Review Article

基于黑磷适体的生物标志物检测平台

卷 30, 期 8, 2023

发表于: 01 April, 2022

页: [935 - 952] 页: 18

弟呕挨: 10.2174/0929867329666220225110302

价格: $65

摘要

黑磷纳米结构(nano-BPs)主要包括BP纳米片(BP NSs)、BP量子点(BPQDs)以及其他纳米级的基于纳米bps的粒子。纳米bp于2014年首次被发现,是目前最受欢迎的纳米材料之一。简要讨论了不同的合成方法,以了解合成的基本概念和发展。剥离后的纳米bps,即纳米bps具有高表面积、高光热转换效率、优异的生物相容性、高载流子迁移率(~1000 cm2V-1s-1)、86 Wm-1K-1的热导率;这些特性使其成为生物传感平台的极具潜力的候选材料。这些特性使纳米bp成为光热/药物传递剂以及电化学数据存储设备和传感设备;以及超级电容器、光电探测器、光伏和太阳能电池、led、超导体等。在卫生部门的情况下,早期诊断非常重要。这篇综述试图强调为获得稳定的BP, BP适配体偶联物成功的生物传感应用所做的尝试。本文综述了BP适体检测平台在心血管疾病和癌症生物和生理标志物检测中的重要意义;对疾病诊断和治疗有帮助。

关键词: 黑磷,稳定性,心血管疾病,生物感应,适体,生物标志物。

[1]
Rahat Rahman, M.; Rashid, M. M.; Islam, M. M.; Akanda, M. M. Electrical and chemical properties of graphene over composite materials: A technical review. Mater. Sci. Res., 2019, 16(2), 142-163.
[2]
Xue, Y.; Zhang, Q.; Zhang, T.; Fu, L. Black phosphorus: Properties, synthesis, and applications in energy conversion and storage. ChemNanoMat, 2017, 3(6), 352-361.
[http://dx.doi.org/10.1002/cnma.201700030]
[3]
Zhou, W.; Pan, T.; Cui, H.; Zhao, Z.; Chu, P.K.; Yu, X.F. Black phosphorus: Bioactive nanomaterials with inherent and selective chemotherapeutic effects. Angew. Chem. Int. Ed. Engl., 2019, 58(3), 769-774.
[http://dx.doi.org/10.1002/anie.201810878] [PMID: 30444063]
[4]
Nene, A.G.; Takahashi, M.; Somani, P.R.; Aryal, H.R.; Wakita, K.; Umeno, M. Synthesis and characterization of graphene-Fe3O4 nanocomposite. Carbon - Sci.Technol., 2016, 8(1), 13-24.
[5]
Fan, T.; Zhou, Y.; Qiu, M.; Zhang, H. Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine. J. Innov. Opt. Health Sci., 2018, 11(6), 51-61.
[http://dx.doi.org/10.1142/S1793545818300033]
[6]
Wang, Q.; Lei, Y.; Wang, Y.; Liu, Y.; Song, C.; Zeng, J.; Song, Y.; Duan, X.; Wang, D.; Li, Y. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci., 2020, 13(6), 1593-1616.
[http://dx.doi.org/10.1039/D0EE00450B]
[7]
Sun, J.; Li, X.; Guo, W.; Zhao, M.; Fan, X.; Dong, Y.; Xu, C.; Deng, J.; Fu, Y. Synthesis methods of two-dimensional MoS2: A brief review. Crystals (Basel), 2017, 7(7), 1-11.
[http://dx.doi.org/10.3390/cryst7070198]
[8]
Eftekhari, A. Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(35), 18299-18325.
[http://dx.doi.org/10.1039/C7TA04268J]
[9]
He, J.; Chai, Y.; Liao, L. Focus on 2D materials beyond graphene. Nanotechnology, 2018, 29(1), 010202.
[http://dx.doi.org/10.1088/1361-6528/aa98b9] [PMID: 29192608]
[10]
Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10), 768-779.
[http://dx.doi.org/10.1038/nnano.2014.207] [PMID: 25286272]
[11]
Zhang, W.; Wang, Q.; Chen, Y.; Wang, Z.; Wee, A. T. S. Van Der waals stacked 2D layered materials for optoelectronics. 2D Mater, 2016, 3(2), 1-17.
[http://dx.doi.org/10.1088/2053-1583/3/2/022001]
[12]
Luo, Y.; Ren, C.; Wang, S.; Li, S.; Zhang, P.; Yu, J.; Sun, M.; Sun, Z.; Tang, W. Adsorption of transition metals on black phosphorene: A first-principles study. Nanoscale Res. Lett., 2018, 13(1), 282.
[http://dx.doi.org/10.1186/s11671-018-2696-x] [PMID: 30209634]
[13]
Perez-Page, M.; Sahoo, M.; Holmes, S.M. Single layer 2D crystals for electrochemical applications of ion exchange membranes and hydrogen evolution catalysts. Adv. Mater. Interfaces, 2019, 6(7), 1-24.
[http://dx.doi.org/10.1002/admi.201801838]
[14]
Li, D.; Gong, Y.; Chen, Y.; Lin, J.; Khan, Q.; Zhang, Y.; Li, Y.; Zhang, H.; Xie, H. Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett., 2020, 12(1), 36.
[http://dx.doi.org/10.1007/s40820-020-0374-x] [PMID: 34138247]
[15]
Choudhuri, I.; Bhauriyal, P.; Pathak, B. Recent advances in graphene-like 2D materials for spintronics applications. Chem. Mater., 2019, 31(20), 8260-8285.
[http://dx.doi.org/10.1021/acs.chemmater.9b02243]
[16]
Wang, S.; Tian, H.; Ren, C.; Yu, J.; Sun, M. Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci. Rep., 2018, 8(1), 12009.
[http://dx.doi.org/10.1038/s41598-018-30614-3] [PMID: 30104708]
[17]
Wen, W.; Song, Y.; Yan, X.; Zhu, C.; Du, D.; Wang, S.; Asiri, A.M.; Lin, Y. Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater. Today, 2018, 21(2), 164-177.
[http://dx.doi.org/10.1016/j.mattod.2017.09.001]
[18]
Das, S.; Pandey, D.; Thomas, J.; Roy, T. The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 2019, 31(1), e1802722.
[http://dx.doi.org/10.1002/adma.201802722] [PMID: 30187972]
[19]
Sahoo, R.; Pal, A.; Pal, T. 2D materials for renewable energy storage devices: Outlook and challenges. Chem. Commun. (Camb.), 2016, 52(93), 13528-13542.
[http://dx.doi.org/10.1039/C6CC05357B] [PMID: 27709167]
[20]
Wang, S.; Ukhtary, M.S.; Saito, R. Strain effect on circularly polarized electroluminescence in transition metal dichalcogenides. Phys. Rev. Res., 2020, 2(3), 1-7.
[http://dx.doi.org/10.1103/PhysRevResearch.2.033340]
[21]
Wang, S.; Ren, C.; Tian, H.; Yu, J.; Sun, M. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: a first-principles study. Phys. Chem. Chem. Phys., 2018, 20(19), 13394-13399.
[http://dx.doi.org/10.1039/C8CP00808F] [PMID: 29721569]
[22]
Glavin, N.R.; Rao, R.; Varshney, V.; Bianco, E.; Apte, A.; Roy, A.; Ringe, E.; Ajayan, P.M. Emerging applications of elemental 2D materials. Adv. Mater., 2020, 32(7), e1904302.
[http://dx.doi.org/10.1002/adma.201904302] [PMID: 31667920]
[23]
Jayakumar, A.; Surendranath, A.; Pv, M. 2D materials for next generation healthcare applications. Int. J. Pharm., 2018, 551(1-2), 309-321.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.041] [PMID: 30240827]
[24]
Castellanos-Gomez, A. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett., 2015, 6(21), 4280-4291.
[http://dx.doi.org/10.1021/acs.jpclett.5b01686] [PMID: 26600394]
[25]
Huang, H.; Xiao, Q.; Wang, J.; Yu, X.F.; Wang, H.; Zhang, H.; Chu, P.K. Black phosphorus: A two-dimensional reductant for in situ nanofabrication. NPJ 2D Mater.Appl., 2017, 1(1), 1-7.
[http://dx.doi.org/10.1038/s41699-017-0022-6]
[26]
Gusmão, R.; Sofer, Z.; Pumera, M. Black phosphorus rediscovered: From bulk material to monolayers. Angew. Chem. Int. Ed. Engl., 2017, 56(28), 8052-8072.
[http://dx.doi.org/10.1002/anie.201610512] [PMID: 28111875]
[27]
Gaberle, J.; Shluger, A.L. Structure and properties of intrinsic and extrinsic defects in black phosphorus. Nanoscale, 2018, 10(41), 19536-19546.
[http://dx.doi.org/10.1039/C8NR06640J] [PMID: 30320323]
[28]
Yao, M.; Wu, T.; Liu, B.; Li, J.; Long, M. First principle study on interfacial interaction of black phosphorus and CsBr VdW Heterostructure. Phys. Lett. Sect. A Gen. At. Solid State Phys., 2020, 384(25), 126614.
[http://dx.doi.org/10.1016/j.physleta.2020.126614]
[29]
Jang, H.; Wood, J.D.; Ryder, C.R.; Hersam, M.C.; Cahill, D.G. Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater., 2015, 27(48), 8017-8022.
[http://dx.doi.org/10.1002/adma.201503466] [PMID: 26516073]
[30]
Xiong, K.; Luo, X.; Hwang, J.C.M. Phosphorene FETs - Promising transistors based on a few layers of phosphorus atoms. In: Proceedings of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP); 2015, 1-3 July; Suzhou, China.
[http://dx.doi.org/10.1109/IMWS-AMP.2015.7324944]
[31]
Xiong, S.; Chen, X.; Liu, Y.; Fan, T.; Wang, Q.; Zhang, H.; Chen, T. Black phosphorus as a versatile nanoplatform: From unique properties to biomedical applications. J. Innovat. Optical Health Sci., 2020, 13(05), 2030008.
[http://dx.doi.org/10.1142/S1793545820300086]
[32]
Liu, X.; Xiao, L.; Weng, J.; Xu, Q.; Li, W.; Zhao, C.; Xu, J.; Zhao, Y. Regulating the reactivity of black phosphorus via protective chemistry. Sci. Adv., 2020, 6(46), 1-11.
[http://dx.doi.org/10.1126/sciadv.abb4359] [PMID: 33177081]
[33]
Anju, S.; Ashtami, J.; Mohanan, P.V. Black phosphorus, a prospective graphene substitute for biomedical applications. Mater. Sci. Eng. C, 2019, 97, 978-993.
[http://dx.doi.org/10.1016/j.msec.2018.12.146] [PMID: 30678986]
[34]
Liu, X.; George, M.N.; Li, L.; Gamble, D.; Miller Ii, A.L.; Gaihre, B.; Waletzki, B.E.; Lu, L. Injectable electrical conductive and phosphate releasing gel with two-dimensional black phosphorus and carbon nanotubes for bone tissue engineering. ACS Biomater. Sci. Eng., 2020, 6(8), 4653-4665.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00612] [PMID: 33455193]
[35]
Lee, H.U.; Park, S.Y.; Lee, S.C.; Choi, S.; Seo, S.; Kim, H.; Won, J.; Choi, K.; Kang, K.S.; Park, H.G.; Kim, H.S.; An, H.R.; Jeong, K.H.; Lee, Y.C.; Lee, J. Black phosphorus (BP) nanodots for potential biomedical applications. Small, 2016, 12(2), 214-219.
[http://dx.doi.org/10.1002/smll.201502756] [PMID: 26584654]
[36]
Pumera, M. Phosphorene and black phosphorus for sensing and biosensing. Trends Analyt. Chem., 2017, 93, 1-6.
[http://dx.doi.org/10.1016/j.trac.2017.05.002]
[37]
Srivastava, T.; Jha, R. Black phosphorus: A new platform for gaseous sensing based on surface plasmon resonance. IEEE Photonics Technol. Lett., 2018, 30(4), 319-322.
[http://dx.doi.org/10.1109/LPT.2017.2787057]
[38]
Laghrib, F.; Saqrane, S.; El Bouabi, Y.; Farahi, A.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A. Current progress on COVID-19 related to biosensing technologies: New opportunity for detection and monitoring of viruses. Microchem. J., 2021, 160, 105606.
[http://dx.doi.org/10.1016/j.microc.2020.105606] [PMID: 33052148]
[39]
Bai, L.; Wang, X.; Tang, S.; Kang, Y.; Wang, J.; Yu, Y.; Zhou, Z.K.; Ma, C.; Zhang, X.; Jiang, J.; Chu, P.K.; Yu, X.F. Black phosphorus/platinum heterostructure: A highly efficient photocatalyst for solar-driven chemical reactions. Adv. Mater., 2018, 30(40), e1803641.
[http://dx.doi.org/10.1002/adma.201803641] [PMID: 30175521]
[40]
Bian, S.; Wen, M.; Wang, J.; Yang, N.; Chu, P.K.; Yu, X.F. Edge-rich black phosphorus for photocatalytic nitrogen fixation. J. Phys. Chem. Lett., 2020, 11(3), 1052-1058.
[http://dx.doi.org/10.1021/acs.jpclett.9b03507] [PMID: 31952439]
[41]
Liu, D.; Wang, J.; Bian, S.; Liu, Q.; Gao, Y.; Wang, X.; Chu, P.K.; Yu, X.F. Photoelectrochemical synthesis of ammonia with black phosphorus. Adv. Funct. Mater., 2020, 30(24), 1-7.
[http://dx.doi.org/10.1002/adfm.202002731]
[42]
Yasaei, P.; Behranginia, A.; Foroozan, T.; Kim, K.; Khalili-araghi, F.; Salehi-khojin, A. Stable and selective humidity sensing using stack of black phosphorus flakes stable and selective humidity sensing using stack of black phosphorus flakes abstract. ACS Nano, 2015, (10), 9898-9905.
[http://dx.doi.org/10.1021/acsnano.5b03325] [PMID: 26401950]
[43]
Yew, Y.T.; Sofer, Z.; Mayorga-Martinez, C.C.; Pumera, M. Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Front., 2017, 1(6), 1130-1136.
[http://dx.doi.org/10.1039/C6QM00341A]
[44]
Jakóbczyk, P.; Kowalski, M.; Brodowski, M.; Dettlaff, A.; Dec, B.; Nidzworski, D.; Ryl, J.; Ossowski, T.; Bogdanowicz, R. Low-power microwave-induced fabrication of functionalised few-layer black phosphorus electrodes: A novel route towards haemophilus influenzae pathogen biosensing devices. Appl. Surf. Sci., 2021, 539, 148286.
[http://dx.doi.org/10.1016/j.apsusc.2020.148286]
[45]
Wang, Y.; Zhou, Y.; Ren, H.; Wang, Y.; Zhu, X.; Guo, Y.; Li, X. Room-temperature and humidity-resistant trace nitrogen dioxide sensing of few-layer black phosphorus nanosheet by incorporating zinc oxide nanowire. Anal. Chem., 2020, 92(16), 11007-11017.
[http://dx.doi.org/10.1021/acs.analchem.9b05623] [PMID: 32674560]
[46]
Ge, X.; Xia, Z.; Guo, S. Recent advances on black phosphorus for biomedicine and biosensing. Adv. Funct. Mater., 2019, 29(29), 1-32.
[http://dx.doi.org/10.1002/adfm.201900318]
[47]
Zhu, J.; Xiao, G.; Zuo, X. Two-dimensional black phosphorus: An emerging anode material for lithium-ion batteries. Nano-Micro Lett., 2020, 12(1), 120.
[http://dx.doi.org/10.1007/s40820-020-00453-x] [PMID: 34138144]
[48]
Korotcenkov, G. Black phosphorus-new nanostructured material for humidity sensors: Achievements and limitations. Sensors (Basel), 2019, 19(5), E1010.
[http://dx.doi.org/10.3390/s19051010] [PMID: 30818818]
[49]
Smith, J.B.; Hagaman, D.; Ji, H.F. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology, 2016, 27(21), 215602.
[http://dx.doi.org/10.1088/0957-4484/27/21/215602] [PMID: 27087456]
[50]
Yang, Z.; Hao, J.; Yuan, S.; Lin, S.; Yau, H.M.; Dai, J.; Lau, S.P. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater., 2015, 27(25), 3748-3754.
[http://dx.doi.org/10.1002/adma.201500990] [PMID: 25973767]
[51]
Ambrosi, A.; Sofer, Z.; Pumera, M. Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem. Int. Ed. Engl., 2017, 56(35), 10443-10445.
[http://dx.doi.org/10.1002/anie.201705071] [PMID: 28649798]
[52]
Tejeda-Serrano, M.; Lloret, V.; Márkus, B.G.; Simon, F.; Hauke, F.; Hirsch, A.; Doménech-Carbó, A.; Abellán, G.; Leyva-Pérez, A. Few-layer black phosphorous catalyzes radical additions to alkenes faster than low-valence metals. ChemCatChem, 2020, 12(8), 2226-2232.
[http://dx.doi.org/10.1002/cctc.201902276] [PMID: 32421028]
[53]
Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V.; Zandbergen, H. W.; Palacios, J. J.; Van Der Zant, H. S. J. Isolation and characterization of few-layer black phosphorus. 2D Mater., 2014, 1(2), 025001.
[http://dx.doi.org/10.1088/2053-1583/1/2/025001]
[54]
Del Río Castillo, A.E.; Reyes-Vazquez, C.D.; Rojas- Martinez, L.E.; Thorat, S.B.; Serri, M.; Martinez-Hernandez, A.L.; Velasco-Santos, C.; Pellegrini, V.; Bonaccorso, F. Single-step exfoliation and functionalization of few-layers black phosphorus and its application for polymer composites. FlatChem, 2019, 18, 100131.
[http://dx.doi.org/10.1016/j.flatc.2019.100131]
[55]
Mu, Y.; Si, M.S. The mechanical exfoliation mechanism of black phosphorus to phosphorene: A first-principles study. EPL, 2015, 112(3), 37003.
[http://dx.doi.org/10.1209/0295-5075/112/37003]
[56]
Szydłowska, B.M.; Tywoniuk, B.; Blau, W.J. Size-dependent nonlinear optical response of black phosphorus liquid phase exfoliated nanosheets in nanosecond regime. ACS Photonics, 2018, 5(9), 3608-3612.
[http://dx.doi.org/10.1021/acsphotonics.8b00469]
[57]
Tiouitchi, G.; Ali, M.A.; Benyoussef, A.; Hamedoun, M.; Lachgar, A.; Kara, A.; Ennaoui, A.; Mahmoud, A.; Boschini, F.; Oughaddou, H.; El Moutaouakil, A.; El Kenz, A.; Mounkachi, O. Efficient production of few-layer black phosphorus by liquid-phase exfoliation. R. Soc. Open Sci., 2020, 7(10), 201210.
[http://dx.doi.org/10.1098/rsos.201210] [PMID: 33204477]
[58]
Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C.S.; Berner, N.C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z.; Zhang, S.; Wang, K.; Moynihan, G.; Pokle, A.; Ramasse, Q.M.; McEvoy, N.; Blau, W.J.; Wang, J.; Abellan, G.; Hauke, F.; Hirsch, A.; Sanvito, S.; O’Regan, D.D.; Duesberg, G.S.; Nicolosi, V.; Coleman, J.N. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun., 2015, 6, 8563.
[http://dx.doi.org/10.1038/ncomms9563] [PMID: 26469634]
[59]
Erande, M.B.; Suryawanshi, S.R.; More, M.A.; Late, D.J. Electrochemically exfoliated black phosphorus nanosheets - prospective field emitters. Eur. J. Inorg. Chem., 2015, 2015(19), 3102-3107.
[http://dx.doi.org/10.1002/ejic.201500145]
[60]
Rabiei Baboukani, A.; Khakpour, I.; Drozd, V.; Allagui, A.; Wang, C. Single-step exfoliation of black phosphorus and deposition of phosphorene: via bipolar electrochemistry for capacitive energy storage application. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(44), 25548-25556.
[http://dx.doi.org/10.1039/C9TA09641H]
[61]
Khurram, M.; Sun, Z.; Zhang, Z.; Yan, Q. Chemical vapor transport growth of bulk black phosphorus single crystals. Inorg. Chem. Front., 2020, 7(15), 2867-2879.
[http://dx.doi.org/10.1039/D0QI00582G]
[62]
Lin, S.; Li, Y.; Qian, J.; Lau, S.P. Emerging opportunities for black phosphorus in energy applications. Mater. Today Energy, 2019, 12, 1-25.
[http://dx.doi.org/10.1016/j.mtener.2018.12.004]
[63]
Huang, Y.; He, K.; Bliznakov, S.; Sutter, E.; Meng, F.; Su, D.; Sutter, P. Degradation of black phosphorus (BP): The role of oxygen and water. Chem. Mater., 2016, 28(22), 8330-8339.
[http://dx.doi.org/10.1021/acs.chemmater.6b03592]
[64]
Encapsulated, F.; Transistors, F. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano, 2015, 9(4), 4138-4145.
[65]
Edmonds, M.T.; Tadich, A.; Carvalho, A.; Ziletti, A.; O’Donnell, K.M.; Koenig, S.P.; Coker, D.F.; Özyilmaz, B.; Neto, A.H.C.; Fuhrer, M.S. Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces, 2015, 7(27), 14557-14562.
[http://dx.doi.org/10.1021/acsami.5b01297] [PMID: 26126232]
[66]
Illarionov, Y.Y.; Waltl, M.; Rzepa, G.; Kim, J.S.; Kim, S.; Dodabalapur, A.; Akinwande, D.; Grasser, T. Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano, 2016, 10(10), 9543-9549.
[http://dx.doi.org/10.1021/acsnano.6b04814] [PMID: 27704779]
[67]
Sun, J.; Zheng, G.; Lee, H.W.; Liu, N.; Wang, H.; Yao, H.; Yang, W.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett., 2014, 14(8), 4573-4580.
[http://dx.doi.org/10.1021/nl501617j] [PMID: 25019417]
[68]
Lee, H.U.; Lee, S.C.; Won, J.; Son, B.C.; Choi, S.; Kim, Y.; Park, S.Y.; Kim, H.S.; Lee, Y.C.; Lee, J. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts. Sci. Rep., 2015, 5, 8691.
[http://dx.doi.org/10.1038/srep08691] [PMID: 25732720]
[69]
Su, M.; Chen, X.; Tang, L.; Yang, B.; Zou, H.; Liu, J.; Li, Y.; Chen, S.; Fan, D. Black Phosphorus (BP)-graphene guided-wave surface plasmon resonance (GWSPR) biosensor. Nanophotonics, 2020, 9(14), 4265-4272.
[http://dx.doi.org/10.1515/nanoph-2020-0251]
[70]
Doganov, R.A.; O’Farrell, E.C.T.; Koenig, S.P.; Yeo, Y.; Ziletti, A.; Carvalho, A.; Campbell, D.K.; Coker, D.F.; Watanabe, K.; Taniguchi, T.; Castro Neto, A.H.; Özyilmaz, B. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun., 2015, 6, 6647.
[http://dx.doi.org/10.1038/ncomms7647] [PMID: 25858614]
[71]
Buscema, M.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; van der Zant, H.S.J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 2014, 14(6), 3347-3352.
[http://dx.doi.org/10.1021/nl5008085] [PMID: 24821381]
[72]
Walia, S.; Balendhran, S.; Ahmed, T.; Singh, M.; El-Badawi, C.; Brennan, M.D.; Weerathunge, P.; Karim, M.N.; Rahman, F.; Rassell, A.; Duckworth, J.; Ramanathan, R.; Collis, G.E.; Lobo, C.J.; Toth, M.; Kotsakidis, J.C.; Weber, B.; Fuhrer, M.; Dominguez-Vera, J.M.; Spencer, M.J.S.; Aharonovich, I.; Sriram, S.; Bhaskaran, M.; Bansal, V. Ambient protection of few-layer black phosphorus via sequestration of reactive oxygen species. Adv. Mater., 2017, 29(27), 1-8.
[http://dx.doi.org/10.1002/adma.201700152] [PMID: 28497880]
[73]
Zhu, X.; Zhang, T.; Jiang, D.; Duan, H.; Sun, Z.; Zhang, M.; Jin, H.; Guan, R.; Liu, Y.; Chen, M.; Ji, H.; Du, P.; Yan, W.; Wei, S.; Lu, Y.; Yang, S. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nat. Commun., 2018, 9(1), 4177.
[http://dx.doi.org/10.1038/s41467-018-06437-1] [PMID: 30301894]
[74]
Kuntz, K.L.; Wells, R.A.; Hu, J.; Yang, T.; Dong, B.; Guo, H.; Woomer, A.H.; Druffel, D.L.; Alabanza, A.; Tománek, D.; Warren, S.C. Control of surface and edge oxidation on phosphorene. ACS Appl. Mater. Interfaces, 2017, 9(10), 9126-9135.
[http://dx.doi.org/10.1021/acsami.6b16111] [PMID: 28218508]
[75]
Miao, J.; Cai, L.; Zhang, S.; Nah, J.; Yeom, J.; Wang, C. Air-stable humidity sensor using few-layer black phosphorus. ACS Appl. Mater. Interfaces, 2017, 9(11), 10019-10026.
[http://dx.doi.org/10.1021/acsami.7b01833] [PMID: 28252279]
[76]
Cai, Y.; Zhang, G.; Zhang, Y.W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J. Phys. Chem. C, 2015, 119(24), 13929-13936.
[http://dx.doi.org/10.1021/acs.jpcc.5b02634]
[77]
Zhao, Y.; Wang, H.; Huang, H.; Xiao, Q.; Xu, Y.; Guo, Z.; Xie, H.; Shao, J.; Sun, Z.; Han, W.; Yu, X.F.; Li, P.; Chu, P.K. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. Engl., 2016, 55(16), 5003-5007.
[http://dx.doi.org/10.1002/anie.201512038] [PMID: 26968443]
[78]
Wang, Q.; Li, B.; Zhang, P.; Zhang, W.; Hu, X.; Li, X. 2D Black phosphorus and tungsten trioxide heterojunction for enhancing photocatalytic performance in visible light. RSC Advances, 2020, 10(46), 27538-27551.
[http://dx.doi.org/10.1039/D0RA05230B]
[79]
Zou, X.; Wu, J.; Gu, J.; Shen, L.; Mao, L. Application of aptamers in virus detection and antiviral therapy. Front. Microbiol., 2019, 10(JULY), 1462.
[http://dx.doi.org/10.3389/fmicb.2019.01462] [PMID: 31333603]
[80]
Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal. Chem., 2007, 79(4), 1466-1473.
[http://dx.doi.org/10.1021/ac061879p] [PMID: 17297945]
[81]
Lee, A.Y.; Ha, N.R.; Jung, I.P.; Kim, S.H.; Kim, A.R.; Yoon, M.Y. Development of a ssDNA aptamer for detection of residual benzylpenicillin. Anal. Biochem., 2017, 531, 1-7.
[http://dx.doi.org/10.1016/j.ab.2017.05.013] [PMID: 28522308]
[82]
Majdinasab, M.; Hayat, A.; Marty, J.L. Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. Trends Analyt. Chem., 2018, 107, 60-77.
[http://dx.doi.org/10.1016/j.trac.2018.07.016]
[83]
Huang, C.; Hu, S.; Zhang, X.; Cui, H.; Wu, L.; Yang, N.; Zhou, W.; Chu, P.K.; Yu, X.F. Sensitive and selective ctDNA detection based on functionalized black phosphorus nanosheets. Biosens. Bioelectron., 2020, 165(165), 112384.
[http://dx.doi.org/10.1016/j.bios.2020.112384] [PMID: 32729509]
[84]
Yan, W.; Wang, X.H.; Yu, J.; Meng, X.; Qiao, P.; Yin, H.; Zhang, Y.; Wang, P. Precise and label-free tumour cell recognition based on a black phosphorus nanoquenching platform. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(35), 5613-5620.
[http://dx.doi.org/10.1039/C8TB01275J] [PMID: 32254970]
[85]
Ding, H.; Tang, Z.; Zhang, L.; Dong, Y. Electrogenerated chemiluminescence of black phosphorus nanosheets and its application in the detection of H2O2. Analyst (Lond.), 2019, 144(4), 1326-1333.
[http://dx.doi.org/10.1039/C8AN01838C] [PMID: 30560255]
[86]
Kumar, V.; Brent, J.R.; Shorie, M.; Kaur, H.; Chadha, G.; Thomas, A.G.; Lewis, E.A.; Rooney, A.P.; Nguyen, L.; Zhong, X.L.; Burke, M.G.; Haigh, S.J.; Walton, A.; McNaughter, P.D.; Tedstone, A.A.; Savjani, N.; Muryn, C.A.; O’Brien, P.; Ganguli, A.K.; Lewis, D.J.; Sabherwal, P. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces, 2016, 8(35), 22860-22868.
[http://dx.doi.org/10.1021/acsami.6b06488] [PMID: 27508925]
[87]
Gao, L.; Teng, R.; Zhang, S.; Zhou, Y.; Luo, M.; Fang, Y.; Lei, L.; Ge, B. Zinc ion-stabilized aptamer-targeted black phosphorus nanosheets for enhanced photothermal/chemotherapy against prostate cancer. Front. Bioeng. Biotechnol., 2020, 8, 769.
[http://dx.doi.org/10.3389/fbioe.2020.00769] [PMID: 32984261]
[88]
Xu, J.; Qiao, X.; Wang, Y.; Sheng, Q.; Yue, T.; Zheng, J.; Zhou, M. Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin. Mikrochim. Acta, 2019, 186(4), 238.
[http://dx.doi.org/10.1007/s00604-019-3339-3] [PMID: 30868260]
[89]
Liu, S.; Luo, J.; Jiang, X.; Li, X.; Yang, M. Gold nanoparticle-modified black phosphorus nanosheets with improved stability for detection of circulating tumor cells. Mikrochim. Acta, 2020, 187(7), 397.
[http://dx.doi.org/10.1007/s00604-020-04367-8] [PMID: 32564257]
[90]
Li, S.; Zhang, F.; Wang, J.; Wen, W.; Wang, S. Black phosphorus-Au nanocomposite-based fluorescence immunochromatographic sensor for high-sensitive detection of zearalenone in cereals. Nanophotonics, 2020, 9(8), 2397-2406.
[http://dx.doi.org/10.1515/nanoph-2019-0434]
[91]
Xu, Y.; Ren, F.; Liu, H.; Zhang, H.; Han, Y.; Liu, Z.; Wang, W.; Sun, Q.; Zhao, C.; Li, Z. Cholesterol-modified black phosphorus nanospheres for the first NIR-II fluorescence bioimaging. ACS Appl. Mater. Interfaces, 2019, 11(24), 21399-21407.
[http://dx.doi.org/10.1021/acsami.9b05825] [PMID: 31120234]
[92]
Huang, W.Q.; Wang, F.; Nie, X.; Zhang, Z.; Chen, G.; Xia, L.; Wang, L.H.; Ding, S.G.; Hao, Z.Y.; Zhang, W.J.; Hong, C.Y.; You, Y.Z. Stable black phosphorus nanosheets exhibiting high tumor-accumulating and mitochondria-targeting for efficient photothermal therapy via double functionalization. ACS Appl. Bio Mater., 2020, 3(2), 1176-1186.
[http://dx.doi.org/10.1021/acsabm.9b01052]
[93]
Sun, C.; Wen, L.; Zeng, J.; Wang, Y.; Sun, Q.; Deng, L.; Zhao, C.; Li, Z. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials, 2016, 91, 81-89.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.022] [PMID: 27017578]
[94]
Zhang, H.; Han, Q.; Yin, X.; Wang, Y. Insights into the binding mechanism of two-dimensional black phosphorus nanosheets-protein associations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 227, 117662.
[http://dx.doi.org/10.1016/j.saa.2019.117662] [PMID: 31654845]
[95]
Pandey, A.; Nikam, A.N.; Fernandes, G.; Kulkarni, S.; Padya, B.S.; Prassl, R.; Das, S.; Joseph, A.; Deshmukh, P.K.; Patil, P.O.; Mutalik, S. Black phosphorus as multifaceted advanced material nanoplatforms for potential biomedical applications. Nanomaterials (Basel), 2020, 11(1), 1-35.
[http://dx.doi.org/10.3390/nano11010013] [PMID: 33374716]
[96]
Wang, H.; Hu, K.; Li, Z.; Wang, C.; Yu, M.; Li, Z.; Li, Z. Black phosphorus nanosheets passivation using a tripeptide. Small, 2018, 14(35), e1801701.
[http://dx.doi.org/10.1002/smll.201801701] [PMID: 30084541]
[97]
Chen, Y.; Ren, R.; Pu, H.; Chang, J.; Mao, S.; Chen, J. Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron., 2017, 89(Pt 1), 505-510.
[http://dx.doi.org/10.1016/j.bios.2016.03.059] [PMID: 27040183]
[98]
Choi, J.R.; Yong, K.W.; Choi, J.Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X. Black phosphorus and its biomedical applications. Theranostics, 2018, 8(4), 1005-1026.
[http://dx.doi.org/10.7150/thno.22573] [PMID: 29463996]
[99]
Li, P.; Zhang, D.; Liu, J.; Chang, H.; Sun, Y.; Yin, N. Air-stable black phosphorus devices for ion sensing. ACS Appl. Mater. Interfaces, 2015, 7(44), 24396-24402.
[http://dx.doi.org/10.1021/acsami.5b07712] [PMID: 26501864]
[100]
Mayorga-Martinez, C.C.; Sofer, Z.; Pumera, M. Layered black phosphorus as a selective vapor sensor. Angew. Chem. Int. Ed. Engl., 2015, 54(48), 14317-14320.
[http://dx.doi.org/10.1002/anie.201505015] [PMID: 26403872]
[101]
Zhang, J.; Ma, Y.; Hu, K.; Feng, Y.; Chen, S.; Yang, X.; Fong-Chuen Loo, J.; Zhang, H.; Yin, F.; Li, Z. Surface coordination of black phosphorus with modified cisplatin. Bioconjug. Chem., 2019, 30(6), 1658-1664.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00128] [PMID: 31070357]
[102]
Wu, L.; Xu, Z.; Meng, Q.; Xiao, Y.; Cao, Q.; Rathi, B.; Liu, H.; Han, G.; Zhang, J.; Yan, J. A new aptamer/black phosphorous interdigital electrode for malachite green detection. Anal. Chim. Acta, 2020, 1099, 39-45.
[http://dx.doi.org/10.1016/j.aca.2019.11.026]
[103]
Jana, D.; Jia, S.; Bindra, A.K.; Xing, P.; Ding, D.; Zhao, Y. Clearable black phosphorus nanoconjugate for targeted cancer phototheranostics. ACS Appl. Mater. Interfaces, 2020, 12(16), 18342-18351.
[http://dx.doi.org/10.1021/acsami.0c02718] [PMID: 32223204]
[104]
Gao, N.; Nie, J.; Wang, H.; Xing, C.; Mei, L.; Xiong, W.; Zeng, X.; Peng, Z. A versatile platform based on black phosphorus nanosheets with enhanced stability for cancer synergistic therapy. J. Biomed. Nanotechnol., 2018, 14(11), 1883-1897.
[http://dx.doi.org/10.1166/jbn.2018.2632] [PMID: 30165925]
[105]
Sun, Z.; Xie, H.; Tang, S.; Yu, X.F.; Guo, Z.; Shao, J.; Zhang, H.; Huang, H.; Wang, H.; Chu, P.K. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angew. Chem. Int. Ed. Engl., 2015, 54(39), 11526-11530.
[http://dx.doi.org/10.1002/anie.201506154] [PMID: 26296530]
[106]
Wang, J.; Liang, D.; Qu, Z.; Kislyakov, I.M.; Kiselev, V.M.; Liu, J. PEGylated-folic acid-modified black phosphorus quantum dots as near-infrared agents for dual-modality imaging-guided selective cancer cell destruction. Nanophotonics, 2020, 9(8), 2425-2435.
[http://dx.doi.org/10.1515/nanoph-2019-0506]
[107]
Liu, R.; Ye, X.; Cui, T. Recent progress of biomarker detection sensors. Yosetsu Gakkai Ronbunshu/Quarterly J. Japan Weld. Soc., 2020, 38(3), 193.
[http://dx.doi.org/10.2207/qjjws.38.193]
[108]
Negahdary, M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens. Bioelectron., 2020, 152(152), 112018.
[http://dx.doi.org/10.1016/j.bios.2020.112018] [PMID: 32056737]
[109]
Supraja, P.; Sudarshan, V.; Tripathy, S.; Agrawal, A.; Singh, S.G. Label free electrochemical detection of cardiac biomarker troponin T using ZnSnO3 perovskite nanomaterials. Anal. Methods, 2019, 11(6), 744-751.
[http://dx.doi.org/10.1039/C8AY02617C]
[110]
Alagarsamy, K.N.; Mathan, S.; Yan, W.; Rafieerad, A.; Sekaran, S.; Manego, H.; Dhingra, S. Carbon nanomaterials for cardiovascular theranostics: Promises and challenges. Bioact. Mater., 2021, 6(8), 2261-2280.
[http://dx.doi.org/10.1016/j.bioactmat.2020.12.030] [PMID: 33553814]
[111]
Hasanzadeh, M.; Shadjou, N.; Soleymani, J.; Omidinia, E.; de la Guardia, M. Optical immunosensing of effective cardiac biomarkers on acute myocardial infarction. Trends Analyt. Chem., 2013, 51, 158-168.
[http://dx.doi.org/10.1016/j.trac.2013.06.010]
[112]
Tan, C.M.; Arshad, M.K.M.; Fathil, M.F.M.; Adzhri, R.; Nuzaihan, M.N.M.; Ruslinda, A.R.; Ibau, C.; Hashim, U. Interdigitated electrodes integrated with zinc oxide nanoparticles for cardiac troponin i biomarker detection. In: Proceedings of the IEEE International Conference on Semiconductor Electronics (ICSE); Kuala Lumpur, Malaysia; 2016, 17-19.
[http://dx.doi.org/10.1109/SMELEC.2016.7573631]
[113]
Zapp, E.; Westphal, E.; Gallardo, H.; de Souza, B.; Cruz Vieira, I. Liquid crystal and gold nanoparticles applied to electrochemical immunosensor for cardiac biomarker. Biosens. Bioelectron., 2014, 59, 127-133.
[http://dx.doi.org/10.1016/j.bios.2014.03.026] [PMID: 24721423]
[114]
Haque, M.; Fouad, H.; Seo, H.K.; Alothman, O.Y.; Ansari, Z.A. Cu-doped ZnO nanoparticles as an electrochemical sensing electrode for cardiac biomarker myoglobin detection. IEEE Sens. J., 2020, 20(15), 8820-8832.
[http://dx.doi.org/10.1109/JSEN.2020.2982713]
[115]
Singal, S.; Srivastava, A.K.; Biradar, A.M.; Mulchandani, A.; Rajesh, Pt Nanoparticles-chemical vapor deposited graphene composite based immunosensor for the detection of human cardiac troponin I. Sens. Actuators B Chem., 2019, 2014(205), 363-370.
[http://dx.doi.org/10.1016/j.snb.2014.08.088]
[116]
Boonkaew, S.; Jang, I.; Noviana, E.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers. Sens. Actuators B Chem., 2020, 2021(330), 129336.
[http://dx.doi.org/10.1016/j.snb.2020.129336]
[117]
Zong, C.; Zhang, D.; Yang, H.; Wang, S.; Chu, M.; Li, P. Chemiluminescence immunoassay for cardiac troponin T by using silver nanoparticles functionalized with hemin/g-quadruplex dnazyme on a glass chip array. Mikrochim. Acta, 2017, 184(9), 3197-3204.
[http://dx.doi.org/10.1007/s00604-017-2331-z]
[118]
Zhou, F.; Lu, M.; Wang, W.; Bian, Z.P.; Zhang, J.R.; Zhu, J.J. Electrochemical immunosensor for simultaneous detection of dual cardiac markers based on a poly(dimethylsiloxane)-gold nanoparticles composite microfluidic chip: a proof of principle. Clin. Chem., 2010, 56(11), 1701-1707.
[http://dx.doi.org/10.1373/clinchem.2010.147256] [PMID: 20852134]
[119]
Cheng, Z.; Wang, R.; Xing, Y.; Zhao, L.; Choo, J.; Yu, F. SERS-based immunoassay using gold-patterned array chips for rapid and sensitive detection of dual cardiac biomarkers. Analyst (Lond.), 2019, 144(22), 6533-6540.
[http://dx.doi.org/10.1039/C9AN01260E] [PMID: 31553332]
[120]
Liu, X.; Dai, Q.; Austin, L.; Coutts, J.; Knowles, G.; Zou, J.; Chen, H.; Huo, Q. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc., 2008, 130(9), 2780-2782.
[http://dx.doi.org/10.1021/ja711298b] [PMID: 18257576]
[121]
Quero, G.; Consales, M.; Severino, R.; Vaiano, P.; Boniello, A.; Sandomenico, A.; Ruvo, M.; Borriello, A.; Diodato, L.; Zuppolini, S.; Giordano, M.; Nettore, I.C.; Mazzarella, C.; Colao, A.; Macchia, P.E.; Santorelli, F.; Cutolo, A.; Cusano, A. Long period fiber grating nano-optrode for cancer biomarker detection. Biosens. Bioelectron., 2016, 80, 590-600.
[http://dx.doi.org/10.1016/j.bios.2016.02.021] [PMID: 26896794]
[122]
Li, M.; K. Cushing, S.; Zhang, J.; Suri, S.; Evans, R.; P. Petros, W.; F. Gibson, L.; Ma, D.; Liu, Y.; W., N. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced raman scattering immuno-sensor for cancer biomarker detection in blood plasma. ACS Nano, 2013, 7(6), 4967-4976.
[http://dx.doi.org/10.1021/nn4018284]
[123]
Ambrosi, A.; Airò, F.; Merkoçi, A. Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal. Chem., 2010, 82(3), 1151-1156.
[http://dx.doi.org/10.1021/ac902492c] [PMID: 20043655]
[124]
Jie, G.; Wang, L.; Zhang, S. Magnetic electrochemiluminescent Fe3O4/CdSe-CdS nanoparticle/polyelectrolyte nanocomposite for highly efficient immunosensing of a cancer biomarker. Chemistry, 2011, 17(2), 641-648.
[http://dx.doi.org/10.1002/chem.201001128] [PMID: 21207584]
[125]
Hasanzadeh, M.; Rahimi, S.; Solhi, E.; Mokhtarzadeh, A.; Shadjou, N.; Soleymani, J.; Mahboob, S. Probing the antigen-antibody interaction towards ultrasensitive recognition of cancer biomarker in adenocarcinoma cell lysates using layer-by-layer assembled silver nano-cubics with porous structure on cysteamine caped GQDs. Microchem. J., 2018, 143, 379-392.
[http://dx.doi.org/10.1016/j.microc.2018.08.028]
[126]
Truong, P.L.; Kim, B.W.; Sim, S.J. Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab Chip, 2012, 12(6), 1102-1109.
[http://dx.doi.org/10.1039/c2lc20588b] [PMID: 22298159]
[127]
Ye, X.R.; Lin, Y.; Wang, C.; Engelhard, M.H.; Wang, Y.; Wai, C.M. Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J. Mater. Chem., 2004, 5, 908-913.
[http://dx.doi.org/10.1039/b308124a]
[128]
Tabassum, H.; Mahmood, A.; Zhu, B.; Liang, Z.; Zhong, R.; Guo, S.; Zou, R. Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy Environ. Sci., 2019, 12(10), 2924-2956.
[http://dx.doi.org/10.1039/C9EE00315K]
[129]
Qu, L.; Dai, L. Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J. Am. Chem. Soc., 2005, 127(31), 10806-10807.
[http://dx.doi.org/10.1021/ja053479+] [PMID: 16076167]
[130]
Sun, Y.; Jin, H.; Jiang, X.; Gui, R. Black phosphorus nanosheets adhering to thionine-doped 2D MOF as a smart aptasensor enabling accurate capture and ratiometric electrochemical detection of target MicroRNA. Sens. Actuators B Chem., 2019, 2020(309), 127777.
[http://dx.doi.org/10.1016/j.snb.2020.127777]
[131]
Zheng, L.; Xiong, Y.; Liu, J.; Yang, X.; Wang, L.; Zhang, S.; Liu, M.; Wang, D. MMP-9-Related microRNAs as prognostic markers for hemorrhagic transformation in cardioembolic stroke patients. Front. Neurol., 2019, 10, 945.
[http://dx.doi.org/10.3389/fneur.2019.00945] [PMID: 31555200]
[132]
Kamiński, M.J.; Kamińska, M.; Skorupa, I.; Kazimierczyk, R.; Musiał, W.J.; Kamiński, K.A. In-silico identification of cardiovascular disease-related SNPs affecting predicted microRNA target sites. Pol. Arch. Med. Wewn., 2013, 123(7-8), 355-363.
[http://dx.doi.org/10.20452/pamw.1819] [PMID: 23648690]
[133]
Sun, Y.; Jin, H.; Jiang, X.; Gui, R. Assembly of black phosphorus nanosheets and MOF to form functional hybrid thin-film for precise protein capture, dual-signal and intrinsic self-calibration sensing of specific cancer-derived exosomes. Anal. Chem., 2020, 92(3), 2866-2875.
[http://dx.doi.org/10.1021/acs.analchem.9b05583] [PMID: 31903745]
[134]
Zhang, M.; Wang, W.; Wu, F.; Graveran, K.; Zhang, J.; Wu, C. Black phosphorus quantum dots gated, carbon-coated Fe3O4 nanocapsules (BPQDs@ss-Fe3O4@C) with low premature release could enable imaging-guided cancer combination therapy. Chemistry, 2018, 24(49), 12890-12901.
[http://dx.doi.org/10.1002/chem.201801085] [PMID: 29855103]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy