Review Article

多糖模拟成分在癌症靶向治疗中的作用

卷 23, 期 9, 2022

发表于: 18 April, 2022

页: [856 - 868] 页: 13

弟呕挨: 10.2174/1389450123666220214121505

价格: $65

摘要

有机或无机化合物被合成或配制以证明它们的治疗作用,就像体内的天然多糖。多糖是天然聚合物的主要类型,具有生物活性、无毒、亲水性和可生物降解和各种性能。本文的重点是在多糖模拟成分的帮助下提供抗癌药物。本文中的数据来自PubMed, Elsevier, Taylor & Francis和Bentham科学期刊。大多数化疗药物对人体有毒性,治疗指标狭窄,药物传递机制缓慢,且不易溶于水。多糖模拟组分的使用可提高药物在生物环境中的溶解度。本文综述了多糖模拟成分与抗癌药物的应用,与其他疗法相比,这些成分能够抑制体内癌细胞的生长,并在生物系统中表现出较小的不良影响。

关键词: 多糖,癌症,药物输送,纳米制剂,治疗,模拟成分。

图形摘要
[1]
Dheer D, Arora D, Jaglan S, Rawal RK, Shankar R. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. J Drug Target 2017; 25(1): 1-16.
[http://dx.doi.org/10.3109/1061186X.2016.1172589] [PMID: 27030377]
[2]
Chen ZG. Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med 2010; 16(12): 594-602.
[http://dx.doi.org/10.1016/j.molmed.2010.08.001] [PMID: 20846905]
[3]
Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. BioMed Res Int 2014; 2014: 814208.
[http://dx.doi.org/10.1155/2014/814208] [PMID: 24672796]
[4]
Singh T, Kaur V, Kumar M, Kaur P, Murthy RSR, Rawal RK. The critical role of bisphosphonates to target bone cancer metastasis: an overview. J Drug Target 2015; 23(1): 1-15.
[http://dx.doi.org/10.3109/1061186X.2014.950668] [PMID: 25203856]
[5]
Shankar R, Samykutty A, Riggin C, et al. Cathepsin B degradable star-shaped peptidic macromolecules for delivery of 2-methoxyestradiol. Mol Pharm 2013; 10(10): 3776-88.
[http://dx.doi.org/10.1021/mp400261h] [PMID: 23971990]
[6]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[7]
Flenniken ML, Willits DA, Harmsen AL, et al. Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem Biol 2006; 13(2): 161-70.
[http://dx.doi.org/10.1016/j.chembiol.2005.11.007] [PMID: 16492564]
[8]
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127(12): 2893-917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[9]
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60(15): 1650-62.
[http://dx.doi.org/10.1016/j.addr.2008.09.001] [PMID: 18848591]
[10]
Zheng Y, Monty J, Linhardt RJ. Polysaccharide-based nanocomposites and their applications. Carbohydr Res 2015; 405: 23-32.
[http://dx.doi.org/10.1016/j.carres.2014.07.016] [PMID: 25498200]
[11]
Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 2001; 47(1): 83-97.
[http://dx.doi.org/10.1016/S0169-409X(00)00123-X] [PMID: 11251247]
[12]
Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 2010; 62(1): 3-11.
[http://dx.doi.org/10.1016/j.addr.2009.09.004] [PMID: 19800377]
[13]
Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010; 62(1): 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[14]
Lim EK, Sajomsang W, Choi Y, et al. Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale Res Lett 2013; 8(1): 467.
[http://dx.doi.org/10.1186/1556-276X-8-467] [PMID: 24206754]
[15]
Termsarasab U, Cho HJ, Kim DH, et al. Chitosan oligosaccharide-arachidic acid-based nanoparticles for anti-cancer drug delivery. Int J Pharm 2013; 441(1-2): 373-80.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.018] [PMID: 23174411]
[16]
Shin MC, Zhang J, Min KA, et al. Cell-penetrating peptides: achievements and challenges in application for cancer treatment. J Biomed Mater Res A 2014; 102(2): 575-87.
[http://dx.doi.org/10.1002/jbm.a.34859] [PMID: 23852939]
[17]
Zhang H, Mardyani S, Chan WCW, Kumacheva E. Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules 2006; 7(5): 1568-72.
[http://dx.doi.org/10.1021/bm050912z] [PMID: 16677040]
[18]
Mourya VK, Inamdar NN, Tiwari A. Carboxymethyl chitosan and its applications. Adv Mater Lett 2010; 1: 11-33.
[http://dx.doi.org/10.5185/amlett.2010.3108]
[19]
Anitha A, Maya S, Deepa N, et al. Curcumin-loaded N,O-carboxymethyl chitosan nanoparticles for cancer drug delivery. J Biomater Sci Polym Ed 2012; 23(11): 1381-400.
[http://dx.doi.org/10.1163/092050611X581534] [PMID: 21722423]
[20]
Abreu F, Campana-Filho S. Characteristics and properties of carboxymethylchitosan. Carbohydr Polym 2009; 75: 214-21.
[http://dx.doi.org/10.1016/j.carbpol.2008.06.009]
[21]
Madhusudhan A, Reddy GB, Venkatesham M, et al. Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci 2014; 15(5): 8216-34.
[http://dx.doi.org/10.3390/ijms15058216] [PMID: 24821542]
[22]
Laudenslager MJ, Schiffman JD, Schauer CL. Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. Biomacromolecules 2008; 9(10): 2682-5.
[http://dx.doi.org/10.1021/bm800835e] [PMID: 18816099]
[23]
Toole BP. Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities. Clin Cancer Res 2009; 15(24): 7462-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0479] [PMID: 20008845]
[24]
Oh EJ, Park K, Kim KS, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release 2010; 141(1): 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.010] [PMID: 19758573]
[25]
Hoffmann S, Vystrčilová L, Ulbrich K, et al. Dual fluorescent HPMA copolymers for passive tumor targeting with pH-sensitive drug release: synthesis and characterization of distribution and tumor accumulation in mice by noninvasive multispectral optical imaging. Biomacromolecules 2012; 13(3): 652-63.
[http://dx.doi.org/10.1021/bm2015027] [PMID: 22263698]
[26]
Goodarzi N, Ghahremani M, Dinarvand R. Targeting CD44 by hyaluronic acid-based nano drug delivery systems may eradicate cancer stem cells in human breast cancer. Iranian J Med Hypothese Ideas 2011; 5: 1-5.
[27]
Vercruysse KP, Prestwich GD. Hyaluronate derivatives in drug delivery. Crit Rev Ther Drug Carrier Syst 1998; 15(5): 513-55.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v15.i5.30] [PMID: 9822869]
[28]
Xu C, He W, Lv Y, Qin C, Shen L, Yin L. Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity. Int J Pharm 2015; 493(1-2): 172-81.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.069] [PMID: 26232702]
[29]
Yin S, Huai J, Chen X, et al. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid. Acta Biomater 2015; 26: 274-85.
[http://dx.doi.org/10.1016/j.actbio.2015.08.029] [PMID: 26300335]
[30]
Zhong Y, Zhang J, Cheng R, et al. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J Control Release 2015; 205: 144-54.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.012] [PMID: 25596560]
[31]
Vyas D, Lopez-Hisijos N, Gandhi S, et al. Doxorubicin-hyaluronan conjugated super-paramagnetic iron oxide nanoparticles (DOX-HA-SPION) enhanced cytoplasmic uptake of doxorubicin and modulated apoptosis, IL-6 release and NF-kappaB activity in human MDA-MB-231 breast cancer cells. J Nanosci Nanotechnol 2015; 15(9): 6413-22.
[http://dx.doi.org/10.1166/jnn.2015.10834] [PMID: 26690867]
[32]
Hyung W, Ko H, Park J, et al. Novel hyaluronic acid (HA) coated drug carriers (HCDCs) for human breast cancer treatment. Biotechnol Bioeng 2008; 99(2): 442-54.
[http://dx.doi.org/10.1002/bit.21578] [PMID: 17625788]
[33]
Datir SR, Das M, Singh RP, Jain S. Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug Chem 2012; 23(11): 2201-13.
[http://dx.doi.org/10.1021/bc300248t] [PMID: 23039830]
[34]
Oommen OP, Garousi J, Sloff M, Varghese OP. Tailored doxorubicin-hyaluronan conjugate as a potent anticancer glyco-drug: an alternative to prodrug approach. Macromol Biosci 2014; 14(3): 327-33.
[http://dx.doi.org/10.1002/mabi.201300383] [PMID: 24130147]
[35]
Choi KY, Yoon HY, Kim JH, et al. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano 2011; 5(11): 8591-9.
[http://dx.doi.org/10.1021/nn202070n] [PMID: 21967065]
[36]
Cho HJ, Yoon IS, Yoon HY, et al. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 2012; 33(4): 1190-200.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.064] [PMID: 22074664]
[37]
Oyarzun-Ampuero FA, Rivera-Rodríguez GR, Alonso MJ, Torres D. Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery. Eur J Pharm Sci Off J Eur Fed Pharm Sci 2013; 49(4): 483-90.
[http://dx.doi.org/10.1016/j.ejps.2013.05.008] [PMID: 23684914]
[38]
El-Dakdouki MH, Xia J, Zhu DC, et al. Assessing the in vivo efficacy of doxorubicin loaded hyaluronan nanoparticles. ACS Appl Mater Interfaces 2014; 6(1): 697-705.
[http://dx.doi.org/10.1021/am404946v] [PMID: 24308364]
[39]
Yu M, Jambhrunkar S, Thorn P, Chen J, Gu W, Yu C. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug deliv-ery to CD44-overexpressing cancer cells. Nanoscale 2013; 5(1): 178-83.
[http://dx.doi.org/10.1039/C2NR32145A] [PMID: 23076766]
[40]
Park JH, Cho HJ, Yoon HY, et al. Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release 2014; 174: 98-108.
[http://dx.doi.org/10.1016/j.jconrel.2013.11.016] [PMID: 24280260]
[41]
Mukhiddinov ZK, Khalikov DK, Abdusamiev FT, Avloev CC. Isolation and structural characterization of a pectin homo and ram-nogalacturonan. Talanta 2000; 53(1): 171-6.
[http://dx.doi.org/10.1016/S0039-9140(00)00456-2] [PMID: 18968102]
[42]
Chourasia MK, Jain SK. Polysaccharides for colon targeted drug delivery. Drug Deliv 2004; 11(2): 129-48.
[http://dx.doi.org/10.1080/10717540490280778] [PMID: 15200012]
[43]
Morris G, Kök S, Harding S, Adams G. Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol Genet Eng Rev 2010; 27: 257-84.
[http://dx.doi.org/10.1080/02648725.2010.10648153] [PMID: 21415901]
[44]
Yan J, Katz A. PectaSol-C modified citrus pectin induces apoptosis and inhibition of proliferation in human and mouse androgen-dependent and- independent prostate cancer cells. Integr Cancer Ther 2010; 9(2): 197-203.
[http://dx.doi.org/10.1177/1534735410369672] [PMID: 20462856]
[45]
Nicholas J. Fighting cancer metas-tasis and heavy metal toxicities with modified citrus pectin 2009. Available from: https://www.semanticscholar.org/paper/FIGHTING-CANCER-METASTASIS-AND-HEAVY-METAL-WITH-IS-Nicholas/a62636a513495efe839ac0c8591d2e306f09caee
[46]
Fang T, Liu DD, Ning HM, et al. Modified citrus pectin inhibited bladder tumor growth through downregulation of galectin-3. Acta Pharmacol Sin 2018; 39(12): 1885-93.
[http://dx.doi.org/10.1038/s41401-018-0004-z] [PMID: 29769742]
[47]
Niture SK, Refai L. Plant pectin: a potential source for cancer suppression. Am J Pharmacol Toxicol 2013; 8(1): 9-19.
[http://dx.doi.org/10.3844/ajptsp.2013.9.19]
[48]
Hossein G, Keshavarz M, Ahmadi S, Naderi N. Synergistic effects of PectaSol-C modified citrus pectin an inhibitor of Galectin-3 and paclitaxel on apoptosis of human SKOV-3 ovarian cancer cells. Asian Pac J Cancer Prev 2013; 14(12): 7561-8.
[http://dx.doi.org/10.7314/APJCP.2013.14.12.7561] [PMID: 24460334]
[49]
Paharia A, Yadav AK, Rai G, Jain SK, Pancholi SS, Agrawal GP. Eudragit-coated pectin microspheres of 5-fluorouracil for colon target-ing. AAPS PharmSciTech 2007; 8(1): 12.
[http://dx.doi.org/10.1208/pt0801012] [PMID: 17408212]
[50]
Leclere L, Cutsem PV, Michiels C. Anti-cancer activities of pH- or heat-modified pectin. Front Pharmacol 2013; 4: 128.
[http://dx.doi.org/10.3389/fphar.2013.00128] [PMID: 24115933]
[51]
Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Recent advances in search of oral heparin therapeutics. Med Res Rev 2012; 32(2): 388-409.
[http://dx.doi.org/10.1002/med.20217] [PMID: 21287569]
[52]
Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 2012; 41(6): 2193-221.
[http://dx.doi.org/10.1039/C1CS15203C] [PMID: 22116474]
[53]
Szczubiałka K, Kamiński K, Zasada K, Karewicz A, Nowakowska M. Heparin--a key drug in the treatment of the circulatory degenerative diseases: controlling its action with polymers. Curr Pharm Des 2012; 18(18): 2591-606.
[http://dx.doi.org/10.2174/138161212800492840] [PMID: 22512445]
[54]
Sakiyama-Elbert SE. Incorporation of heparin into biomaterials. Acta Biomater 2014; 10(4): 1581-7.
[http://dx.doi.org/10.1016/j.actbio.2013.08.045] [PMID: 24021232]
[55]
Liang Y, Kiick KL. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater 2014; 10(4): 1588-600.
[http://dx.doi.org/10.1016/j.actbio.2013.07.031] [PMID: 23911941]
[56]
Lazo-Langner A, Goss GD, Spaans JN, Rodger MA. The effect of low-molecular-weight heparin on cancer survival. A systematic review and meta-analysis of randomized trials. J Thromb Haemost 2007; 5(4): 729-37.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02427.x] [PMID: 17408406]
[57]
Liu P, Gou M, Yi T, et al. The enhanced antitumor effects of biodegradable cationic heparin-polyethyleneimine nanogels delivering HSulf-1 gene combined with cisplatin on ovarian cancer. Int J Oncol 2012; 41(4): 1504-12.
[http://dx.doi.org/10.3892/ijo.2012.1558] [PMID: 22825572]
[58]
Cho KJ, Moon HT, Park GE, Jeon OC, Byun Y, Lee YK. Preparation of sodium deoxycholate (DOC) conjugated heparin derivatives for inhibition of angiogenesis and cancer cell growth. Bioconjug Chem 2008; 19(7): 1346-51.
[http://dx.doi.org/10.1021/bc800173m] [PMID: 18588324]
[59]
Zhang L, Gao X, Men K, et al. Gene therapy for C-26 colon cancer using heparin-polyethyleneimine nanoparticle-mediated survivin T34A. Int J Nanomedicine 2011; 6: 2419-27.
[PMID: 22072877]
[60]
Joung YK, Jang JY, Choi JH, Han DK, Park KD. Heparin-conjugated pluronic nanogels as multi-drug nanocarriers for combination chemotherapy. Mol Pharm 2013; 10(2): 685-93.
[http://dx.doi.org/10.1021/mp300480v] [PMID: 23237335]
[61]
Ye L, Gao Z, Zhou Y, et al. A pH-sensitive binary drug delivery system based on poly(caprolactone)-heparin conjugates. J Biomed Mater Res A 2014; 102(3): 880-9.
[http://dx.doi.org/10.1002/jbm.a.34735] [PMID: 23554308]
[62]
Varshosaz J. Dextran conjugates in drug delivery. Expert Opin Drug Deliv 2012; 9(5): 509-23.
[http://dx.doi.org/10.1517/17425247.2012.673580] [PMID: 22432550]
[63]
Hennink WE, De Jong SJ, Bos GW, Veldhuis TFJ, van Nostrum CF. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int J Pharm 2004; 277(1-2): 99-104.
[http://dx.doi.org/10.1016/j.ijpharm.2003.02.002] [PMID: 15158973]
[64]
Jeong YI, Chung KD, Choi KC. Doxorubicin release from self-assembled nanoparticles of deoxycholic acid-conjugated dextran. Arch Pharm Res 2011; 34(1): 159-67.
[http://dx.doi.org/10.1007/s12272-011-0119-y] [PMID: 21468928]
[65]
Jeong YI, Kim DH, Chung CW, et al. Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer. Int J Nanomedicine 2011; 6: 1415-27.
[http://dx.doi.org/10.2147/IJN.S19491] [PMID: 21796244]
[66]
Jung SW, Jeong YI, Kim YH, Choi KC, Kim SH. Drug release from core-shell type nanoparticles of poly(DL-lactide-co-glycolide)-grafted dextran. J Microencapsul 2005; 22(8): 901-11.
[http://dx.doi.org/10.1080/02652040500286060] [PMID: 16423761]
[67]
Thambi T, You DG, Han HS, et al. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery. Adv Healthc Mater 2014; 3(11): 1829-38.
[http://dx.doi.org/10.1002/adhm.201300691] [PMID: 24753360]
[68]
Rubinstein A, Nakar D, Sintov A. Colonic drug delivery: enhanced release of indomethacin from cross-linked chondroitin matrix in rat cecal content. Pharm Res 1992; 9(2): 276-8.
[http://dx.doi.org/10.1023/A:1018910128452] [PMID: 1553354]
[69]
Radhakrishnan K, Tripathy J, Datey A, Chakravortty D, Raichur AM. Mesoporous silica–chondroitin sulphate hybrid nanoparticles for targeted and bio-responsive drug delivery. New J Chem 2015; 39: 1754-60.
[http://dx.doi.org/10.1039/C4NJ01430H]
[70]
Shi X, Yang X, Liu M, et al. Chondroitin sulfate-based nanoparticles for enhanced chemo-photodynamic therapy overcoming multidrug resistance and lung metastasis of breast cancer. Carbohydr Polym 2021; 254: 117459.
[http://dx.doi.org/10.1016/j.carbpol.2020.117459] [PMID: 33357918]
[71]
Park W, Park SJ, Na K. Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier. Colloids Surf B Biointerfaces 2010; 79(2): 501-8.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.025] [PMID: 20541919]
[72]
Huang SJ, Sun SL, Feng TH, Sung KH, Lui WL, Wang LF. Folate-mediated chondroitin sulfate-Pluronic 127 nanogels as a drug carrier. Eur J Pharm Sci Off J Eur Fed Pharm Sci 2009; 38(1): 64-73.
[http://dx.doi.org/10.1016/j.ejps.2009.06.002] [PMID: 19540339]
[73]
Xi J, Qin J, Fan L. Chondroitin sulfate functionalized mesostructured silica nanoparticles as biocompatible carriers for drug delivery. Int J Nanomedicine 2012; 7: 5235-47.
[PMID: 23091377]
[74]
Kakuta T, Takashima Y, Nakahata M, Otsubo M, Yamaguchi H, Harada A. Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv Mater 2013; 25(20): 2849-53.
[http://dx.doi.org/10.1002/adma.201205321] [PMID: 23423947]
[75]
Szente L, Szemán J. Cyclodextrins in analytical chemistry: host-guest type molecular recognition. Anal Chem 2013; 85(17): 8024-30.
[http://dx.doi.org/10.1021/ac400639y] [PMID: 23786163]
[76]
Choi SG, Lee SE, Kang BS, Ng CL, Davaa E, Park JS. Thermosensitive and mucoadhesive sol-gel composites of paclitaxel/dimethyl-β-cyclodextrin for buccal delivery. PLoS One 2014; 9(9): e109090.
[http://dx.doi.org/10.1371/journal.pone.0109090] [PMID: 25275485]
[77]
Oda M, Saitoh H, Kobayashi M, Aungst BJ. Beta-cyclodextrin as a suitable solubilizing agent for in situ absorption study of poorly water-soluble drugs. Int J Pharm 2004; 280(1-2): 95-102.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.003] [PMID: 15265550]
[78]
Torne S, Darandale S, Vavia P, Trotta F, Cavalli R. Cyclodextrin-based nanosponges: effective nanocarrier for tamoxifen delivery. Pharm Dev Technol 2013; 18(3): 619-25.
[http://dx.doi.org/10.3109/10837450.2011.649855] [PMID: 22235935]
[79]
Yallapu MM, Jaggi M, Chauhan SC. beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces 2010; 79(1): 113-25.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.039] [PMID: 20456930]
[80]
Park C, Youn H, Kim H, et al. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J Mater Chem 2009; 19: 2310-5.
[http://dx.doi.org/10.1039/b816209c]
[81]
Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 2009; 6(3): 659-68.
[http://dx.doi.org/10.1021/mp900015y] [PMID: 19267452]
[82]
Sharker SM, Kim SM, Kim SH, In I, Lee H, Park SY. Target delivery of β-cyclodextrin/paclitaxel complexed fluorescent carbon nano-particles: externally NIR light and internally pH sensitive-mediated release of paclitaxel with bio-imaging. J Mater Chem B Mater Biol Med 2015; 3(28): 5833-41.
[http://dx.doi.org/10.1039/C5TB00779H] [PMID: 32262580]
[83]
Králová J, Kejík Z, Bríza T, et al. Porphyrin-cyclodextrin conjugates as a nanosystem for versatile drug delivery and multimodal cancer therapy. J Med Chem 2010; 53(1): 128-38.
[http://dx.doi.org/10.1021/jm9007278] [PMID: 19950899]
[84]
Prajapati VD, Jani GK, Khanda SM. Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym 2013; 95(1): 540-9.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.082] [PMID: 23618305]
[85]
Yuan R, Zheng F, Zhong S, et al. Self-assembled nanoparticles of glycyrrhetic acid-modified pullulan as a novel carrier of curcumin. Molecules 2014; 19(9): 13305-18.
[http://dx.doi.org/10.3390/molecules190913305] [PMID: 25170951]
[86]
Yim H, Park SJ, Bae YH, Na K. Biodegradable cationic nanoparticles loaded with an anticancer drug for deep penetration of heterogeneous tumours. Biomaterials 2013; 34(31): 7674-82.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.058] [PMID: 23871541]
[87]
Kageyama S, Wada H, Muro K, et al. Dose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patients. J Transl Med 2013; 11: 246.
[http://dx.doi.org/10.1186/1479-5876-11-246] [PMID: 24093426]
[88]
Muraoka D, Harada N, Hayashi T, et al. Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity. ACS Nano 2014; 8(9): 9209-18.
[http://dx.doi.org/10.1021/nn502975r] [PMID: 25180962]
[89]
Guo H, Liu Y, Wang Y, et al. pH-sensitive pullulan-based nanoparticle carrier for adriamycin to overcome drug-resistance of cancer cells. Carbohydr Polym 2014; 111: 908-17.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.057] [PMID: 25037431]
[90]
Bae BC, Yang SG, Jeong S, et al. Polymeric photosensitizer-embedded self-expanding metal stent for repeatable endoscopic photodynamic therapy of cholangiocarcinoma. Biomaterials 2014; 35(30): 8487-95.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.001] [PMID: 25043500]
[91]
Zhang HZ, Gao FP, Liu LR, et al. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy. Colloids Surf B Biointerfaces 2009; 71(1): 19-26.
[http://dx.doi.org/10.1016/j.colsurfb.2008.12.039] [PMID: 19186037]
[92]
Moon S, Yang SG, Na K. An acetylated polysaccharide-PTFE membrane-covered stent for the delivery of gemcitabine for treatment of gastrointestinal cancer and related stenosis. Biomaterials 2011; 32(14): 3603-10.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.070] [PMID: 21334742]
[93]
Lee SJ, Hong GY, Jeong YI, et al. Paclitaxel-incorporated nanoparticles of hydrophobized polysaccharide and their antitumor activity. Int J Pharm 2012; 433(1-2): 121-8.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.048] [PMID: 22561793]
[94]
Guhagarkar SA, Gaikwad RV, Samad A, Malshe VC, Devarajan PV. Polyethylene sebacate-doxorubicin nanoparticles for hepatic targeting. Int J Pharm 2010; 401(1-2): 113-22.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.012] [PMID: 20854883]
[95]
Yang W, Wang M, Ma L, Li H, Huang L. Synthesis and characterization of biotin modified cholesteryl pullulan as a novel anticancer drug carrier. Carbohydr Polym 2014; 99: 720-7.
[http://dx.doi.org/10.1016/j.carbpol.2013.09.013] [PMID: 24274563]
[96]
Li H, Bian S, Huang Y, Liang J, Fan Y, Zhang X. High drug loading pH-sensitive pullulan-DOX conjugate nanoparticles for hepatic targeting. J Biomed Mater Res A 2014; 102(1): 150-9.
[http://dx.doi.org/10.1002/jbm.a.34680] [PMID: 23613258]
[97]
Wang Y, Chen H, Liu Y, et al. pH-sensitive pullulan-based nanoparticle carrier of methotrexate and combretastatin A4 for the combination therapy against hepatocellular carcinoma. Biomaterials 2013; 34(29): 7181-90.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.081] [PMID: 23791500]
[98]
Zhang H, Li F, Yi J, et al. Folate-decorated maleilated pullulan-doxorubicin conjugate for active tumor-targeted drug delivery. Eur J Pharm Sci Off J Eur Fed Pharm Sci 2011; 42(5): 517-26.
[http://dx.doi.org/10.1016/j.ejps.2011.02.006] [PMID: 21352909]
[99]
Scomparin A, Salmaso S, Bersani S, Satchi-Fainaro R, Caliceti P. Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. Eur J Pharm Sci Off J Eur Fed Pharm Sci 2011; 42(5): 547-58.
[http://dx.doi.org/10.1016/j.ejps.2011.02.012] [PMID: 21371555]
[100]
Bae BC, Na K. Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Biomaterials 2010; 31(24): 6325-35.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.030] [PMID: 20493523]
[101]
Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 2012; 33(11): 3279-305.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.007] [PMID: 22281421]
[102]
Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 2013; 14(1): 1629-54.
[http://dx.doi.org/10.3390/ijms14011629] [PMID: 23344060]
[103]
Aktar B, Erdal MS, Sagirli O, Güngör S, Özsoy Y. Optimization of biopolymer based transdermal films of metoclopramide as an alternative delivery approach. Polym 2014; 6(5): 1350-65.
[104]
Sosnik A. Alginate particles as platform for drug delivery by the oral route: state-of-the-art. ISRN Pharm 2014; 2014: 926157.
[http://dx.doi.org/10.1155/2014/926157] [PMID: 25101184]
[105]
Huebsch N, Kearney CJ, Zhao X, et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci USA 2014; 111(27): 9762-7.
[http://dx.doi.org/10.1073/pnas.1405469111] [PMID: 24961369]
[106]
Abou Taleb MF, Alkahtani A, Mohamed SK. Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nano-composite hydrogels: a drug delivery system for liver cancer. Polym Bull 2015; 72: 725-42.
[http://dx.doi.org/10.1007/s00289-015-1301-z]
[107]
Liao YT, Liu CH, Yu J, Wu KC. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nano-particles and alginate microspheres. Int J Nanomedicine 2014; 9: 2767-78.
[PMID: 24940057]
[108]
Ma HL, Xu YF, Qi XR, Maitani Y, Nagai T. Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int J Pharm 2008; 354(1-2): 217-26.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.036] [PMID: 18191350]
[109]
Boekhoven J, Zha RH, Tantakitti F, et al. Alginate-peptide amphiphile core-shell microparticles as a targeted drug delivery system. RSC Advances 2015; 5(12): 8753-6.
[http://dx.doi.org/10.1039/C4RA16593D] [PMID: 25642326]
[110]
Goren A, Dahan N, Goren E, Baruch L, Machluf M. Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy. FASEB J 2010; 24(1): 22-31.
[http://dx.doi.org/10.1096/fj.09-131888] [PMID: 19726759]
[111]
Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine 2010; 6(1): 153-60.
[http://dx.doi.org/10.1016/j.nano.2009.05.009] [PMID: 19616123]
[112]
Bhunchu S, Rojsitthisak P. Biopolymeric alginate-chitosan nanoparticles as drug delivery carriers for cancer therapy. Pharmazie 2014; 69(8): 563-70.
[PMID: 25158565]
[113]
Kobayashi M, Sakane M, Abe T, Ikoma T, Ochiai N. Anti-tumor effect of a local delivery system; hydroxyapatite-alginate beads of paclitaxel. Bioceram Dev Appl 2012; 2: 1-3.
[http://dx.doi.org/10.4303/bda/D110193]
[114]
Kanwar JR, Mahidhara G, Kanwar RK. Novel alginate-enclosed chitosan-calcium phosphate-loaded iron-saturated bovine lactoferrin nanocarriers for oral delivery in colon cancer therapy. Nanomedicine (Lond) 2012; 7(10): 1521-50.
[http://dx.doi.org/10.2217/nnm.12.29] [PMID: 22734611]
[115]
Batyrbekov YO, Rakhimbaeva D, Musabekov K, Zhubanov B. Alginate based microparticle drug delivery systems for the treatment of eye cancer. MRS Proc 2009; 1209: 1204-9.
[116]
Brulé S, Levy M, Wilhelm C, et al. Doxorubicin release triggered by alginate embedded magnetic nanoheaters: a combined therapy. Adv Mater 2011; 23(6): 787-90.
[http://dx.doi.org/10.1002/adma.201003763] [PMID: 21287643]
[117]
Ciofani G, Riggio C, Raffa V, Menciassi A, Cuschieri A. A bi-modal approach against cancer: magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med Hypotheses 2009; 73(1): 80-2.
[http://dx.doi.org/10.1016/j.mehy.2009.01.031] [PMID: 19272717]
[118]
Beneke CE, Viljoen AM, Hamman JH. Polymeric plant-derived excipients in drug delivery. Molecules 2009; 14(7): 2602-20.
[119]
Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 2007; 59(4-5): 207-33.
[http://dx.doi.org/10.1016/j.addr.2007.03.012] [PMID: 17482309]
[120]
Arora D, Sharma N, Sharma V, Abrol V, Shankar R, Jaglan S. An update on polysaccharide-based nanomaterials for antimicrobial appli-cations. Appl Microbiol Biotechnol 2016; 100(6): 2603-15.
[http://dx.doi.org/10.1007/s00253-016-7315-0] [PMID: 26830099]
[121]
Wilson PJ, Basit AW. Exploiting gastrointestinal bacteria to target drugs to the colon: an in vitro study using amylose coated tablets. Int J Pharm 2005; 300(1-2): 89-94.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.010] [PMID: 16023805]
[122]
Siew LF, Basit AW, Newton JM. The potential of organic-based amylose-ethylcellulose film coatings as oral colon-specific drug delivery systems. AAPS PharmSciTech 2000; 1(3): E22.
[http://dx.doi.org/10.1208/pt010322] [PMID: 14727908]
[123]
Fujii H, Shin-Ya M, Takeda S, et al. Cycloamylose-nanogel drug delivery system-mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tumor microenvironment. Cancer Sci 2014; 105(12): 1616-25.
[http://dx.doi.org/10.1111/cas.12547] [PMID: 25283373]
[124]
Park JY, Shin MS, Kim SN, et al. Polysaccharides from Korean Citrus hallabong peels inhibit angiogenesis and breast cancer cell migration. Int J Biol Macromol 2016; 85: 522-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.015] [PMID: 26778161]
[125]
Zhao R, Gao X, Cai Y, et al. Antitumor activity of Portulaca oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo. Carbohydr Polym 2013; 96(2): 376-83.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.023] [PMID: 23768576]
[126]
Pei JJ, Wang ZB, Ma HL, Yan JK. Structural features and antitumor activity of a novel polysaccharide from alkaline extract of Phellinus linteus mycelia. Carbohydr Polym 2015; 115: 472-7.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.017] [PMID: 25439921]
[127]
Pádua D, Rocha E, Gargiulo D, Ramos AA. Bioactive compounds from brown seaweeds: Phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochem Lett 2015; 14: 91-8.
[http://dx.doi.org/10.1016/j.phytol.2015.09.007]
[128]
Wu J, Gao W, Song Z, et al. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549. Int J Biol Macromol 2018; 106: 464-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.033] [PMID: 28797819]
[129]
Ren D, Jiao Y, Yang X, Yuan L, Guo J, Zhao Y. Antioxidant and antitumor effects of polysaccharides from the fungus Pleurotus abalonus. Chem Biol Interact 2015; 237: 166-74.
[http://dx.doi.org/10.1016/j.cbi.2015.06.017] [PMID: 26091901]
[130]
Chen F, Ran L, Mi J, et al. Isolation, characterization and antitumor effect on DU145 Cells of a main polysaccharide in pollen of chinese wolfberry. Molecules 2018; 23(10): 2430.
[http://dx.doi.org/10.3390/molecules23102430] [PMID: 30248961]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy