Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Selected Phytochemicals to Combat Lungs Injury: Natural Care

Author(s): Rishita Dey, Asmita Samadder* and Sisir Nandi*

Volume 25, Issue 14, 2022

Published on: 14 April, 2022

Page: [2398 - 2412] Pages: 15

DOI: 10.2174/1386207325666220315113121

Price: $65

Abstract

The human has two lungs responsible for respiration and drug metabolism. Severe lung infection caused by bacteria, mycobacteria, viruses, fungi, and parasites may lead to lungs injury. Smoking and tobacco consumption may also produce lungs injury. Inflammatory and pain mediators are secreted by alveolar macrophages. The inflammatory mediators, such as cytokines, interleukin (IL)-1, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF)-α, neutrophils, and fibroblasts are accumulated in the alveoli sac, which becomes infected. It may lead to hypoxia followed by severe pulmonary congestion and the death of the patient. There is an urgent need for the treatment of artificial respiration and ventilation. However, the situation may be the worst for patients suffering from lung cancer, pulmonary tuberculosis, and acute pneumonia caused by acute respiratory distress syndrome (ARDS). Re-urgency has been happening in the case of coronavirus disease of 2019 (COVID-19) patients. Therefore, it is needed to protect the lungs with the intake of natural phytomedicines. In the present review, several selected phyto components having the potential role in lung injury therapy have been discussed. Regular intake of natural vegetables and fruits bearing these constituents may save the lungs even in the dangerous attack of SARS-CoV-2 in lung cancer, pulmonary TB, and pneumatic patients.

Keywords: Natural care, phytoactive constituents, ARDS, pulmonary TB, lung cancer, and injury, tumor necrosis factor (TNF).

Graphical Abstract
[1]
Lee, K.Y. Pneumonia, acute respiratory distress syndrome, and early immune-modulator therapy. Int. J. Mol. Sci., 2017, 18(2), 388.
[http://dx.doi.org/10.3390/ijms18020388] [PMID: 28208675]
[2]
Engels, E.A.; Shen, M.; Chapman, R.S.; Pfeiffer, R.M.; Yu, Y.Y.; He, X.; Lan, Q. Tuberculosis and subsequent risk of lung cancer in Xuanwei, China. Int. J. Cancer, 2009, 124(5), 1183-1187.
[http://dx.doi.org/10.1002/ijc.24042] [PMID: 19058197]
[3]
Shiels, M.S.; Albanes, D.; Virtamo, J.; Engels, E.A. Increased risk of lung cancer in men with tuberculosis in the alpha-tocopherol, beta-carotene cancer prevention study. Cancer Epidemiol. Biomarkers Prev., 2011, 20(4), 672-678.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-1166] [PMID: 21335509]
[4]
Cheng, B.; Xiong, S.; Li, C.; Liang, H.; Zhao, Y.; Li, J.; Shi, J.; Ou, L.; Chen, Z.; Liang, P.; Liang, W.; He, J. An annual review of the remarkable advances in lung cancer clinical research in 2019. J. Thorac. Dis., 2020, 12(3), 1056-1069.
[http://dx.doi.org/10.21037/jtd.2020.03.11] [PMID: 32274174]
[5]
Johnson, E.R.; Matthay, M.A. Acute lung injury: Epidemiology, pathogenesis, and treatment. J. Aerosol Med. Pulm. Drug Deliv., 2010, 23(4), 243-252.
[http://dx.doi.org/10.1089/jamp.2009.0775] [PMID: 20073554]
[6]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[7]
Wong, C.K.; Lam, C.W.K.; Wu, A.K.L.; Ip, W.K.; Lee, N.L.S.; Chan, I.H.S.; Lit, L.C.W.; Hui, D.S.C.; Chan, M.H.M.; Chung, S.S.C.; Sung, J.J.Y. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol., 2004, 136(1), 95-103.
[http://dx.doi.org/10.1111/j.1365-2249.2004.02415.x] [PMID: 15030519]
[8]
Zhang, Y.; Li, J.; Zhan, Y.; Wu, L.; Yu, X.; Zhang, W.; Ye, L.; Xu, S.; Sun, R.; Wang, Y.; Lou, J. Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect. Immun., 2004, 72(8), 4410-4415.
[http://dx.doi.org/10.1128/IAI.72.8.4410-4415.2004] [PMID: 15271897]
[9]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem., 2011, 11(4), 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[10]
Zhu, L.; Xue, L. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells. Oncol. Res., 2019, 27(6), 629-634.
[http://dx.doi.org/10.3727/096504018X15228018559434] [PMID: 29739490]
[11]
Saw, C.L.; Guo, Y.; Yang, A.Y.; Paredes-Gonzalez, X.; Ramirez, C.; Pung, D.; Kong, A.N. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: Involvement of the Nrf2-ARE signaling pathway. Food Chem. Toxicol., 2014, 72, 303-311.
[http://dx.doi.org/10.1016/j.fct.2014.07.038] [PMID: 25111660]
[12]
Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol. Res., 2015, 99, 1-10.
[http://dx.doi.org/10.1016/j.phrs.2015.05.002] [PMID: 25982933]
[13]
Ahmadian, R.; Rahimi, R.; Bahramsoltani, R. Kaempferol: An encouraging flavonoid for COVID-19. Bol. Latinoam. Caribe Plantas Med. Aromat., 2020, 19(5), 492-494.
[http://dx.doi.org/10.37360/blacpma.20.19.5.33]
[14]
Chien, T.H.; Chiang, Y.L.; Chen, C.P.; Henklein, P.; Hänel, K.; Hwang, I.S.; Willbold, D.; Fischer, W.B. Assembling an ion channel: ORF 3a from SARS-CoV. Biopolymers, 2013, 99(9), 628-635.
[http://dx.doi.org/10.1002/bip.22230] [PMID: 23483519]
[15]
Schwarz, S.; Sauter, D.; Wang, K.; Zhang, R.; Sun, B.; Karioti, A.; Bilia, A.R.; Efferth, T.; Schwarz, W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med., 2014, 80(2-3), 177-182.
[http://dx.doi.org/10.1055/s-0033-1360277] [PMID: 24458263]
[16]
Yue, Y.; Nabar, N.R.; Shi, C.S.; Kamenyeva, O.; Xiao, X.; Hwang, I.Y.; Wang, M.; Kehrl, J.H. SARS-coronavirus open reading frame-3a drives multimodal necrotic cell death. Cell Death Dis., 2018, 9(9), 904.
[http://dx.doi.org/10.1038/s41419-018-0917-y] [PMID: 30185776]
[17]
Chen, I.Y.; Moriyama, M.; Chang, M.F.; Ichinohe, T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front. Microbiol., 2019, 10, 50.
[http://dx.doi.org/10.3389/fmicb.2019.00050] [PMID: 30761102]
[18]
Jo, E.; Park, S.J.; Choi, Y.S.; Jeon, W.K.; Kim, B.C. Kaempferol suppresses transforming growth factor-β1-induced Epithelial-to-Mesenchymal transition and migration of A549 lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at threonine-179. Neoplasia, 2015, 17(7), 525-537.
[http://dx.doi.org/10.1016/j.neo.2015.06.004] [PMID: 26297431]
[19]
Shih, T.-Y.; Young, T.-H.; Lee, H.-S.; Hsieh, C.-B.; Hu, O.Y.-P. Protective effects of kaempferol on isoniazid- and rifampicin-induced hepatotoxicity. AAPS J., 2013, 15(3), 753-762.
[http://dx.doi.org/10.1208/s12248-013-9490-6] [PMID: 23591749]
[20]
Shen, J.W.; Ruan, Y.; Ren, W.; Ma, B.-J.; Wang, X.-L.; Zheng, C.-F. Lycorine: A potential broad-spectrum agent against crop pathogenic fungi. J. Microbiol. Biotechnol., 2014, 24(3), 354-358.
[http://dx.doi.org/10.4014/jmb.1310.10063] [PMID: 24346469]
[21]
Chen, D.; Cai, J.; Cheng, J.; Jing, C.; Yin, J.; Jiang, J.; Peng, Z.; Hao, X. Design, synthesis and structure-activity relationship optimization of lycorine derivatives for HCV inhibition. Sci. Rep., 2015, 5(1), 14972.
[http://dx.doi.org/10.1038/srep14972] [PMID: 26443922]
[22]
Zhang, W.; Cui, E.H. Study on effect of lycorine in inducing apoptosis of pulmonary carcinoma cell A549. Zhongguo Zhongyao Zazhi, 2015, 40(16), 3278-3282.
[PMID: 26790307]
[23]
Guo, Y.; Wang, Y.; Cao, L.; Wang, P.; Qing, J.; Zheng, Q.; Shang, L.; Yin, Z.; Sun, Y. A conserved inhibitory mechanism of a lycorine derivative against enterovirus and hepatitis C virus. Antimicrob. Agents Chemother., 2015, 60(2), 913-924.
[http://dx.doi.org/10.1128/AAC.02274-15] [PMID: 26596952]
[24]
Chen, S.; Jin, G.; Huang, K.M.; Ma, J.-J.; Wang, Q.; Ma, Y.; Tang, X.-Z.; Zhou, Z.-J.; Hu, Z.-J.; Wang, J.-Y.; Qin, A.; Fan, S.-W. Lycorine suppresses RANKL-induced osteoclastogenesis in vitro and prevents ovariectomy-induced osteoporosis and titanium particle-induced osteolysis in vivo. Sci. Rep., 2015, 5(1), 12853.
[http://dx.doi.org/10.1038/srep12853] [PMID: 26238331]
[25]
Zeng, H.; Fu, R.; Yan, L.; Huang, J. Lycorine induces apoptosis of A549 cells via AMPK-Mammalian target of Rapamycin (mTOR)-S6K signaling pathway. Med. Sci. Monit., 2017, 23, 2035-2041.
[http://dx.doi.org/10.12659/MSM.900742] [PMID: 28450693]
[26]
Liu, A.; Chen, H.; Wei, W.; Ye, S.; Liao, W.; Gong, J.; Jiang, Z.; Wang, L.; Lin, S. Antiproliferative and antimetastatic effects of emodin on human pancreatic cancer. Oncol. Rep., 2011, 26(1), 81-89.
[PMID: 21491088]
[27]
Dong, Y.; Zhang, L.; Jiang, Y.; Dai, J.; Tang, L.; Liu, G. Emodin reactivated autophagy and alleviated inflammatory lung injury in mice with lethal endotoxemia. Exp. Anim., 2019, 68(4), 559-568.
[http://dx.doi.org/10.1538/expanim.19-0004] [PMID: 31292306]
[28]
Watters, J.J.; Sommer, J.A.; Pfeiffer, Z.A.; Prabhu, U.; Guerra, A.N.; Bertics, P.J. A differential role for the mitogen-activated protein kinases in lipopolysaccharide signaling: The MEK/ERK pathway is not essential for nitric oxide and interleukin 1beta production. J. Biol. Chem., 2002, 277(11), 9077-9087.
[http://dx.doi.org/10.1074/jbc.M104385200] [PMID: 11786532]
[29]
Wynne, B.M.; Zou, L.; Linck, V.; Hoover, R.S.; Ma, H.P.; Eaton, D.C. Regulation of lung epithelial sodium channels by cytokines and chemokines. Front. Immunol., 2017, 8, 766.
[http://dx.doi.org/10.3389/fimmu.2017.00766] [PMID: 28791006]
[30]
Mokra, D.; Kosutova, P. Biomarkers in acute lung injury. Respir. Physiol. Neurobiol., 2015, 209, 52-58.
[http://dx.doi.org/10.1016/j.resp.2014.10.006] [PMID: 25466727]
[31]
Way, T.D.; Huang, J.T.; Chou, C.H.; Huang, C.-H.; Yang, M-H.; Ho, C.-T. Emodin represses TWIST1-induced epithelial-mesenchymal transitions in head and neck squamous cell carcinoma cells by inhibiting the β-catenin and Akt pathways. Eur. J. Cancer, 2014, 50(2), 366-378.
[http://dx.doi.org/10.1016/j.ejca.2013.09.025] [PMID: 24157255]
[32]
Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Ni, J.; Emodin, H. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res., 2016, 30(8), 1207-1218.
[http://dx.doi.org/10.1002/ptr.5631] [PMID: 27188216]
[33]
Harbowy, M.E.; Balentine, D.A.; Davies, A.P.; Cai, Y. Tea chemistry. Crit. Rev. Plant Sci., 1997, 16(5), 415-480.
[http://dx.doi.org/10.1080/07352689709701956]
[34]
Sen, G.; Bera, B. Black tea as a part of daily diet: A boon for healthy living. Int. J. Tea Sci., 2013, 9, 51-59.
[35]
Yang, G.Y.; Liao, J.; Kim, K.; Yurkow, E.J.; Yang, C.S. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis, 1998, 19(4), 611-616.
[http://dx.doi.org/10.1093/carcin/19.4.611] [PMID: 9600345]
[36]
Lu, J.; Ho, C.-T.; Ghai, G.; Chen, K.Y. Differential effects of theaflavin monogallates on cell growth, apoptosis, and Cox-2 gene expression in cancerous versus normal cells. Cancer Res., 2000, 60(22), 6465-6471.
[PMID: 11103814]
[37]
Ganguly, C.; Saha, P.; Panda, C.K.; Das, S. Inhibition of growth, induction of apoptosis and alteration of gene expression by tea polyphenols in the highly metastatic human lung cancer cell line NCI-H460. Asian Pac. J. Cancer Prev., 2005, 6(3), 326-331.
[PMID: 16235994]
[38]
O’Neill, E.J.; Termini, D.; Albano, A.; Tsiani, E. Anti-cancer properties of theaflavins. Molecules, 2021, 26(4), 987.
[http://dx.doi.org/10.3390/molecules26040987] [PMID: 33668434]
[39]
Gao, Y.; Li, W.; Jia, L.; Li, B.; Chen, Y.C.; Tu, Y. Enhancement of (-)-epigallocatechin-3-gallate and theaflavin-3-3′-digallate induced apoptosis by ascorbic acid in human lung adenocarcinoma SPC-A-1 cells and esophageal carcinoma Eca-109 cells via MAPK pathways. Biochem. Biophys. Res. Commun., 2013, 438(2), 370-374.
[http://dx.doi.org/10.1016/j.bbrc.2013.07.078] [PMID: 23892041]
[40]
Zhang, L.; Geng, Y.; Duan, W.; Wang, D.; Fu, M.; Wang, X. Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J. Sep. Sci., 2009, 32(20), 3550-3554.
[http://dx.doi.org/10.1002/jssc.200900413] [PMID: 19764054]
[41]
Liang, C.; Cao, H.; Cao, X. Tetrandrine can alleviate inflammation and delay the growth of lung cancer during low-dose radiotherapy of non-small cell lung cancer. Biotechnol. Biotechnol. Equip., 2020, 34(1), 246-253.
[http://dx.doi.org/10.1080/13102818.2020.1736951]
[42]
Zhang, Z.; Yan, J.; Xu, K.; Ji, Z.; Li, L. Tetrandrine reverses drug resistance in isoniazid and ethambutol dual drug-resistant Mycobacterium tuberculosis clinical isolates. BMC Infect. Dis., 2015, 15(1), 153.
[http://dx.doi.org/10.1186/s12879-015-0905-0] [PMID: 25887373]
[43]
Han, M.K.; Barreto, T.A.; Martinez, F.J.; Comstock, A.T.; Sajjan, U.S. Randomised clinical trial to determine the safety of quercetin supplementation in patients with chronic obstructive pulmonary disease. BMJ Open Respir. Res., 2020, 7(1), e000392.
[http://dx.doi.org/10.1136/bmjresp-2018-000392] [PMID: 32071149]
[44]
Ganesan, S.; Faris, A.N.; Comstock, A.T.; Chattoraj, S.S.; Chattoraj, A.; Burgess, J.R.; Curtis, J.L.; Martinez, F.J.; Zick, S.; Hershenson, M.B.; Sajjan, U.S. Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir. Res., 2010, 11(1), 131.
[http://dx.doi.org/10.1186/1465-9921-11-131] [PMID: 20920189]
[45]
Farazuddin, M.; Mishra, R.; Jing, Y.; Srivastava, V.; Comstock, A.T.; Sajjan, U.S. Quercetin prevents rhinovirus-induced progression of lung disease in mice with COPD phenotype. PLoS One, 2018, 13(7), e0199612.
[http://dx.doi.org/10.1371/journal.pone.0199612] [PMID: 29975735]
[46]
Boots, A.W.; Drent, M.; de Boer, V.C.J.; Bast, A.; Haenen, G.R. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin. Nutr., 2011, 30(4), 506-512.
[http://dx.doi.org/10.1016/j.clnu.2011.01.010] [PMID: 21324570]
[47]
Uzun, H.; Yanardag, H.; Gelisgen, R.; Genc, H.; Uygun, S.; Vehid, S.; Karter, Y.; Demirci, S. Levels of paraoxonase, an index of antioxidant defense, in patients with active sarcoidosis. Curr. Med. Res. Opin., 2008, 24(6), 1651-1657.
[http://dx.doi.org/10.1185/03007990802133377] [PMID: 18474147]
[48]
Ware, L.B.; Matthay, M.A. The acute respiratory distress syndrome. N. Engl. J. Med., 2000, 342(18), 1334-1349.
[http://dx.doi.org/10.1056/NEJM200005043421806] [PMID: 10793167]
[49]
Cross, L.J.; Matthay, M.A. Biomarkers in acute lung injury: Insights into the pathogenesis of acute lung injury. Crit. Care Clin., 2011, 27(2), 355-377.
[http://dx.doi.org/10.1016/j.ccc.2010.12.005] [PMID: 21440206]
[50]
Takashima, K.; Matsushima, M.; Hashimoto, K.; Nose, H.; Sato, M.; Hashimoto, N.; Hasegawa, Y.; Kawabe, T. Protective effects of intratracheally administered quercetin on lipopolysaccharide-induced acute lung injury. Respir. Res., 2014, 15(1), 150.
[http://dx.doi.org/10.1186/s12931-014-0150-x] [PMID: 25413579]
[51]
Li, J.-H.; Xu, M.; Xie, X.-Y.; Fan, Q-X.; Mu, D-G.; Zhang, Y.; Cao, F.-L.; Wang, Y.-X.; Zhao, P.-T.; Zhang, B.; Jin, F.-G.; Li, Z.-C. Tanshinone IIA suppresses lung injury and apoptosis, and modulates protein kinase B and extracellular signal-regulated protein kinase pathways in rats challenged with seawater exposure. Clin. Exp. Pharmacol. Physiol., 2011, 38(4), 269-277.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05498.x] [PMID: 21314841]
[52]
Xu, M.; Cao, F.L.; Zhang, Y.F.; Shan, L.; Jiang, X.L.; An, X.J.; Xu, W.; Liu, X.Z.; Wang, X.Y. Tanshinone IIA therapeutically reduces LPS-induced acute lung injury by inhibiting inflammation and apoptosis in mice. Acta Pharmacol. Sin., 2015, 36(2), 179-187.
[http://dx.doi.org/10.1038/aps.2014.112] [PMID: 25544360]
[53]
Sharma, A.K.; Fernandez, L.G.; Awad, A.S.; Kron, I.L.; Laubach, V.E. Proinflammatory response of alveolar epithelial cells is enhanced by alveolar macrophage-produced TNF-alpha during pulmonary ischemia-reperfusion injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 293(1), L105-L113.
[http://dx.doi.org/10.1152/ajplung.00470.2006] [PMID: 17416740]
[54]
Lu, Y.; Xu, D.; Liu, J.; Gu, L. Protective effect of sophocarpine on lipopolysaccharide-induced acute lung injury in mice. Int. Immunopharmacol., 2019, 70, 180-186.
[http://dx.doi.org/10.1016/j.intimp.2019.02.020] [PMID: 30807931]
[55]
Li, J.; Zhao, L.; He, X.; Zeng, Y.-J.; Dai, S.-S. Sinomenine protects against lipopolysaccharide-induced acute lung injury in mice via adenosine A(2A) receptor signaling. PLoS One, 2013, 8(3), e59257.
[http://dx.doi.org/10.1371/journal.pone.0059257] [PMID: 23555007]
[56]
Yamasaki, H. Pharmacology of sinomenine, an anti-rheumatic alkaloid from Sinomenium acutum. Acta Med. Okayama, 1976, 30(1), 1-20.
[PMID: 61710]
[57]
Liu, L.; Resch, K.; Kaever, V. Inhibition of lymphocyte proliferation by the anti-arthritic drug sinomenine. Int. J. Immunopharmacol., 1994, 16(8), 685-691.
[http://dx.doi.org/10.1016/0192-0561(94)90142-2] [PMID: 7989137]
[58]
Kok, T.W.; Yue, P.Y.; Mak, N.K.; Fan, T.P.; Liu, L.; Wong, R.N.S. The anti-angiogenic effect of sinomenine. Angiogenesis, 2005, 8(1), 3-12.
[http://dx.doi.org/10.1007/s10456-005-2892-z] [PMID: 16132613]
[59]
Jiang, S.; Gao, Y.; Hou, W.; Liu, R.; Qi, X.; Xu, X.; Li, J.; Bao, Y.; Zheng, H.; Hua, B. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway. Oncol. Lett., 2016, 12(2), 1380-1386.
[http://dx.doi.org/10.3892/ol.2016.4768] [PMID: 27446441]
[60]
Bai, G.Z.; Yu, H.T.; Ni, Y.F.; Li, X.F.; Zhang, Z.P.; Su, K.; Lei, J.; Liu, B.Y.; Ke, C.K.; Zhong, D.X.; Wang, Y.J.; Zhao, J.B. Shikonin attenuates lipopolysaccharide-induced acute lung injury in mice. J. Surg. Res, 2013, 182, 303e311.
[http://dx.doi.org/10.1016/j.jss.2012.10.039]
[61]
Zhang, Y.; Zhang, H.; Wang, M.; Gao, S.; Hong, L.; Hou, T.; Zhang, Y.; Zhu, Y.; Qian, F. Shikonin ameliorates lipoteichoic acid induced acute lung injury via promotion of neutrophil apoptosis. Mol. Med. Rep., 2021, 23(2), 133.
[http://dx.doi.org/10.3892/mmr.2020.11772] [PMID: 33313945]
[62]
Yeh, Y.C.; Liu, T.J.; Lai, H.C. Shikonin induces apoptosis, necrosis, and premature senescence of human A549 lung cancer cells through upregulation of p53 expression. Evid. Based Complement. Alternat. Med., 2015, 2015, 620383.
[http://dx.doi.org/10.1155/2015/620383] [PMID: 25737737]
[63]
Juergens, U.R. Anti-inflammatory properties of the monoterpene 1.8-cineole: Current evidence for co-medication in inflammatory airway diseases. Drug Res. (Stuttg.), 2014, 64(12), 638-646.
[http://dx.doi.org/10.1055/s-0034-1372609] [PMID: 24831245]
[64]
Bastos, V.P.; Gomes, A.S.; Lima, F.J.; Brito, T.S.; Soares, P.M.; Pinho, J.P.; Silva, C.S.; Santos, A.A.; Souza, M.H.; Magalhães, P.J.C. Inhaled 1,8-cineole reduces inflammatory parameters in airways of ovalbumin-challenged Guinea pigs. Basic Clin. Pharmacol. Toxicol., 2011, 108(1), 34-39.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00622.x] [PMID: 20722639]
[65]
Yu, N.; Sun, Y.T.; Su, X.M.; He, M.; Dai, B.; Kang, J. Treatment with eucalyptol mitigates cigarette smoke-induced lung injury through suppressing ICAM-1 gene expression. Biosci. Rep., 2018, 38(4), BSR20171636.
[http://dx.doi.org/10.1042/BSR20171636] [PMID: 29789401]
[66]
Ramos Alvarenga, R.F.; Wan, B.; Inui, T.; Franzblau, S.G.; Pauli, G.F.; Jaki, B.U. Airborne antituberculosis activity of eucalyptus citriodora essential oil. J. Nat. Prod., 2014, 77(3), 603-610.
[http://dx.doi.org/10.1021/np400872m] [PMID: 24641242]
[67]
Yang, S.; Song, Y.; Wang, Q.; Liu, Y.; Wu, Z.; Duan, X.; Zhang, Y.; Bi, X.; Geng, Y.; Chen, S.; Zhu, C. Daphnetin ameliorates acute lung injury in mice with severe acute pancreatitis by inhibiting the JAK2-STAT3 pathway. Sci. Rep., 2021, 11(1), 11491.
[http://dx.doi.org/10.1038/s41598-021-91008-6] [PMID: 34075160]
[68]
Liang, Y.; Fan, C.; Yan, X.; Lu, X.; Jiang, H.; Di, S.; Ma, Z.; Feng, Y.; Zhang, Z.; Feng, P.; Feng, X.; Feng, J.; Jin, F. Berberine ameliorates lipopolysaccharide‐induced acute lung injury via the PERK‐mediated Nrf2/HO‐1 signaling axis. Phytother. Res., 2018, 1-19.
[PMID: 30346043]
[69]
Ribeiro, A.; Almeida, V.I.; Costola-de-Souza, C.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Vitoretti, L.B.; Gimenes-Junior, J.A.; Akamine, A.T.; Crippa, J.A.; Tavares-de-Lima, W.; Palermo-Neto, J. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury. Immunopharmacol. Immunotoxicol., 2015, 37(1), 35-41.
[http://dx.doi.org/10.3109/08923973.2014.976794] [PMID: 25356537]
[70]
Blaskovich, M.A.T.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; Lowe, G.J.; Hinton, A.O.; Pham, D.M.T.; Zuegg, J.; Beare, N.; Quach, D.; Sharp, M.D.; Pogliano, J.; Rogers, A.P.; Lyras, D.; Tan, L.; West, N.P.; Crawford, D.W.; Peterson, M.L.; Callahan, M.; Thurn, M. The antimicrobial potential of cannabidiol. Commun. Biol., 2021, 4(1), 7.
[http://dx.doi.org/10.1038/s42003-020-01530-y] [PMID: 33469147]
[71]
Fu, Y.; Liu, B.; Liu, J.; Liu, Z.; Liang, D.; Li, F.; Li, D.; Cao, Y.; Zhang, X.; Zhang, N.; Yang, Z. Geniposide, from Gardenia jasminoides Ellis, inhibits the inflammatory response in the primary mouse macrophages and mouse models. Int. Immunopharmacol., 2012, 14(4), 792-798.
[http://dx.doi.org/10.1016/j.intimp.2012.07.006] [PMID: 22878137]
[72]
Lingaraju, M.C.; Pathak, N.N.; Begum, J.; Balaganur, V.; Bhat, R.A.; Ram, M.; Kumar, D.; Kumar, D.; Tandan, S.K. Betulinic acid negates oxidative lung injury in surgical sepsis model. J. Surg. Res., 2015, 193(2), 856-867.
[http://dx.doi.org/10.1016/j.jss.2014.09.008] [PMID: 25291962]
[73]
Das, J.; Das, S.; Samadder, A.; Bhadra, K.; Khuda-Bukhsh, A.R. Poly (lactide-co-glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells. Eur. J. Pharm. Sci., 2012, 47(2), 313-324.
[http://dx.doi.org/10.1016/j.ejps.2012.06.018] [PMID: 22771545]
[74]
Das, J.; Das, S.; Paul, A.; Samadder, A.; Khuda-Bukhsh, A.R. Strong anticancer potential of nano-triterpenoid from Phytolacca decandra against A549 adenocarcinoma via a Ca(2+)-dependent mitochondrial apoptotic pathway. J. Acupunct. Meridian Stud., 2014, 7(3), 140-150.
[http://dx.doi.org/10.1016/j.jams.2013.07.009] [PMID: 24929458]
[75]
Das, J.; Samadder, A.; Das, S.; Paul, A.; Khuda-Bukhsh, A.R. Nanopharmaceutical approach for enhanced anti-cancer activity of betulinic acid in lung-cancer treatment via activation of PARP: Interaction with DNA as a target. J. Pharmacopuncture, 2016, 19(1), 37-44.
[http://dx.doi.org/10.3831/KPI.2016.19.005] [PMID: 27280048]
[76]
Zhan, X.K.; Li, J.L.; Zhang, S.; Xing, P.Y.; Xia, M.F. Betulinic acid exerts potent antitumor effects on paclitaxel-resistant human lung carcinoma cells (H460) via G2/M phase cell cycle arrest and induction of mitochondrial apoptosis. Oncol. Lett., 2018, 16(3), 3628-3634.
[http://dx.doi.org/10.3892/ol.2018.9097] [PMID: 30127971]
[77]
Liu, X.; Xu, J.; Zhou, J.; Shen, Q. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance. Genes Dis., 2020, 8(4), 448-462.
[http://dx.doi.org/10.1016/j.gendis.2020.06.010] [PMID: 34179309]
[78]
Liu, Y.; Zhang, P.X.; Han, C.H.; Wei, D.; Qiao, T.; Peng, B.; Liu, K.; Zheng, J.; Liu, W. Oridonin protects the lung against hyperoxia-induced injury in a mouse model. Undersea Hyperb. Med., 2017, 44(1), 33-38.
[http://dx.doi.org/10.22462/1.2.2017.6] [PMID: 28768083]
[79]
Li, S.; Shi, D.; Zhang, L.; Yang, F.; Cheng, G. Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl-2. Exp. Ther. Med., 2018, 16(6), 4859-4864.
[http://dx.doi.org/10.3892/etm.2018.6803] [PMID: 30546402]
[80]
Ho, Y.C.; Lee, S.S.; Yang, M.L.; Huang-Liu, R.; Lee, C.Y.; Li, Y.C.; Kuan, Y.H. Zerumbone reduced the inflammatory response of acute lung injury in endotoxin-treated mice via Akt-NFκB pathway. Chem. Biol. Interact., 2017, 271(271), 9-14.
[http://dx.doi.org/10.1016/j.cbi.2017.04.017] [PMID: 28442377]
[81]
He, Y.; Qu, S.; Wang, J.; He, X.; Lin, W.; Zhen, H.; Zhang, X. Neuroprotective effects of osthole pretreatment against traumatic brain injury in rats. Brain Res., 2012, 1433, 127-136.
[http://dx.doi.org/10.1016/j.brainres.2011.11.027] [PMID: 22153917]
[82]
Chen, X.J.; Zhang, B.; Hou, S.J.; Shi, Y.; Xu, D.Q.; Wang, Y.X.; Liu, M.L.; Dong, H.Y.; Sun, R.H.; Bao, N.D.; Jin, F.G.; Li, Z.C. Osthole improves acute lung injury in mice by up-regulating Nrf-2/thioredoxin 1. Respir. Physiol. Neurobiol., 2013, 188(2), 214-222.
[http://dx.doi.org/10.1016/j.resp.2013.04.014] [PMID: 23623946]
[83]
Niso-Santano, M.; González-Polo, R.A.; Bravo-San Pedro, J.M.; Gómez-Sánchez, R.; Lastres-Becker, I.; Ortiz-Ortiz, M.A.; Soler, G.; Morán, J.M.; Cuadrado, A.; Fuentes, J.M. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: Modulation by the Nrf2/Trx axis. Free Radic. Biol. Med., 2010, 48(10), 1370-1381.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.02.024] [PMID: 20202476]
[84]
Xu, X.M.; Zhang, M.L.; Zhang, Y.; Zhao, L. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins. Oncol. Lett., 2016, 12(5), 3779-3784.
[http://dx.doi.org/10.3892/ol.2016.5170] [PMID: 27895730]
[85]
Xu, X.M.; Zhang, Y.; Qu, D.; Feng, X.W.; Chen, Y.; Zhao, L. Osthole suppresses migration and invasion of A549 human lung cancer cells through inhibition of matrix metalloproteinase-2 and matrix metallopeptidase-9 in vitro. Mol. Med. Rep., 2012, 6(5), 1018-1022.
[http://dx.doi.org/10.3892/mmr.2012.1044] [PMID: 22923177]
[86]
Xu, X.; Zhang, Y.; Qu, D.; Jiang, T.; Li, S. Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway. J. Exp. Clin. Cancer Res., 2011, 30(1), 33.
[http://dx.doi.org/10.1186/1756-9966-30-33] [PMID: 21447176]
[87]
Bansal, S.; Chhibber, S. Curcumin alone and in combination with augmentin protects against pulmonary inflammation and acute lung injury generated during Klebsiella pneumoniae B5055-induced lung infection in BALB/c mice. J. Med. Microbiol., 2010, 59(Pt 4), 429-437.
[http://dx.doi.org/10.1099/jmm.0.016873-0] [PMID: 20056776]
[88]
Kumari, A.; Tyagi, N.; Dash, D.; Singh, R. Intranasal curcumin ameliorates lipopolysaccharide-induced acute lung injury in mice. Inflammation, 2015, 38(3), 1103-1112.
[http://dx.doi.org/10.1007/s10753-014-0076-y] [PMID: 25526714]
[89]
Guzel, A.; Kanter, M.; Guzel, A.; Yucel, A.F.; Erboga, M. Protective effect of curcumin on acute lung injury induced by intestinal ischaemia/reperfusion. Toxicol. Ind. Health, 2013, 29(7), 633-642.
[http://dx.doi.org/10.1177/0748233711430984] [PMID: 22252860]
[90]
Guzel, A.; Kanter, M.; Aksu, B.; Basaran, U.N.; Yalçin, O.; Guzel, A.; Uzun, H.; Konukoğlu, D.; Karasalihoglu, S. Preventive effects of curcumin on different aspiration material-induced lung injury in rats. Pediatr. Surg. Int., 2009, 25(1), 83-92.
[http://dx.doi.org/10.1007/s00383-008-2282-x] [PMID: 19002695]
[91]
Lelli, D.; Sahebkar, A.; Johnston, T.P.; Pedone, C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol. Res., 2016, 2017(115), 133-148.
[PMID: 27888157]
[92]
Moghaddam, S.J.; Barta, P.; Mirabolfathinejad, S.G.; Ammar-Aouchiche, Z.; Garza, N.T.; Vo, T.T.; Newman, R.A.; Aggarwal, B.B.; Evans, C.M.; Tuvim, M.J.; Lotan, R.; Dickey, B.F. Curcumin inhibits COPD-like airway inflammation and lung cancer progression in mice. Carcinogenesis, 2009, 30(11), 1949-1956.
[http://dx.doi.org/10.1093/carcin/bgp229] [PMID: 19793800]
[93]
Xu, H.; Qi, Q.; Yan, X. Myricetin ameliorates sepsis-associated acute lung injury in a murine sepsis model. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(1), 165-175.
[http://dx.doi.org/10.1007/s00210-020-01880-8] [PMID: 32458011]
[94]
Yadav, A.K.; Thakur, J.; Prakash, O.; Khan, F.; Saikia, D.; Gupta, M.M. Screening of flavonoids for antitubercular activity and their structure-activity relationships. Med. Chem. Res., 2013, 22(6), 2706-2716.
[http://dx.doi.org/10.1007/s00044-012-0268-7]
[95]
Zhang, S.; Wang, L.; Liu, H.; Zhao, G.; Ming, L. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells. Diagn. Pathol., 2014, 9(1), 68.
[http://dx.doi.org/10.1186/1746-1596-9-68] [PMID: 24650056]
[96]
Shih, H.C.; Huang, M.S.; Lee, C.H. Magnolol attenuates the lung injury in hypertonic saline treatment from mesenteric ischemia reperfusion through diminishing iNOS., 2012, 175(2), 311.
[http://dx.doi.org/10.1016/j.jss.2011.04.063]
[97]
Shen, J.; Ma, H.; Zhang, T.; Liu, H.; Yu, L.; Li, G.; Li, H.; Hu, M. Magnolol inhibits the growth of non-small cell lung cancer via inhibiting microtubule polymerization. Cell. Physiol. Biochem., 2017, 42(5), 1789-1801.
[http://dx.doi.org/10.1159/000479458] [PMID: 28746938]
[98]
Rubenfeld, G.D. Epidemiology of acute lung injury. Crit. Care Med., 2003, 31(4)(Suppl.), S276-S284.
[http://dx.doi.org/10.1097/01.CCM.0000057904.62683.2B] [PMID: 12682453]
[99]
Lan, K.C. Chao, Wu, H.Y.; Chiang, C.L.; Wang, C.C.; Liu, S.H.; Weng, T.I. Salidroside ameliorates sepsis-induced acute lung injury and mortality via downregulating NF-κB and HMGB1 pathways through the upregulation of SIRT1. Sci. Rep., 2017, 7(1), 12026.
[100]
Wang, J.; Li, J.Z.; Lu, A.X.; Zhang, K.F.; Li, B.J. Anticancer effect of salidroside on A549 lung cancer cells through inhibition of oxidative stress and phospho-p38 expression. Oncol. Lett., 2014, 7(4), 1159-1164.
[http://dx.doi.org/10.3892/ol.2014.1863] [PMID: 24944685]
[101]
Liu, Z.; Yang, Z.; Fu, Y.; Li, F.; Liang, D.; Zhou, E.; Song, X.; Zhang, W.; Zhang, X.; Cao, Y.; Zhang, N. Protective effect of gossypol on lipopolysaccharide-induced acute lung injury in mice. Inflamm. Res., 2013, 62(5), 499-506.
[http://dx.doi.org/10.1007/s00011-013-0603-6] [PMID: 23435932]
[102]
Kagan, J.C.; Medzhitov, R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell, 2006, 125(5), 943-955.
[http://dx.doi.org/10.1016/j.cell.2006.03.047] [PMID: 16751103]
[103]
Lee, W.; Hahn, D.; Sim, H.; Choo, S.; Lee, S.; Lee, T.; Bae, J.S. Inhibitory functions of cardamonin against particulate matter-induced lung injury through TLR2,4-mTOR-autophagy pathways. Fitoterapia, 2020, 146, 104724.
[http://dx.doi.org/10.1016/j.fitote.2020.104724] [PMID: 32946945]
[104]
Zhou, X.; Zhou, R.; Li, Q.; Jie, X.; Hong, J.; Zong, Y.; Dong, X.; Zhang, S.; Li, Z.; Wu, G. Cardamonin inhibits the proliferation and metastasis of non-small-cell lung cancer cells by suppressing the PI3K/Akt/mTOR pathway. Anticancer Drugs, 2019, 30(3), 241-250.
[http://dx.doi.org/10.1097/CAD.0000000000000709] [PMID: 30640793]
[105]
Wang, Y.; Catana, F.; Yang, R.; Roderick, R.; Van Breemen, R.B. Analysis of resveratrol in grape products, cranberry juice and wine using liquid chromatography-mass spectrometry. J. Agric. Food Chem., 2002, 50, 431-435.
[http://dx.doi.org/10.1021/jf010812u] [PMID: 11804508]
[106]
Özcan, P.; Fıçıcıoğlu, C.; Yıldırıma, K.Ö.; Özkan, F.; Akkaya, H.; Aslan, I. Protective effect of resveratrol against oxidative damage to ovarian reserve in female Sprague–Dawley rats. Reprod. Biol. Med., 2015, 31.
[107]
Hamza, R.Z.; El-Shenawy, N.S. Anti-inflammatory and antioxidant role of resveratrol on nicotine-induced lung changes in male rats. Toxicol. Rep., 2017, 4, 399-407.
[http://dx.doi.org/10.1016/j.toxrep.2017.07.003] [PMID: 28959665]
[108]
Li, W.; Ma, X.; Li, N.; Liu, H.; Dong, Q.; Zhang, J.; Yang, C.; Liu, Y.; Liang, Q.; Zhang, S.; Xu, C.; Song, W.; Tan, S.; Rong, P.; Wang, W. Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway. Exp. Cell Res., 2016, 349(2), 320-327.
[http://dx.doi.org/10.1016/j.yexcr.2016.11.002] [PMID: 27829129]
[109]
Wang, X.; Wang, D.; Zhao, Y. Effect and mechanism of resveratrol on the apoptosis of lung adenocarcinoma cell line A549. Cell Biochem. Biophys., 2015, 73(2), 527-531.
[http://dx.doi.org/10.1007/s12013-015-0696-3] [PMID: 27352348]
[110]
Wang, J.; Liu, Y.T.; Xiao, L.; Zhu, L.; Wang, Q.; Yan, T. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation, 2014, 37(6), 2085-2090.
[http://dx.doi.org/10.1007/s10753-014-9942-x] [PMID: 24958013]
[111]
Zhou, Z.; Tang, M.; Liu, Y.; Zhang, Z.; Lu, R.; Lu, J. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line. Anticancer Drugs, 2017, 28(4), 446-456.
[http://dx.doi.org/10.1097/CAD.0000000000000479] [PMID: 28125432]
[112]
He, Y.Q.; Zhou, C.C.; Yu, L.Y.; Wang, L.; Deng, J.L.; Tao, Y.L.; Zhang, F.; Chen, W.S. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol. Res., 2021, 163, 105224.
[http://dx.doi.org/10.1016/j.phrs.2020.105224] [PMID: 33007416]
[113]
Patel, V.J.; Biswas Roy, S.; Mehta, H.J.; Joo, M.; Sadikot, R.T. Alternative and natural therapies for acute lung injury and acute respiratory distress syndrome. BioMed Res. Int., 2018, 2018, 2476824.
[http://dx.doi.org/10.1155/2018/2476824] [PMID: 29862257]
[114]
Wang, J.; Wu, Q.; Ding, L.; Song, S.; Li, Y.; Shi, L.; Wang, T.; Zhao, D.; Wang, Z.; Li, X. Therapeutic effects and molecular mechanisms of bioactive compounds against respiratory diseases: Traditional chinese medicine theory and high-frequency use. Front. Pharmacol., 2021, 12, 734450.
[http://dx.doi.org/10.3389/fphar.2021.734450] [PMID: 34512360]
[115]
Xie, X.; Sun, S.; Zhong, W.; Soromou, L.W.; Zhou, X.; Wei, M.; Ren, Y.; Ding, Y. Zingerone attenuates lipopolysaccharide-induced acute lung injury in mice. Int. Immunopharmacol., 2014, 19(1), 103-109.
[http://dx.doi.org/10.1016/j.intimp.2013.12.028] [PMID: 24412620]
[116]
Vinothkumar, R.; Vinothkumar, R.; Sudha, M.; Nalini, N. Chemopreventive effect of zingerone against colon carcinogenesis induced by 1,2-dimethylhydrazine in rats. Eur. J. Cancer Prev., 2014, 23(5), 361-371.
[http://dx.doi.org/10.1097/CEJ.0b013e32836473ac] [PMID: 23903760]
[117]
Paidi, R.K.; Jana, M.; Raha, S.; McKay, M.; Sheinin, M.; Mishra, R.K.; Pahan, K. Eugenol, a component of holy basil (tulsi) and common spice clove, inhibits the interaction between SARS-CoV-2 Spike S1 and ACE2 to induce therapeutic responses. J. Neuroimmune Pharmacol., 2021, 16(4), 743-755.
[http://dx.doi.org/10.1007/s11481-021-10028-1] [PMID: 34677731]
[118]
Straughn, A.R.; Kakar, S.S.; Withaferin, A. A potential therapeutic agent against COVID-19 infection. J. Ovarian Res., 2020, 13(1), 79.
[http://dx.doi.org/10.1186/s13048-020-00684-x] [PMID: 32684166]
[119]
Luo, X.; Luo, W.; Lin, C.; Zhang, L.; Li, Y. Andrographolide inhibits proliferation of human lung cancer cells and the related mechanisms. Int. J. Clin. Exp. Med., 2014, 7(11), 4220-4225.
[PMID: 25550934]
[120]
Pooladanda, V.; Thatikonda, S.; Bale, S.; Pattnaik, B.; Sigalapalli, D.K.; Bathini, N.B.; Singh, S.B.; Godugu, C. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-α mediated NF-κB and HDAC-3 nuclear translocation. Cell Death Dis., 2019, 10(2), 81.
[http://dx.doi.org/10.1038/s41419-018-1247-9] [PMID: 30692512]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy