.doi.org/10.3389/fphar.2018.01383] [PMID: 30618732]
[83]
Jing, N.; Li, X. Dihydromyricetin attenuates inflammation through TLR4/NF-kappaB pathway. Open Med. (Wars.), 2019, 14(1), 719-725.
[http://dx.doi.org/10.1515/med-2019-0083] [PMID: 31572805]
[84]
Jeong, J.W.; Lee, H.H.; Han, M.H.; Kim, G.Y.; Kim, W.J.; Choi, Y.H. Anti-inflammatory effects of genistein via suppression of the toll-like receptor 4-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglia. Chem. Biol. Interact., 2014, 212, 30-39.
[http://dx.doi.org/10.1016/j.cbi.2014.01.012] [PMID: 24491678]
[85]
Jiang, T.; Xu, S.; Shen, Y.; Xu, Y.; Li, Y. Genistein attenuates isoflurane-induced neuroinflammation by inhibiting TLR4-Mediated microglial-polarization in vivo and in vitro. J. Inflamm. Res., 2021, 14, 2587-2600.
[http://dx.doi.org/10.2147/JIR.S304336]
[86]
Kim, M.E.; Park, P.R.; Na, J.Y.; Jung, I.; Cho, J.H.; Lee, J.S. Anti-neuroinflammatory effects of galangin in LPS-stimulated BV-2 microglia through regulation of IL-1β production and the NF-κB signaling pathways. Mol. Cell. Biochem., 2019, 451(1-2), 145-153.
[http://dx.doi.org/10.1007/s11010-018-3401-1] [PMID: 29995265]
[87]
Cui, Y.; Wu, J.; Jung, S.C.; Park, D.B.; Maeng, Y.H.; Hong, J.Y.; Kim, S.J.; Lee, S.R.; Kim, S.J.; Kim, S.J.; Eun, S.Y. Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation. Biol. Pharm. Bull., 2010, 33(11), 1814-1821.
[http://dx.doi.org/10.1248/bpb.33.1814] [PMID: 21048305]
[88]
Shu, Z.; Yang, B.; Zhao, H.; Xu, B.; Jiao, W.; Wang, Q.; Wang, Z.; Kuang, H. Tangeretin exerts anti-neuroinflammatory effects via NF-κB modulation in lipopolysaccharide-stimulated microglial cells. Int. Immunopharmacol., 2014, 19(2), 275-282.
[http://dx.doi.org/10.1016/j.intimp.2014.01.011] [PMID: 24462494]
[89]
Sonar, S.A.; Lal, G. The iNOS activity during an immune response controls the CNS pathology in experimental autoimmune encephalomyelitis. Front. Immunol., 2019, 10, 710.
[http://dx.doi.org/10.3389/fimmu.2019.00710] [PMID: 31019516]
[90]
Sierra, A.; Navascués, J.; Cuadros, M.A.; Calvente, R.; Martín-Oliva, D.; Ferrer-Martín, R.M.; Martín-Estebané, M.; Carrasco, M.C.; Marín-Teva, J.L. Expression of inducible nitric oxide synthase (iNOS) in microglia of the developing quail retina. PLoS One, 2014, 9(8), e106048.
[http://dx.doi.org/10.1371/journal.pone.0106048] [PMID: 25170849]
[91]
Xie, Q.W.; Kashiwabara, Y.; Nathan, C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem., 1994, 269(7), 4705-4708.
[http://dx.doi.org/10.1016/S0021-9258(17)37600-7] [PMID: 7508926]
[92]
Chen, Y.C.; Shen, S.C.; Chen, L.G.; Lee, T.J.F.; Yang, L.L. Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem. Pharmacol., 2001, 61(11), 1417-1427.
[http://dx.doi.org/10.1016/S0006-2952(01)00594-9] [PMID: 11331078]
[93]
Lee, H.; Kim, Y.O.; Kim, H.; Kim, S.Y.; Noh, H.S.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Suk, K. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J., 2003, 17(13), 1943-1944.
[http://dx.doi.org/10.1096/fj.03-0057fje] [PMID: 12897065]
[94]
Yeh, C-H.; Yang, M-L.; Lee, C-Y.; Yang, C-P.; Li, Y-C.; Chen, C-J.; Kuan, Y-H. Wogonin attenuates endotoxin-induced prostaglandin E2 and nitric oxide production via Src-ERK1/2-NFκB pathway in BV-2 microglial cells. Environ. Toxicol., 2014, 29(10), 1162-1170.
[http://dx.doi.org/10.1002/tox.21847] [PMID: 23362215]
[95]
Huynh, D.L.; Ngau, T.H.; Nguyen, N.H.; Tran, G.B.; Nguyen, C.T. Potential therapeutic and pharmacological effects of Wogonin: An updated review. Mol. Biol. Rep., 2020, 47(12), 9779-9789.
[http://dx.doi.org/10.1007/s11033-020-05972-9] [PMID: 33165817]
[96]
Chen, L.; Teng, H.; Jia, Z.; Battino, M.; Miron, A.; Yu, Z.; Cao, H.; Xiao, J. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence. Crit. Rev. Food Sci. Nutr., 2018, 58(17), 2908-2924.
[http://dx.doi.org/10.1080/10408398.2017.1345853] [PMID: 28682647]
[97]
Chen, J.C.; Ho, F.M.; Chen, C.P.; Jeng, K.C.; Hsu, H.B.; Lee, S.T.; Lin, W.W.; Wen, T.W.; Lin, W.W. Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-κ B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur. J. Pharmacol., 2005, 521(1-3), 9-20.
[http://dx.doi.org/10.1016/j.ejphar.2005.08.005] [PMID: 16171798]
[98]
Suh, S.J.; Chung, T.W.; Son, M.J.; Kim, S.H.; Moon, T.C.; Son, K.H.; Kim, H.P.; Chang, H.W.; Kim, C.H. The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-kappaB regulation, in RAW264.7 cells. Arch. Biochem. Biophys., 2006, 447(2), 136-146.
[http://dx.doi.org/10.1016/j.abb.2006.01.016] [PMID: 16527246]
[99]
Chen, C.; Zhou, W.; Liu, S.; Deng, Y.F.C-I.J. 2012, Increased NF-KB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int. J. Neuropsychopharmacol., 2012, 15, 77-90.
[http://dx.doi.org/10.1017/S1461145711000149] [PMID: 21329555]
[100]
Deng, Y.; Long, L.; Wang, K.; Zhou, J.; Zeng, L.; He, L.; Gong, Q. Icariside II, a broad-spectrum anti-cancer agent, reverses beta-amyloid-induced cognitive impairment through reducing inflammation and apoptosis in rats. Front. Pharmacol., 2017, 8, 39.
[http://dx.doi.org/10.3389/fphar.2017.00039] [PMID: 28210222]
[101]
Feng, J.; Wang, J.X.; Du, Y.H.; Liu, Y.; Zhang, W.; Chen, J.F.; Liu, Y.J.; Zheng, M.; Wang, K.J.; He, G.Q. Dihydromyricetin inhibits microglial activation and neuroinflammation by suppressing NLRP3 inflammasome activation in APP/PS1 transgenic mice. CNS Neurosci. Ther., 2018, 24(12), 1207-1218.
[http://dx.doi.org/10.1111/cns.12983] [PMID: 29869390]
[102]
Cheng-Chung Wei, J.; Huang, H.C.; Chen, W.J.; Huang, C.N.; Peng, C.H.; Lin, C.L. Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia. Eur. J. Pharmacol., 2016, 770, 16-24.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.048] [PMID: 26643169]
[103]
Ma, Y.; Ma, B.; Shang, Y.; Yin, Q.; Hong, Y.; Xu, S.; Shen, C.; Hou, X.; Liu, X. Flavonoid-rich ethanol extract from the leaves of Diospyros kaki attenuates cognitive deficits, amyloid-beta production, oxidative stress, and neuroinflammation in APP/PS1 transgenic mice. Brain Res., 2018, 1678, 85-93.
[http://dx.doi.org/10.1016/j.brainres.2017.10.001] [PMID: 29038004]
[104]
Boura-Halfon, S.; Zick, Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am. J. Physiol. Endocrinol. Metab., 2009, 296(4), E581-E591.
[http://dx.doi.org/10.1152/ajpendo.90437.2008] [PMID: 18728222]
[105]
Steen, E.; Terry, B.M.; Rivera, E.J.; Cannon, J.L.; Neely, T.R.; Tavares, R.; Xu, X.J.; Wands, J.R.; de la Monte, S.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J. Alzheimers Dis., 2005, 7(1), 63-80.
[http://dx.doi.org/10.3233/JAD-2005-7107] [PMID: 15750215]
[106]
Talbot, K.; Wang, H-Y.; Kazi, H.; Han, L-Y.; Bakshi, K.P.; Stucky, A.; Fuino, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson, R.S.; Arvanitakis, Z.; Schneider, J.A.; Wolf, B.A.; Bennett, D.A.; Trojanowski, J.Q.; Arnold, S.E. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest., 2012, 122(4), 1316-1338.
[http://dx.doi.org/10.1172/JCI59903] [PMID: 22476197]
[107]
Hahn, C.S.; Scott, D.W.; Xu, X.; Roda, M.A.; Gregory, A.; Wells, J.M.; Viera, L.; Winstead, C.J.; Bratcher, P.; Sparidans, R.W.; Redegeld, F.A.; Jackson, P.L.; Folkerts, G.; Edwin, J. Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer’s disease. JAMA Neurol., 2015, 1, 1-21.
[108]
Schubert, M.; Gautam, D.; Surjo, D.; Ueki, K.; Baudler, S.; Schubert, D.; Kondo, T.; Alber, J.; Galldiks, N.; Küstermann, E.; Arndt, S.; Jacobs, A.H.; Krone, W.; Kahn, C.R.; Brüning, J.C. Role for neuronal insulin resistance in neurodegenerative diseases. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 3100-3105.
[http://dx.doi.org/10.1073/pnas.0308724101] [PMID: 14981233]
[109]
Vauzour, D.; Vafeiadou, K.; Rice-Evans, C.; Williams, R.J.; Spencer, J.P.E. Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J. Neurochem., 2007, 103(4), 1355-1367.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04841.x] [PMID: 17961201]
[110]
Schroeter, H.; Bahia, P.; Spencer, J.P.E.; Sheppard, O.; Rattray, M.; Cadenas, E.; Rice-Evans, C.; Williams, R.J. (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J. Neurochem., 2007, 101(6), 1596-1606.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04434.x] [PMID: 17298385]
[111]
Lee, Y.R.; Park, J.; Yu, H.N.; Kim, J.S.; Youn, H.J.; Jung, S.H. Up-regulation of PI3K/Akt signaling by 17β-estradiol through activation of estrogen receptor-α but not estrogen receptor-β and stimulates cell growth in breast cancer cells. Biochem. Biophys. Res. Commun., 2005, 336(4), 1221-1226.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.256] [PMID: 16169518]
[112]
Fernandez, J.W.; Rezai-Zadeh, K.; Obregon, D.; Tan, J. EGCG functions through estrogen receptor-mediated activation of ADAM10 in the promotion of non-amyloidogenic processing of APP. FEBS Lett., 2010, 584(19), 4259-4267.
[http://dx.doi.org/10.1016/j.febslet.2010.09.022] [PMID: 20849853]
[113]
Lin, C.L.; Chen, T.F.; Chiu, M.J.; Way, T.D.; Lin, J.K. Epigallocatechin gallate (EGCG) suppresses β-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 β activation. Neurobiol. Aging, 2009, 30(1), 81-92.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.05.012] [PMID: 17590240]
[114]
Liang, Z.; Zhang, B.; Su, W.W.; Williams, P.G.; Li, Q.X. C-Glycosylflavones alleviate tau phosphorylation and amyloid neurotoxicity through GSK3β inhibition. ACS Chem. Neurosci., 2016, 7(7), 912-923.
[http://dx.doi.org/10.1021/acschemneuro.6b00059] [PMID: 27213824]
[115]
Gu, Y.; Ma, L.J.; Bai, X.X.; Jie, J.; Zhang, X.F.; Chen, D.; Li, X.P. Mitogen-activated protein kinase phosphatase 1 protects PC12 cells from amyloid beta-induced neurotoxicity. Neural Regen. Res., 2018, 13(10), 1842-1850.
[http://dx.doi.org/10.4103/1673-5374.238621] [PMID: 30136701]
[116]
Du, Y.; Du, Y.; Zhang, Y.; Huang, Z.; Fu, M.; Li, J.; Pang, Y.; Lei, P.; Wang, Y.T.; Song, W.; He, G.; Dong, Z. MKP-1 reduces Aβ generation and alleviates cognitive impairments in Alzheimer’s disease models. Signal Transduct. Target. Ther., 2019, 4(1), 58.
[http://dx.doi.org/10.1038/s41392-019-0091-4] [PMID: 31840000]
[117]
Conte, A.; Pellegrini, S.; Tagliazucchi, D. Synergistic protection of PC12 cells from β-amyloid toxicity by resveratrol and catechin. Brain Res. Bull., 2003, 62(1), 29-38.
[http://dx.doi.org/10.1016/j.brainresbull.2003.08.001] [PMID: 14596889]
[118]
Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s β-amyloid fibrils in vitro. Biochim. Biophys. Acta, 2004, 1690(3), 193-202.
[http://dx.doi.org/10.1016/j.bbadis.2004.06.008] [PMID: 15511626]
[119]
Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. J. Neurochem., 2003, 87(1), 172-181.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01976.x] [PMID: 12969264]
[120]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[121]
Porat, Y.; Abramowitz, A.; Gazit, E. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des., 2006, 67(1), 27-37.
[http://dx.doi.org/10.1111/j.1747-0285.2005.00318.x] [PMID: 16492146]
[122]
Wang, J.; Ho, L.; Zhao, W.; Ono, K.; Rosensweig, C.; Chen, L.; Humala, N.; Teplow, D.B.; Pasinetti, G.M. Grape-derived polyphenolics prevent abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J. Neurosci., 2008, 28(25), 6388-6392.
[http://dx.doi.org/10.1523/JNEUROSCI.0364-08.2008] [PMID: 18562609]
[123]
Topal, F.; Nar, M.; Gocer, H.; Kalin, P.; Kocyigit, U.M. Gülçin,İ.; Alwasel, S.H. Antioxidant activity of taxifolin: An activity-structure relationship. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 674-683.
[http://dx.doi.org/10.3109/14756366.2015.1057723] [PMID: 26147349]
[124]
Sato, M.; Murakami, K.; Uno, M.; Nakagawa, Y.; Katayama, S.; Akagi, K.; Masuda, Y.; Takegoshi, K.; Irie, K. Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the Lys residues. J. Biol. Chem., 2013, 288(32), 23212-23224.
[http://dx.doi.org/10.1074/jbc.M113.464222] [PMID: 23792961]
[125]
Youn, K.; Lee, S.; Jun, M. Discovery of nobiletin from citrus peel as a potent inhibitor of β-amyloid peptide toxicity. Nutrients, 2019, 11(11), 2648.
[http://dx.doi.org/10.3390/nu11112648] [PMID: 31689949]
[126]
Kimura, J.; Shimizu, K.; Kajima, K.; Yokosuka, A.; Mimaki, Y.; Oku, N.; Ohizumi, Y. Nobiletin reduces intracellular and extracellular β-amyloid in iPS cell-derived Alzheimer’s disease model neurons. Biol. Pharm. Bull., 2018, 41(4), 451-457.
[http://dx.doi.org/10.1248/bpb.b17-00364] [PMID: 29607920]
[127]
Liu, R.; Li, J.Z.; Song, J.K.; Sun, J.L.; Li, Y.J.; Zhou, S.B.; Zhang, T.T.; Du, G.H. Pinocembrin protects human brain microvascular endothelial cells against fibrillar amyloid-b1-40 injury by suppressing the MAPK/NF-KB inflammatory pathways. BioMed Res. Int., 2014, 2014, 1-14.
[128]
King, T.D.; Song, L.; Jope, R.S. AMP-activated protein kinase (AMPK) activating agents cause dephosphorylation of Akt and glycogen synthase kinase-3. Biochem. Pharmacol., 2006, 71(11), 1637-1647.
[http://dx.doi.org/10.1016/j.bcp.2006.03.005] [PMID: 16620785]
[129]
Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMP-activated protein kinase: A target for drugs both ancient and modern. Chem. Biol., 2012, 19(10), 1222-1236.
[http://dx.doi.org/10.1016/j.chembiol.2012.08.019] [PMID: 23102217]
[130]
Puigserver, P.; Spiegelman, B.M. Peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1 α): Transcriptional coactivator and metabolic regulator. Endocr. Rev., 2003, 24(1), 78-90.
[http://dx.doi.org/10.1210/er.2002-0012] [PMID: 12588810]
[131]
Chen, S.D.; Yang, D.I.; Lin, T.K.; Shaw, F.Z.; Liou, C.W.; Chuang, Y.C. Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int. J. Mol. Sci., 2011, 12(10), 7199-7215.
[http://dx.doi.org/10.3390/ijms12107199] [PMID: 22072942]
[132]
Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell, 2005, 120(4), 483-495.
[http://dx.doi.org/10.1016/j.cell.2005.02.001] [PMID: 15734681]
[133]
Sun, P.; Yin, J.B.; Liu, L.H.; Guo, J.; Wang, S.H.; Qu, C.H.; Wang, C.X. Protective role of dihydromyricetin in Alzheimer’s disease rat model associated with activating AMPK/SIRT1 signaling pathway. Biosci. Rep., 2019, 39(1), 39.
[http://dx.doi.org/10.1042/BSR20180902] [PMID: 30498091]
[134]
Pohjala, L.; Tammela, P. Aggregating behavior of phenolic compounds--a source of false bioassay results? Molecules, 2012, 17(9), 10774-10790.
[http://dx.doi.org/10.3390/molecules170910774] [PMID: 22960870]
[135]
Tritsch, D.; Zinglé, C.; Rohmer, M.; Grosdemange-Billiard, C. Flavonoids: True or promiscuous inhibitors of enzyme? The case of deoxyxylulose phosphate reductoisomerase. Bioorg. Chem., 2015, 59, 140-144.
[http://dx.doi.org/10.1016/j.bioorg.2015.02.008] [PMID: 25800132]
[136]
Baell, J.B. Feeling nature’s PAINS: Natural products, natural product drugs, and pan assay interference compounds (PAINS). J. Nat. Prod., 2016, 79(3), 616-628.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00947] [PMID: 26900761]
[137]
Kim, H.; Moon, J.Y.; Ahn, K.S.; Cho, S.K. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid. Med. Cell. Longev., 2013, 2013, 596496.
[http://dx.doi.org/10.1155/2013/596496]
[138]
Li, Q.; Miao, Z.; Wang, R.; Yang, J.; Zhang, D. Hesperetin induces apoptosis in human glioblastoma cells via p38 MAPK activation. Nutr. Cancer, 2020, 72(3), 538-545.
[http://dx.doi.org/10.1080/01635581.2019.1638424] [PMID: 31295040]
[139]
Li, H.G.; Chen, J.X.; Xiong, J.H.; Zhu, J.W. Myricetin exhibits anti-glioma potential by inducing mitochondrial-mediated apoptosis, cell cycle arrest, inhibition of cell migration and ROS generation. J. BUON, 2016, 21(1), 182-190.
[PMID: 27061547]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy