Review Article

基因治疗,一种潜在的神经和神经精神疾病治疗工具:应用、挑战和未来展望。

卷 23, 期 1, 2023

发表于: 25 May, 2022

页: [20 - 40] 页: 21

弟呕挨: 10.2174/1566523222666220328142427

价格: $65

摘要

神经和神经精神疾病是卫生保健系统的主要风险,显示出巨大的社会经济负担。可用的药物治疗范围大多提供姑息性后果,不能治疗这种情况。各种神经和神经精神疾病的分子病因多与遗传背景的改变有关,遗传背景的改变可遗传/由其他环境因素引发。为了解决这种情况,基因疗法被认为是一种潜在的方法,主要通过删除、沉默或编辑有缺陷的基因,并通过插入更健康的基因来永久治愈疾病。在基因治疗中,载体(病毒/非瓶)在将所需基因传递到大脑的特定区域方面发挥着重要作用。靶向基因治疗为许多神经和神经精神疾病的治疗提供了机会。对于改善基因传递,目前的技术主要集中在设计精确的病毒载体、质粒转染、纳米技术、microRNA和基于体内聚簇调控间隔短回文重复序列(CRISPR)的治疗。这些最新技术在治疗主要的神经和神经发育障碍方面有很大的好处,包括帕金森病、阿尔茨海默病和自闭症谱系障碍,以及更罕见的疾病。然而,所有这些给药方法都有其局限性,包括免疫原性反应、脱靶效应和缺乏有效的生物标志物来评价治疗的有效性。在这篇综述中,我们对目前的靶向基因传递方法进行了总结,随后介绍了基因治疗治疗神经和神经精神疾病的局限性和未来发展方向。

关键词: 基因治疗,神经退行性疾病,神经精神疾病,CRISPR-Cas9,病毒载体,基因。

图形摘要
[1]
Singh DD, Verma R, Parimoo P, et al. Potential therapeutic relevance of CRISPR/Cas9 guided epigenetic regulations for neuropsychiatric disorders. Curr Top Med Chem 2021; 21(10): 878-94.
[http://dx.doi.org/10.2174/1568026621666210317154502] [PMID: 33739246]
[2]
Functional Neurobiology of Aging CM Patrick Hof, Ed 2001.
[3]
Kanwar JR, Sriramoju B, Kanwar RK. Neurological disorders and therapeutics targeted to surmount the blood-brain barrier. Int J Nanomedicine 2012; 7: 3259-78.
[http://dx.doi.org/10.2147/IJN.S30919] [PMID: 22848160]
[4]
Carroll WM. The global burden of neurological disorders. Lancet Neurol 2019; 18(5): 418-9.
[http://dx.doi.org/10.1016/S1474-4422(19)30029-8] [PMID: 30879892]
[5]
WHO. Mental Disorder 2019. Available at: https://www.who.int/news-room/fact-sheets/detail/mental-disorders. [Accessed 23 May 2022].
[6]
Kiaei M. New hopes and challenges for treatment of neurodegenerative disorders: Great opportunities for young neuroscientists. Basic Clin Neurosci 2013; 4(1): 3-4.
[PMID: 25337322]
[7]
Ashburn TT, Thor KB. Drug repositioning: Identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-83.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[8]
Doherty AM. Annual reports in medicinal chemistry. Elsevier Academic Press 2003.
[9]
Fava M. The promise and challenges of drug repurposing in psychiatry. World Psychiatry 2018; 17(1): 28-9.
[http://dx.doi.org/10.1002/wps.20481] [PMID: 29352538]
[10]
Tonda-Turo C, Origlia N, Mattu C, Accorroni A, Chiono V. Current limitations in the treatment of Parkinson’s and Alzheimer’s diseases: State-of-the-art and future perspective of polymeric carriers. Curr Med Chem 2018; 25(41): 5755-71.
[http://dx.doi.org/10.2174/0929867325666180221125759] [PMID: 29473493]
[11]
Domínguez A, Álvarez A, Suárez-Merino B, Goñi-de-Cerio F. Neurological disorders and the blood-brain barrier. Strategies and limitations for drug delivery to the brain. Rev Neurol 2014; 58(5): 213-24.
[PMID: 24570360]
[12]
Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370(10): 901-10.
[http://dx.doi.org/10.1056/NEJMoa1300662] [PMID: 24597865]
[13]
Misra S. Human gene therapy: A brief overview of the genetic revolution. J Assoc Physicians India 2013; 61(2): 127-33.
[PMID: 24471251]
[14]
Matthews QL, Curiel DT. Gene therapy: Human germline genetic modifications--assessing the scientific, socioethical, and religious issues. South Med J 2007; 100(1): 98-100.
[http://dx.doi.org/10.1097/SMJ.0b013e31802e645f] [PMID: 17269544]
[15]
Bank A. Human somatic cell gene therapy. BioEssays 1996; 18(12): 999-1007.
[http://dx.doi.org/10.1002/bies.950181210] [PMID: 8976157]
[16]
Gonçalves GAR, Paiva RMA. Gene therapy: Advances, challenges and perspectives. Einstein (Sao Paulo) 2017; 15(3): 369-75.
[http://dx.doi.org/10.1590/s1679-45082017rb4024] [PMID: 29091160]
[17]
Shintaro Fumoto SK, Hashida M, Nishida K. Targeted gene delivery: Importance of administration routes.Goo MWaD. 2013.
[18]
Jafarlou M, Baradaran B, Saedi TA, et al. An overview of the history, applications, advantages, disadvantages and prospects of gene therapy. J Biol Regul Homeost Agents 2016; 30(2): 315-21.
[PMID: 27358116]
[19]
Kawabata K, Takakura Y, Hashida M. The fate of plasmid DNA after intravenous injection in mice: Involvement of scavenger receptors in its hepatic uptake. Pharm Res 1995; 12(6): 825-30.
[http://dx.doi.org/10.1023/A:1016248701505] [PMID: 7667185]
[20]
Shi N, Zhang Y, Zhu C, Boado RJ, Pardridge WM. Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci USA 2001; 98(22): 12754-9.
[http://dx.doi.org/10.1073/pnas.221450098] [PMID: 11592987]
[21]
Toita R, Kang JH, Kim JH, et al. Protein kinase C alpha-specific peptide substrate graft-type copolymer for cancer cell-specific gene regulation systems. J Control Release 2009; 139(2): 133-9.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.011] [PMID: 19545594]
[22]
Dimitrov DS. Virus entry: Molecular mechanisms and biomedical applications. Nat Rev Microbiol 2004; 2(2): 109-22.
[http://dx.doi.org/10.1038/nrmicro817] [PMID: 15043007]
[23]
Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323(9): 570-8.
[http://dx.doi.org/10.1056/NEJM199008303230904] [PMID: 2381442]
[24]
Miller AD. Retroviral Vectors Viral Expression Vectors. Berlin, Heidelberg: Springer Berlin Heidelberg 1992; pp. 1-24.
[http://dx.doi.org/10.1007/978-3-642-75608-5_1]
[25]
Anderson WF. Human gene therapy. Nature 1998; 392(6679) (Suppl.): 25-30.
[PMID: 9579858]
[26]
Boris-Lawrie K, Temin HM. The retroviral vector. Replication cycle and safety considerations for retrovirus-mediated gene therapy. Ann N Y Acad Sci 1994; 716(1): 59-70.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb21703.x] [PMID: 8024209]
[27]
Heisig V, Jahn G, Ebeling M, Laufs R, Eds. Use of a HIV-1 retroviral vector system for gene transfer into human cells Modern trends in human leukemia VIII. Berlin, Heidelberg: Springer Berlin Heidelberg 1989.
[28]
Wang Q, Finer MH. Second-generation adenovirus vectors. Nat Med 1996; 2(6): 714-6.
[http://dx.doi.org/10.1038/nm0696-714] [PMID: 8640568]
[29]
Haddada H, Cordier L, Perricaudet M. Gene therapy using adenovirus vectors. Curr Top Microbiol Immunol 1995; 199(Pt 3): 297-306.
[http://dx.doi.org/10.1007/978-3-642-79586-2_14] [PMID: 7555082]
[30]
Akli S, Caillaud C, Vigne E, et al. Transfer of a foreign gene into the brain using adenovirus vectors. Nat Genet 1993; 3(3): 224-8.
[http://dx.doi.org/10.1038/ng0393-224] [PMID: 8485577]
[31]
Davidson BL, Allen ED, Kozarsky KF, Wilson JM, Roessler BJ. A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat Genet 1993; 3(3): 219-23.
[http://dx.doi.org/10.1038/ng0393-219] [PMID: 8387378]
[32]
Chen X, He Y, Tian Y, et al. Different serotypes of adeno-associated virus vector- and lentivirus-mediated tropism in choroid plexus by intracerebroventricular delivery. Hum Gene Ther 2020; 31(7-8): 440-7.
[http://dx.doi.org/10.1089/hum.2019.300] [PMID: 32056463]
[33]
Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 1992; 158: 97-129.
[http://dx.doi.org/10.1007/978-3-642-75608-5_5] [PMID: 1316261]
[34]
Kotin RM, Siniscalco M, Samulski RJ, et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990; 87(6): 2211-5.
[http://dx.doi.org/10.1073/pnas.87.6.2211] [PMID: 2156265]
[35]
Weitzman MD, Kyöstiö SR, Kotin RM, Owens RA. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc Natl Acad Sci USA 1994; 91(13): 5808-12.
[http://dx.doi.org/10.1073/pnas.91.13.5808] [PMID: 8016070]
[36]
Kotin RM. Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther 1994; 5(7): 793-801.
[http://dx.doi.org/10.1089/hum.1994.5.7-793] [PMID: 7981305]
[37]
Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: A gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res 2010; 61(1): 14-26.
[http://dx.doi.org/10.1016/j.phrs.2009.10.002] [PMID: 19840853]
[38]
Blömer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71(9): 6641-9.
[http://dx.doi.org/10.1128/jvi.71.9.6641-6649.1997] [PMID: 9261386]
[39]
Brooks AI, Stein CS, Hughes SM, et al. Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc Natl Acad Sci USA 2002; 99(9): 6216-21.
[http://dx.doi.org/10.1073/pnas.082011999] [PMID: 11959904]
[40]
Frenkel N, Singer O, Kwong AD. Minireview: The herpes simplex virus amplicon--a versatile defective virus vector. Gene Ther 1994; 1 (Suppl. 1): S40-6.
[PMID: 8542394]
[41]
Chiocca EA, Choi BB, Cai WZ, et al. Transfer and expression of the lacZ gene in rat brain neurons mediated by herpes simplex virus mutants. New Biol 1990; 2(8): 739-46.
[PMID: 2178004]
[42]
Diefenbach RJ, Miranda-Saksena M, Douglas MW, Cunningham AL. Transport and egress of herpes simplex virus in neurons. Rev Med Virol 2008; 18(1): 35-51.
[http://dx.doi.org/10.1002/rmv.560] [PMID: 17992661]
[43]
Spaete RR, Frenkel N. The herpes simplex virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell 1982; 30(1): 295-304.
[http://dx.doi.org/10.1016/0092-8674(82)90035-6] [PMID: 6290080]
[44]
Sena-Esteves M, Saeki Y, Fraefel C, Breakefield XO. HSV-1 amplicon vectors-simplicity and versatility. Mol Ther 2000; 2(1): 9-15.
[http://dx.doi.org/10.1006/mthe.2000.0096] [PMID: 10899823]
[45]
Burton EA, Fink DJ, Glorioso JC. Gene delivery using herpes simplex virus vectors. DNA Cell Biol 2002; 21(12): 915-36.
[http://dx.doi.org/10.1089/104454902762053864] [PMID: 12573050]
[46]
Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev 2009; 109(2): 259-302.
[http://dx.doi.org/10.1021/cr800409e] [PMID: 19053809]
[47]
Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005; 4(7): 581-93.
[http://dx.doi.org/10.1038/nrd1775] [PMID: 16052241]
[48]
Putnam D. Polymers for gene delivery across length scales. Nat Mater 2006; 5(6): 439-51.
[http://dx.doi.org/10.1038/nmat1645] [PMID: 16738681]
[49]
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15(8): 541-55.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[50]
Li W, Szoka FC Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 2007; 24(3): 438-49.
[http://dx.doi.org/10.1007/s11095-006-9180-5] [PMID: 17252188]
[51]
Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 2006; 116(2): 255-64.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.024] [PMID: 16914222]
[52]
Felgner PL, Barenholz Y, Behr JP, et al. Nomenclature for synthetic gene delivery systems. Hum Gene Ther 1997; 8(5): 511-2.
[http://dx.doi.org/10.1089/hum.1997.8.5-511] [PMID: 9095402]
[53]
Rädler JO, Koltover I, Salditt T, Safinya CR. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 1997; 275(5301): 810-4.
[http://dx.doi.org/10.1126/science.275.5301.810] [PMID: 9012343]
[54]
Gust TC, Zenke M. Receptor-mediated gene delivery. ScientificWorldJournal 2002; 2: 224-9.
[http://dx.doi.org/10.1100/tsw.2002.95] [PMID: 12806054]
[55]
Molas M, Gómez-Valadés AG, Vidal-Alabró A, et al. Receptor-mediated gene transfer vectors: Progress towards genetic pharmaceuticals. Curr Gene Ther 2003; 3(5): 468-85.
[http://dx.doi.org/10.2174/1566523034578195] [PMID: 14529352]
[56]
Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc Natl Acad Sci USA 1995; 92(16): 7297-301.
[http://dx.doi.org/10.1073/pnas.92.16.7297] [PMID: 7638184]
[57]
Seale-Goldsmith MM, Leary JF. Nanobiosystems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009; 1(5): 553-67.
[http://dx.doi.org/10.1002/wnan.49] [PMID: 20049817]
[58]
Angelova A, Angelov B, Drechsler M, Lesieur S. Neurotrophin delivery using nanotechnology. Drug Discov 2013; 18.
[59]
Müller F-J, Snyder EY, Loring JF. Gene therapy: Can neural stem cells deliver? Nat Rev Neurosci 2006; 7(1): 75-84.
[http://dx.doi.org/10.1038/nrn1829] [PMID: 16371952]
[60]
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[61]
Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberga B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J Magn Magn Mater 2005; 483-96.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.064]
[62]
Mohd Nurazzi Norizana MHM, Ngah Demona SZ, Halima NA, et al. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Advances 2020; 10.
[63]
Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater 2019; 94: 44-63.
[http://dx.doi.org/10.1016/j.actbio.2019.05.022] [PMID: 31082570]
[64]
Giri S, Trewyn BG, Lin VS. Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. Nanomedicine (Lond) 2007; 2(1): 99-111.
[http://dx.doi.org/10.2217/17435889.2.1.99] [PMID: 17716196]
[65]
Hadavi D, Poot AA. Biomaterials for the treatment of Alzheimer’s disease. Front Bioeng Biotechnol 2016; 4: 49.
[http://dx.doi.org/10.3389/fbioe.2016.00049] [PMID: 27379232]
[66]
Wei-Hong Ji Z-BX, Liu G-Y, Zhang X. Development and application of nano-flavor-drug carriers in neurodegenerative diseases. Chin Chem Lett 2017.
[67]
Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol 2010; 624: 163-75.
[http://dx.doi.org/10.1007/978-1-60761-609-2_11] [PMID: 20217595]
[68]
Bergen JM, Park I-K, Horner PJ, Pun SH. Nonviral approaches for neuronal delivery of nucleic acids. Pharm Res 2008; 25(5): 983-98.
[http://dx.doi.org/10.1007/s11095-007-9439-5] [PMID: 17932730]
[69]
Klein TM, Fitzpatrick-McElligott S. Particle bombardment: A universal approach for gene transfer to cells and tissues. Curr Opin Biotechnol 1993; 4(5): 583-90.
[http://dx.doi.org/10.1016/0958-1669(93)90081-7] [PMID: 7764210]
[70]
Davidson JM, Krieg T, Eming SA. Particle-mediated gene therapy of wounds. Wound Repair Regen 2000; 8(6): 452-9.
[http://dx.doi.org/10.1046/j.1524-475x.2000.00452.x] [PMID: 11208172]
[71]
Chuang YC, Chou AK, Wu PC, et al. Gene therapy for bladder pain with gene gun particle encoding pro-opiomelanocortin cDNA. J Urol 2003; 170(5): 2044-8.
[http://dx.doi.org/10.1097/01.ju.0000092945.76827.47] [PMID: 14532850]
[72]
Matsuno Y, Iwata H, Umeda Y, et al. Nonviral gene gun mediated transfer into the beating heart. ASAIO J 2003; 49(6): 641-4.
[http://dx.doi.org/10.1097/01.MAT.0000093746.63497.AE] [PMID: 14655727]
[73]
Yoshizawa J, Li X-K, Fujino M, et al. Successful in utero gene transfer using a gene gun in midgestational mouse fetuses. J Pediatr Surg 2004; 39(1): 81-4.
[http://dx.doi.org/10.1016/j.jpedsurg.2003.09.001] [PMID: 14694377]
[74]
Redman M, King A, Watson C, King D. What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed 2016; 101(4): 213-5.
[http://dx.doi.org/10.1136/archdischild-2016-310459] [PMID: 27059283]
[75]
Uddin F, Rudin CM, Sen T. CRISPR gene therapy: Applications, limitations, and implications for the future. Front Oncol 2020; 10: 1387.
[http://dx.doi.org/10.3389/fonc.2020.01387] [PMID: 32850447]
[76]
Kruminis-Kaszkiel E, Juranek J, Maksymowicz W, Wojtkiewicz J. CRISPR/Cas9 Technology as an emerging tool for targeting amyotrophic lateral sclerosis (ALS). Int J Mol Sci 2018; 19(3): E906.
[http://dx.doi.org/10.3390/ijms19030906] [PMID: 29562705]
[77]
Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013; 13(6): 653-8.
[http://dx.doi.org/10.1016/j.stem.2013.11.002] [PMID: 24315439]
[78]
Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA 2014; 111(31): 11461-6.
[http://dx.doi.org/10.1073/pnas.1405186111] [PMID: 25049410]
[79]
Steffan JS, Bodai L, Pallos J, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001; 413(6857): 739-43.
[http://dx.doi.org/10.1038/35099568] [PMID: 11607033]
[80]
Cheray M, Joseph B. Epigenetics control microglia plasticity. Front Cell Neurosci 2018; 12: 243.
[http://dx.doi.org/10.3389/fncel.2018.00243] [PMID: 30123114]
[81]
Du F, Yu Q, Yan S, et al. PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer’s disease. Brain 2017; 140(12): 3233-51.
[http://dx.doi.org/10.1093/brain/awx258] [PMID: 29077793]
[82]
Oddo S. The role of mTOR signaling in Alzheimer disease. Front Biosci (Schol Ed) 2012; 4: 941-52.
[http://dx.doi.org/10.2741/s310] [PMID: 22202101]
[83]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[http://dx.doi.org/10.1111/bcp.12804] [PMID: 26469771]
[84]
Lan AP, Chen J, Zhao Y, Chai Z, Hu Y. mTOR signaling in Parkinson’s disease. Neuromolecular Med 2017; 19(1): 1-10.
[http://dx.doi.org/10.1007/s12017-016-8417-7] [PMID: 27263112]
[85]
Hu Y, Park KK, Yang L, et al. Differential effects of unfolded protein response pathways on axon injury-induced death of retinal ganglion cells. Neuron 2012; 73(3): 445-52.
[http://dx.doi.org/10.1016/j.neuron.2011.11.026] [PMID: 22325198]
[86]
Yang L, Li S, Miao L, et al. Rescue of glaucomatous neurodegeneration by differentially modulating neuronal endoplasmic reticulum stress molecules. J Neurosci 2016; 36(21): 5891-903.
[http://dx.doi.org/10.1523/JNEUROSCI.3709-15.2016] [PMID: 27225776]
[87]
Huang H, Miao L, Liang F, et al. Neuroprotection by eIF2α-CHOP inhibition and XBP-1 activation in EAE/optic neuritiss. Cell Death Dis 2017; 8(7): e2936.
[http://dx.doi.org/10.1038/cddis.2017.329] [PMID: 28726788]
[88]
Mani S, Swargiary G, Chadha R. Mitophagy impairment in neurodegenerative diseases: Pathogenesis and therapeutic interventions. Mitochondrion 2021; 57: 270-93.
[http://dx.doi.org/10.1016/j.mito.2021.01.001] [PMID: 33476770]
[89]
Bingol B, Tea JS, Phu L, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014; 510(7505): 370-5.
[http://dx.doi.org/10.1038/nature13418] [PMID: 24896179]
[90]
Onyango IG, Dennis J, Khan SM. Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis 2016; 7(2): 201-14.
[http://dx.doi.org/10.14336/AD.2015.1007] [PMID: 27114851]
[91]
Biffi A, Montini E, Lorioli L, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013; 341(6148): 1233158.
[http://dx.doi.org/10.1126/science.1233158] [PMID: 23845948]
[92]
Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RAV. PGC-1α rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 2012; 4(142): 142ra97-ra97.
[93]
Evans TD, Zhang X, Jeong SJ, et al. TFEB drives PGC-1α expression in adipocytes to protect against diet-induced metabolic dysfunction. Sci Signal 2019; 12(606): eaau2281.
[http://dx.doi.org/10.1126/scisignal.aau2281] [PMID: 31690633]
[94]
Jones DR, Moussaud S, McLean P. Targeting heat shock proteins to modulate α-synuclein toxicity. Ther Adv Neurol Disord 2014; 7(1): 33-51.
[http://dx.doi.org/10.1177/1756285613493469] [PMID: 24409201]
[95]
Zhong L, Xu Y, Zhuo R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun 2019; 10(1): 1365.
[http://dx.doi.org/10.1038/s41467-019-09118-9] [PMID: 30911003]
[96]
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol 2018; 217(2): 459-72.
[http://dx.doi.org/10.1083/jcb.201709069] [PMID: 29196460]
[97]
Butovsky O, Weiner HL. Microglial signatures and their role in health and disease. Nat Rev Neurosci 2018; 19(10): 622-35.
[http://dx.doi.org/10.1038/s41583-018-0057-5] [PMID: 30206328]
[98]
Kampmann M. A CRISPR approach to neurodegenerative diseases. Trends Mol Med 2017; 23(6): 483-5.
[http://dx.doi.org/10.1016/j.molmed.2017.04.003] [PMID: 28478951]
[99]
Zhao L, Gottesdiener AJ, Parmar M, et al. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer’s disease mouse models. Neurobiol Aging 2016; 44: 159-72.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.04.020] [PMID: 27318144]
[100]
Bartus RT, Weinberg MS, Samulski RJ. Parkinson’s disease gene therapy: Success by design meets failure by efficacy. Mol Ther 2014; 22(3): 487-97.
[http://dx.doi.org/10.1038/mt.2013.281] [PMID: 24356252]
[101]
Mittermeyer G, Christine CW, Rosenbluth KH, et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 2012; 23(4): 377-81.
[http://dx.doi.org/10.1089/hum.2011.220] [PMID: 22424171]
[102]
LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: A double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011; 10(4): 309-19.
[http://dx.doi.org/10.1016/S1474-4422(11)70039-4] [PMID: 21419704]
[103]
Biferi MG, Cohen-Tannoudji M, Cappelletto A, et al. A new AAV10-U7-mediated gene therapy prolongs survival and restores function in an ALS mouse model. Mol Ther 2017; 25(9): 2038-52.
[http://dx.doi.org/10.1016/j.ymthe.2017.05.017] [PMID: 28663100]
[104]
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1: 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[105]
Seo M-W, Park T-E. Recent advances with liposomes as drug carriers for treatment of neurodegenerative diseases. Biomed Eng Lett 2021; 11(3): 211-6.
[http://dx.doi.org/10.1007/s13534-021-00198-5] [PMID: 34350048]
[106]
Spuch C, Navarro C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). J Drug Deliv 2011; 2011: 469679.
[http://dx.doi.org/10.1155/2011/469679] [PMID: 22203906]
[107]
Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Nanomedicine 2012; 8 (Suppl. 1): S51-8.
[http://dx.doi.org/10.1016/j.nano.2012.05.007] [PMID: 22640910]
[108]
Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 2007; 24(9): 1759-71.
[http://dx.doi.org/10.1007/s11095-007-9379-0] [PMID: 17619996]
[109]
Mortada I, Farah R, Nabha S, et al. Immunotherapies for neurodegenerative diseases. Front Neurol 2021; 12: 654739.
[http://dx.doi.org/10.3389/fneur.2021.654739] [PMID: 34163421]
[110]
Jin GZ, Chakraborty A, Lee JH, Knowles JC, Kim HW. Targeting with nanoparticles for the therapeutic treatment of brain diseases. J Tissue Eng 2020; 11: 2041731419897460.
[http://dx.doi.org/10.1177/2041731419897460] [PMID: 32180936]
[111]
Yoo J, Lee E, Kim HY, et al. Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nat Nanotechnol 2017; 12(10): 1006-14.
[http://dx.doi.org/10.1038/nnano.2017.133] [PMID: 28737745]
[112]
Sanati M, Khodagholi F, Aminyavari S, et al. Impact of gold nanoparticles on amyloid β-induced Alzheimer’s disease in a rat animal model: Involvement of STIM proteins. ACS Chem Neurosci 2019; 10(5): 2299-309.
[http://dx.doi.org/10.1021/acschemneuro.8b00622] [PMID: 30933476]
[113]
Gao N, Sun H, Dong K, Ren J, Qu X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry 2015; 21(2): 829-35.
[http://dx.doi.org/10.1002/chem.201404562] [PMID: 25376633]
[114]
Cai Q, Wang L, Deng G, Liu J, Chen Q, Chen Z. Systemic delivery to central nervous system by engineered PLGA nanoparticles. Am J Transl Res 2016; 8(2): 749-64.
[PMID: 27158367]
[115]
Chen J, Zhang C, Liu Q, et al. Solanum tuberosum lectin-conjugated PLGA nanoparticles for nose-to-brain delivery: In vivo and in vitro evaluations. J Drug Target 2012; 20(2): 174-84.
[http://dx.doi.org/10.3109/1061186X.2011.622396] [PMID: 21992548]
[116]
Cellot G, Ballerini L, Prato M, Bianco A. Neurons are able to internalize soluble carbon nanotubes: New opportunities or old risks? Small 2010; 6(23): 2630-3.
[http://dx.doi.org/10.1002/smll.201000906] [PMID: 20859949]
[117]
Singh BGP, Rao CH, Pispati V, et al. Carbon nanotubes. A novel drug delivery system. Int J Res Pharm 2012; 2: 523-32.
[118]
Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 2019; 111: 666-75.
[http://dx.doi.org/10.1016/j.biopha.2018.12.133] [PMID: 30611991]
[119]
Matsumoto K, Sato C, Naka Y, Kitazawa A, Whitby RL, Shimizu N. Neurite outgrowths of neurons with neurotrophin-coated carbon nanotubes. J Biosci Bioeng 2007; 103(3): 216-20.
[http://dx.doi.org/10.1263/jbb.103.216] [PMID: 17434423]
[120]
Hasannejadasl B, Pooresmaeil Janbaz F, Choupani E, Fadaie M, Hamidinejad MA, Ahmadvand D. Quantum dots application in neurodegenerative diseases. Thrita 2021; 9(2): e100105.
[http://dx.doi.org/10.5812/thrita.100105]
[121]
Jung L, Narayan P, Sreenivasan ST, Narayan M. Untangling the potential of carbon quantum dots in neurodegenerative disease. Process 2020; 8(5): 599.
[http://dx.doi.org/10.3390/pr8050599]
[122]
Xiao S, Zhou D, Luan P, et al. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials 2016; 106: 98-110.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.021] [PMID: 27552320]
[123]
Cheng CS, Liu TP, Chien FC, Mou CY, Wu SH, Chen YP. Codelivery of plasmid and curcumin with mesoporous silica nanoparticles for promoting neurite outgrowth. ACS Appl Mater Interfaces 2019; 11(17): 15322-31.
[http://dx.doi.org/10.1021/acsami.9b02797] [PMID: 30986029]
[124]
Singh AK, Singh SS, Rathore AS, et al. Lipid-coated MCM-41 mesoporous silica nanoparticles loaded with berberine improved inhibition of acetylcholine esterase and amyloid formation. ACS Biomater Sci Eng 2021; 7(8): 3737-53.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00514] [PMID: 34297529]
[125]
Liu Y, An S, Li J, et al. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials 2016; 80: 33-45.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.060] [PMID: 26706474]
[126]
Usachev YM, Khammanivong A, Campbell C, Thayer SA. Particle-mediated gene transfer to rat neurons in primary culture. Pflugers Arch 2000; 439(6): 730-8.
[http://dx.doi.org/10.1007/s004249900240] [PMID: 10784347]
[127]
Xiang JJ, Tang JQ, Zhu SG, et al. IONP-PLL: A novel non-viral vector for efficient gene delivery. J Gene Med 2003; 5(9): 803-17.
[http://dx.doi.org/10.1002/jgm.419] [PMID: 12950071]
[128]
Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer’s disease. Mol Brain 2011; 4: 3.
[http://dx.doi.org/10.1186/1756-6606-4-3] [PMID: 21214928]
[129]
Park H, Oh J, Shim G, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci 2019; 22(4): 524-8.
[http://dx.doi.org/10.1038/s41593-019-0352-0] [PMID: 30858603]
[130]
He G, Luo W, Li P, et al. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 2010; 467(7311): 95-8.
[http://dx.doi.org/10.1038/nature09325] [PMID: 20811458]
[131]
György B, Lööv C, Zaborowski MP, et al. CRISPR/Cas9 mediated disruption of the swedish APP allele as a therapeutic approach for early-Onset Alzheimer’s disease. Mol Ther Nucleic Acids 2018; 11: 429-40.
[http://dx.doi.org/10.1016/j.omtn.2018.03.007] [PMID: 29858078]
[132]
Vetrivel KS, Zhang YW, Xu H, Thinakaran G. Pathological and physiological functions of presenilins. Mol Neurodegener 2006; 1(1): 4.
[http://dx.doi.org/10.1186/1750-1326-1-4] [PMID: 16930451]
[133]
Ortiz-Virumbrales M, Moreno CL, Kruglikov I, et al. CRISPR/Cas9-correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons. Acta Neuropathol Commun 2017; 5(1): 77.
[http://dx.doi.org/10.1186/s40478-017-0475-z] [PMID: 29078805]
[134]
Barman NC, Khan NM, Islam M, et al. CRISPR-Cas9: A promising genome editing therapeutic tool for Alzheimer’s disease-A narrative review. Neurol Ther 2020; 9(2): 419-34.
[http://dx.doi.org/10.1007/s40120-020-00218-z] [PMID: 33089409]
[135]
Kolli N, Lu M, Maiti P, Rossignol J, Dunbar GL. Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases. Neurochem Int 2018; 112: 187-96.
[http://dx.doi.org/10.1016/j.neuint.2017.07.007] [PMID: 28732771]
[136]
Rohn TT, Kim N, Isho NF, Mack JM. The potential of CRISPR/Cas9 gene editing as a treatment strategy for Alzheimer’s disease. J Alzheimers Dis Parkinsonism 2018; 8(3): 439.
[http://dx.doi.org/10.4172/2161-0460.1000439] [PMID: 30090689]
[137]
Recchia A, Perani L, Sartori D, Olgiati C, Mavilio F. Site-specific integration of functional transgenes into the human genome by adeno/AAV hybrid vectors. Mol Ther 2004; 10(4): 660-70.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.003] [PMID: 15451450]
[138]
Gaj T, Epstein BE, Schaffer DV. Genome engineering using adeno-associated virus: Basic and clinical research applications. Mol Ther 2016; 24(3): 458-64.
[http://dx.doi.org/10.1038/mt.2015.151] [PMID: 26373345]
[139]
Caligiore D, Helmich RC, Hallett M, et al. Parkinson’s disease as a system-level disorder. NPJ Parkinsons Dis 2016; 2: 16025.
[http://dx.doi.org/10.1038/npjparkd.2016.25] [PMID: 28725705]
[140]
Veres A, Gosis BS, Ding Q, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 2014; 15(1): 27-30.
[http://dx.doi.org/10.1016/j.stem.2014.04.020] [PMID: 24996167]
[141]
Yoon HH, Ye S, Lim S, Lee SE, Oh S-J, Jo A, et al. CRISPR/Cas9-mediated gene editing induces neurological recovery in an A53T-SNCA overexpression rat model of Parkinson’s disease. bioRxiv 2020; 2020.08.27.269522.
[http://dx.doi.org/10.1101/2020.08.27.269522]
[142]
Soldner F, Stelzer Y, Shivalila CS, et al. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 2016; 533(7601): 95-9.
[http://dx.doi.org/10.1038/nature17939] [PMID: 27096366]
[143]
Heman-Ackah SM, Bassett AR, Wood MJA. Precision modulation of neurodegenerative disease-related gene expression in human iPSC-derived neurons. Sci Rep 2016; 6(1): 28420.
[http://dx.doi.org/10.1038/srep28420] [PMID: 27341390]
[144]
Black JB, Adler AF, Wang H-G, et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 2016; 19(3): 406-14.
[http://dx.doi.org/10.1016/j.stem.2016.07.001] [PMID: 27524438]
[145]
Ishikawa T, Imamura K, Kondo T, et al. Genetic and pharmacological correction of aberrant dopamine synthesis using patient iPSCs with BH4 metabolism disorders. Hum Mol Genet 2016; 25(23): 5188-97.
[http://dx.doi.org/10.1093/hmg/ddw339] [PMID: 27798097]
[146]
Abecasis GR, Altshuler D, Auton A, et al. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 2010; 467(7319): 1061-73.
[http://dx.doi.org/10.1038/nature09534] [PMID: 20981092]
[147]
Heidenreich M, Zhang F. Applications of CRISPR-Cas systems in neuroscience. Nat Rev Neurosci 2016; 17(1): 36-44.
[http://dx.doi.org/10.1038/nrn.2015.2] [PMID: 26656253]
[148]
Ishizu N, Yui D, Hebisawa A, et al. Impaired striatal dopamine release in homozygous Vps35 D620N knock-in mice. Hum Mol Genet 2016; 25(20): 4507-17.
[http://dx.doi.org/10.1093/hmg/ddw279] [PMID: 28173004]
[149]
Cota-Coronado JA, Sandoval-Ávila S, Gaytan-Dávila YP, et al. New transgenic models of Parkinson’s disease using genome editing technology. Neurologia 2020; 35(7): 486-99.
[http://dx.doi.org/10.1016/j.nrleng.2017.08.006] [PMID: 29196142]
[150]
Wang X, Cao C, Huang J, et al. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 2016; 6: 20620.
[http://dx.doi.org/10.1038/srep20620] [PMID: 26857844]
[151]
Nance MA. Genetics of Huntington disease. Handb Clin Neurol 2017; 144: 3-14.
[http://dx.doi.org/10.1016/B978-0-12-801893-4.00001-8] [PMID: 28947123]
[152]
Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol 2017; 16(10): 837-47.
[http://dx.doi.org/10.1016/S1474-4422(17)30280-6] [PMID: 28920889]
[153]
Dabrowska M, Ciolak A, Kozlowska E, Fiszer A, Olejniczak M. Generation of new isogenic models of Huntington’s disease using CRISPR-Cas9 technology. Int J Mol Sci 2020; 21(5): 1854.
[http://dx.doi.org/10.3390/ijms21051854] [PMID: 32182692]
[154]
Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s Disease mouse model. Mol Ther Nucleic Acids 2019; 17: 829-39.
[http://dx.doi.org/10.1016/j.omtn.2019.07.009] [PMID: 31465962]
[155]
Deglon N, Vachey G, Rey M, Perrier A. I07 Allele specific gene editing for huntington’s disease mediated by the KAMICAS9 selfinactivating CRISPR/CAS9 system. J Neurol Neurosurg Psychiatry 2018; 89(Suppl 1): A90-A.
[156]
Tang TS, Tu H, Chan EY, et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 2003; 39(2): 227-39.
[http://dx.doi.org/10.1016/S0896-6273(03)00366-0] [PMID: 12873381]
[157]
Höijer I, Tsai YC, Clark TA, et al. Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing. Hum Mutat 2018; 39(9): 1262-72.
[http://dx.doi.org/10.1002/humu.23580] [PMID: 29932473]
[158]
Yun Y, Ha Y. CRISPR/Cas9-Mediated gene correction to understand ALS. Int J Mol Sci 2020; 21(11): 3801.
[http://dx.doi.org/10.3390/ijms21113801] [PMID: 32471232]
[159]
Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362(6415): 59-62.
[http://dx.doi.org/10.1038/362059a0] [PMID: 8446170]
[160]
Deng HX, Hentati A, Tainer JA, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 1993; 261(5124): 1047-51.
[http://dx.doi.org/10.1126/science.8351519] [PMID: 8351519]
[161]
Gaj T, Ojala DS, Ekman FK, Byrne LC, Limsirichai P, Schaffer DV. In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci Adv 2017; 3(12): eaar3952.
[http://dx.doi.org/10.1126/sciadv.aar3952] [PMID: 29279867]
[162]
Smith RA, Miller TM, Yamanaka K, et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest 2006; 116(8): 2290-6.
[http://dx.doi.org/10.1172/JCI25424] [PMID: 16878173]
[163]
Cunningham TJ, Fisher E, Fratta P, Gilthorpe JD. DNA Editing for amyotrophic lateral sclerosis: Leading off first base. CRISPR J 2020; 3(2): 75-7.
[http://dx.doi.org/10.1089/crispr.2020.29087.tcu] [PMID: 32315228]
[164]
Wang L, Yi F, Fu L, et al. CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 2017; 8(5): 365-78.
[http://dx.doi.org/10.1007/s13238-017-0397-3] [PMID: 28401346]
[165]
Deng H-X, Zhai H, Shi Y, et al. Efficacy and long-term safety of CRISPR/Cas9 genome editing in the SOD1-linked mouse models of ALS. Commun Biol 2021; 4(1): 396.
[http://dx.doi.org/10.1038/s42003-021-01942-4] [PMID: 33767386]
[166]
Miccio A, Antoniou P, Ciura S, Kabashi E. Novel genome-editing-based approaches to treat motor neuron diseases: Promises and challenges. Mol Ther 2022; 30(1): 47-53.
[167]
Wang Y, Hu Z, Ju P, et al. Viral vectors as a novel tool for clinical and neuropsychiatric research applications. Gen Psychiatr 2018; 31(2): e000015.
[http://dx.doi.org/10.1136/gpsych-2018-000015] [PMID: 30582128]
[168]
Zhu LJ, Li TY, Luo CX, et al. CAPON-nNOS coupling can serve as a target for developing new anxiolytics. Nat Med 2014; 20(9): 1050-4.
[http://dx.doi.org/10.1038/nm.3644] [PMID: 25129479]
[169]
Tsien JZ. Cre-Lox neurogenetics: 20 years of versatile applications in brain research and counting. Front Genet 2016; 7: 19.
[http://dx.doi.org/10.3389/fgene.2016.00019] [PMID: 26925095]
[170]
Fenno LE, Mattis J, Ramakrishnan C, et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods 2014; 11(7): 763-72.
[http://dx.doi.org/10.1038/nmeth.2996] [PMID: 24908100]
[171]
Neve RL, Neve KA, Nestler EJ, Carlezon WA Jr, Carlezon J. Use of herpes virus amplicon vectors to study brain disorders. Biotechniques 2005; 39(3): 381-91.
[http://dx.doi.org/10.2144/05393PS01] [PMID: 16206910]
[172]
Dayton RD, Grames MS, Klein RL. More expansive gene transfer to the rat CNS: AAV PHP.EB vector dose-response and comparison to AAV PHP.B. Gene Ther 2018; 25(5): 392-400.
[http://dx.doi.org/10.1038/s41434-018-0028-5] [PMID: 30013186]
[173]
Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27(1): 59-65.
[http://dx.doi.org/10.1038/nbt.1515] [PMID: 19098898]
[174]
Mallet J. The TiPS/TINS Lecture. Catecholamines: From gene regulation to neuropsychiatric disorders. Trends Neurosci 1996; 19(5): 191-6.
[http://dx.doi.org/10.1016/S0166-2236(96)10029-1] [PMID: 8723206]
[175]
Koshimizu Y, Isa K, Kobayashi K, Isa T. Double viral vector technology for selective manipulation of neural pathways with higher level of efficiency and safety. Gene Ther 2021; 28(6): 339-50.
[http://dx.doi.org/10.1038/s41434-020-00212-y] [PMID: 33432122]
[176]
Rogan SC, Roth BL. Remote control of neuronal signaling. Pharmacol Rev 2011; 63(2): 291-315.
[http://dx.doi.org/10.1124/pr.110.003020] [PMID: 21415127]
[177]
Kobayashi NR, Sui L, Tan PSL, et al. Modelling disrupted-in-schizophrenia 1 loss of function in human neural progenitor cells: Tools for molecular studies of human neurodevelopment and neuropsychiatric disorders. Mol Psychiatry 2010; 15(7): 672-5.
[http://dx.doi.org/10.1038/mp.2009.131] [PMID: 20010895]
[178]
Glorioso JC, Fink DJ. Herpes vector-mediated gene transfer in treatment of diseases of the nervous system. Annu Rev Microbiol 2004; 58(1): 253-71.
[http://dx.doi.org/10.1146/annurev.micro.58.030603.123709] [PMID: 15487938]
[179]
Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009; 459(7247): 698-702.
[http://dx.doi.org/10.1038/nature07991] [PMID: 19396159]
[180]
Stuber GD, Sparta DR, Stamatakis AM, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 2011; 475(7356): 377-80.
[http://dx.doi.org/10.1038/nature10194] [PMID: 21716290]
[181]
Tye KM, Prakash R, Kim SY, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 2011; 471(7338): 358-62.
[http://dx.doi.org/10.1038/nature09820] [PMID: 21389985]
[182]
Loane C, Politis M. Buspirone: What is it all about? Brain Res 2012; 1461: 111-8.
[http://dx.doi.org/10.1016/j.brainres.2012.04.032] [PMID: 22608068]
[183]
Bari NK, Fazil M, Hassan MQ, et al. Brain delivery of buspirone hydrochloride chitosan nanoparticles for the treatment of general anxiety disorder. Int J Biol Macromol 2015; 81: 49-59.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.041] [PMID: 26210037]
[184]
Nagpal K, Singh SK, Mishra DN. Optimization of brain targeted gallic acid nanoparticles for improved antianxiety-like activity. Int J Biol Macromol 2013; 57: 83-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.022] [PMID: 23500665]
[185]
Joseph E, Reddi S, Rinwa V, Balwani G, Saha R. Design and in vivo evaluation of solid lipid nanoparticulate systems of Olanzapine for acute phase schizophrenia treatment: Investigations on antipsychotic potential and adverse effects. Eur J Pharm Sci 2017; 104: 315-25.
[http://dx.doi.org/10.1016/j.ejps.2017.03.050] [PMID: 28408348]
[186]
Peña CJ, Bagot RC, Labonté B, Nestler EJ. Epigenetic signaling in psychiatric disorders. J Mol Biol 2014; 426(20): 3389-412.
[http://dx.doi.org/10.1016/j.jmb.2014.03.016] [PMID: 24709417]
[187]
Rajarajan P, Gil SE, Brennand KJ, Akbarian S. Spatial genome organization and cognition. Nat Rev Neurosci 2016; 17(11): 681-91.
[http://dx.doi.org/10.1038/nrn.2016.124] [PMID: 27708356]
[188]
Neurobiology of mental illness. (4th ed..), Charney PS, Dennis S, Buxbaum Joseph D, Nestler Eric J, Eds. Oxford University Press 2013.
[189]
Verkerk AJ, Pieretti M, Sutcliffe JS, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991; 65(5): 905-14.
[http://dx.doi.org/10.1016/0092-8674(91)90397-H] [PMID: 1710175]
[190]
De Rubeis S, He X, Goldberg AP, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014; 515(7526): 209-15.
[http://dx.doi.org/10.1038/nature13772] [PMID: 25363760]
[191]
Hayashi M, Maehara K, Harada A, et al. Chd5 Regulates MuERV-L/MERVL Expression in mouse embryonic stem cells via H3K27me3 modification and histone H3.1/H3.2. J Cell Biochem 2016; 117(3): 780-92.
[http://dx.doi.org/10.1002/jcb.25368] [PMID: 26359639]
[192]
Goffin A, Hoefsloot LH, Bosgoed E, Swillen A, Fryns JP. PTEN mutation in a family with Cowden syndrome and autism. Am J Med Genet 2001; 105(6): 521-4.
[http://dx.doi.org/10.1002/ajmg.1477] [PMID: 11496368]
[193]
O’Roak BJ, Vives L, Fu W, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 2012; 338(6114): 1619-22.
[http://dx.doi.org/10.1126/science.1227764] [PMID: 23160955]
[194]
Williams MR, Fricano-Kugler CJ, Getz SA, et al. A retroviral CRISPR-Cas9 system for cellular autism-associated phenotype discovery in developing neurons. Sci Rep 2016; 6: 25611.
[http://dx.doi.org/10.1038/srep25611] [PMID: 27161796]
[195]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[196]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[197]
Neale BM, Kou Y, Liu L, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485(7397): 242-5.
[http://dx.doi.org/10.1038/nature11011] [PMID: 22495311]
[198]
O’Roak BJ, Vives L, Girirajan S, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485(7397): 246-50.
[http://dx.doi.org/10.1038/nature10989] [PMID: 22495309]
[199]
Wang P, Lin M, Pedrosa E, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol Autism 2015; 6: 55.
[http://dx.doi.org/10.1186/s13229-015-0048-6] [PMID: 26491539]
[200]
Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 1988; 45(9): 789-96.
[http://dx.doi.org/10.1001/archpsyc.1988.01800330013001] [PMID: 3046553]
[201]
Kizner V, Naujock M, Fischer S, et al. CRISPR/Cas9-mediated knockout of the neuropsychiatric risk gene KCTD13 causes developmental deficits in human cortical neurons derived from induced pluripotent stem cells. Mol Neurobiol 2020; 57(2): 616-34.
[http://dx.doi.org/10.1007/s12035-019-01727-1] [PMID: 31402430]
[202]
Yi F, Danko T, Botelho SC, et al. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science 2016; 352(6286): aaf2669.
[http://dx.doi.org/10.1126/science.aaf2669] [PMID: 26966193]
[203]
Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: Overview and treatment options. P T 2014; 39(9): 638-45.
[204]
Clinical Handbook of Schizophrenia. 2008.
[205]
Fujihara K, Yamada K, Ichitani Y, et al. CRISPR/Cas9-engineered Gad1 elimination in rats leads to complex behavioral changes: Implications for schizophrenia. Transl Psychiatry 2020; 10(1): 426.
[http://dx.doi.org/10.1038/s41398-020-01108-6] [PMID: 33293518]
[206]
Rannals MD, Hamersky GR, Page SC, et al. Psychiatric risk gene transcription factor 4 regulates intrinsic excitability of prefrontal neurons via repression of SCN10a and KCNQ1. Neuron 2016; 90(1): 43-55.
[http://dx.doi.org/10.1016/j.neuron.2016.02.021] [PMID: 26971948]
[207]
Bradshaw NJ, Porteous DJ. DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 2012; 62(3): 1230-41.
[http://dx.doi.org/10.1016/j.neuropharm.2010.12.027] [PMID: 21195721]
[208]
Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013; 31(9): 827-32.
[http://dx.doi.org/10.1038/nbt.2647] [PMID: 23873081]
[209]
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv 2018; 25(1): 1234-57.
[http://dx.doi.org/10.1080/10717544.2018.1474964] [PMID: 29801422]
[210]
Khwatenge CN, Nahashon SN. Recent advances in the application of CRISPR/Cas9 gene editing system in poultry species. Front Genet 2021; 12: 627714.
[http://dx.doi.org/10.3389/fgene.2021.627714] [PMID: 33679892]
[211]
Young SA, Aitken RJ, Ikawa M. Advantages of using the CRISPR/Cas9 system of genome editing to investigate male reproductive mechanisms using mouse models. Asian J Androl 2015; 17(4): 623-7.
[http://dx.doi.org/10.4103/1008-682X.153851] [PMID: 25994645]
[212]
Rodríguez-Rodríguez DR, Ramírez-Solís R, Garza-Elizondo MA, Garza-Rodríguez ML, Barrera-Saldaña HA. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases. Int J Mol Med 2019; 43(4): 1559-74.
[PMID: 30816503]
[213]
Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 2019; 25(2): 249-54.
[http://dx.doi.org/10.1038/s41591-018-0326-x] [PMID: 30692695]
[214]
Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 2006; 58(4): 467-86.
[http://dx.doi.org/10.1016/j.addr.2006.03.007] [PMID: 16781003]
[215]
Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: Advances, insights and prospects. Acta Pharm Sin B 2020; 10(8): 1347-59.
[http://dx.doi.org/10.1016/j.apsb.2020.01.015] [PMID: 32963936]
[216]
Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: A clinical reality. Neuron 2019; 101(5): 839-62.
[http://dx.doi.org/10.1016/j.neuron.2019.02.017] [PMID: 30844402]
[217]
Hinderer C, Katz N, Buza EL, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther 2018; 29(3): 285-98.
[http://dx.doi.org/10.1089/hum.2018.015] [PMID: 29378426]
[218]
Amado D, Mingozzi F, Hui D, Bennicelli JL, Wei Z, Chen Y. Safety and efficacy of subretinal readministration of a viral vector in large animals to treat congenital blindness. Sci Transl Med 2010; 2(21): 21ra16.
[http://dx.doi.org/10.1126/scitranslmed.3000659]
[219]
Nault J-C, Datta S, Imbeaud S, et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet 2015; 47(10): 1187-93.
[http://dx.doi.org/10.1038/ng.3389] [PMID: 26301494]
[220]
Gil-Farina I, Fronza R, Kaeppel C, et al. Recombinant AAV integration is not associated with hepatic genotoxicity in nonhuman primates and patients. Mol Ther 2016; 24(6): 1100-5.
[http://dx.doi.org/10.1038/mt.2016.52] [PMID: 26948440]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy