Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

An Insight into the Molecular Mechanism of Mitochondrial Toxicant-induced Neuronal Apoptosis in Parkinson’s Disease

Author(s): Subhashini Brahadeeswaran, Mohammad Lateef and Latchoumycandane Calivarathan*

Volume 23, Issue 1, 2023

Published on: 10 March, 2022

Page: [63 - 75] Pages: 13

DOI: 10.2174/1566524022666220203163631

Price: $65

Open Access Journals Promotions 2
Abstract

Parkinson’s disease (PD) is one of the most common progressive neurodegenerative disorders affecting approximately 1% of the world’s population at the age of 50 and above. Majority of PD cases are sporadic and show symptoms after the age of 60 and above. At that time, most of the dopaminergic neurons in the region of substantia nigra pars compacta have been degenerated. Although in past decades, discoveries of genetic mutations linked to PD have significantly impacted our current understanding of the pathogenesis of this devastating disorder, it is likely that the environment also plays a critical role in the etiology of sporadic PD. Recent epidemiological and experimental studies indicate that exposure to environmental agents, including a number of agricultural and industrial chemicals, may contribute to the pathogenesis of several neurodegenerative disorders, including PD. Furthermore, there is a strong correlation between mitochondrial dysfunction and several forms of neurodegenerative disorders, including Alzheimer’s disease (AD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS) and PD. Interestingly, substantia nigra of patients with PD has been shown to have a mild deficiency in mitochondrial respiratory electron transport chain NADH dehydrogenase (Complex I) activity. This review discusses the role of mitochondrial toxicants in the selective degeneration of dopaminergic neurons targeting the electron transport system that leads to Parkinsonism.

Keywords: Apoptosis, electron transport chain, environmental contaminants, mitochondria, neurodegeneration, Parkinson’s disease.

[1]
Latchoumycandane C, Anantharam V, Kitazawa M, Yang Y, Kanthasamy A, Kanthasamy AG. Protein kinase Cdelta is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther 2005; 313(1): 46-55.
[http://dx.doi.org/10.1124/jpet.104.078469] [PMID: 15608081]
[2]
Iannielli A, Bido S, Folladori L, et al. Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s Disease Models. Cell Rep 2018; 22(8): 2066-79.
[http://dx.doi.org/10.1016/j.celrep.2018.01.089] [PMID: 29466734]
[3]
St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002; 277(47): 44784-90.
[http://dx.doi.org/10.1074/jbc.M207217200] [PMID: 12237311]
[4]
Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 2004; 279(47): 49064-73.
[http://dx.doi.org/10.1074/jbc.M407715200] [PMID: 15317809]
[5]
Larsen SB, Hanss Z, Krüger R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease. Cell Tissue Res 2018; 373(1): 21-37.
[http://dx.doi.org/10.1007/s00441-017-2768-8] [PMID: 29372317]
[6]
Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1989; 1(8649): 1269.
[http://dx.doi.org/10.1016/S0140-6736(89)92366-0] [PMID: 2566813]
[7]
Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219(4587): 979-80.
[http://dx.doi.org/10.1126/science.6823561] [PMID: 6823561]
[8]
Kaul S, Kanthasamy A, Kitazawa M, Anantharam V, Kanthasamy AG. Caspase-3 dependent proteolytic activation of protein kinase C delta mediates and regulates 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in dopaminergic cells: relevance to oxidative stress in dopaminergic degeneration. Eur J Neurosci 2003; 18(6): 1387-401.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02864.x] [PMID: 14511319]
[9]
Colnat-Coulbois S, Gauchard GC, Maillard L, et al. Bilateral subthalamic nucleus stimulation improves balance control in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2005; 76(6): 780-7.
[http://dx.doi.org/10.1136/jnnp.2004.047829] [PMID: 15897498]
[10]
Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl Neurodegener 2017; 6: 28.
[http://dx.doi.org/10.1186/s40035-017-0099-z] [PMID: 29090092]
[11]
Gelders G, Baekelandt V, Van der Perren A. Linking neuroinflammation and neurodegeneration in Parkinson’s Disease. J Immunol Res 2018; 2018: 4784268.
[http://dx.doi.org/10.1155/2018/4784268] [PMID: 29850629]
[12]
Betarbet R, Greenamyre JT. Parkinson’s disease: Animal models. Handb Clin Neurol 2007; 83: 265-87.
[http://dx.doi.org/10.1016/S0072-9752(07)83011-9] [PMID: 18808918]
[13]
Betarbet R, Sherer TB, Greenamyre JT. Animal models of Parkinson’s disease. BioEssays 2002; 24(4): 308-18.
[http://dx.doi.org/10.1002/bies.10067] [PMID: 11948617]
[14]
George JM, Jin H, Woods WS, Clayton DF. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 1995; 15(2): 361-72.
[http://dx.doi.org/10.1016/0896-6273(95)90040-3] [PMID: 7646890]
[15]
Iwai A, Masliah E, Yoshimoto M, et al. The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995; 14(2): 467-75.
[http://dx.doi.org/10.1016/0896-6273(95)90302-X] [PMID: 7857654]
[16]
Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 2005; 28: 57-87.
[http://dx.doi.org/10.1146/annurev.neuro.28.061604.135718] [PMID: 16022590]
[17]
Latchoumycandane C, Anantharam V, Jin H, Kanthasamy A, Kanthasamy A. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKCδ in cell culture and animal models of Parkinson’s disease. Toxicol Appl Pharmacol 2011; 256(3): 314-23.
[http://dx.doi.org/10.1016/j.taap.2011.07.021] [PMID: 21846476]
[18]
Gagnon D, Petryszyn S, Sanchez MG, et al. Striatal neurons expressing D1 and D2 receptors are morphologically distinct and differently affected by dopamine denervation in mice. Sci Rep 2017; 7: 41432.
[http://dx.doi.org/10.1038/srep41432] [PMID: 28128287]
[19]
Wichmann T, DeLong MR. Pathophysiology of parkinsonian motor abnormalities. Adv Neurol 1993; 60: 53-61.
[PMID: 8420185]
[20]
Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA. Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 1986; 20(4): 449-55.
[http://dx.doi.org/10.1002/ana.410200403] [PMID: 3024555]
[21]
Onofrj M, Ghilardi MF. MPTP induced parkinsonian syndrome: Long term follow-up and neurophysiological study. Ital J Neurol Sci 1990; 11(5): 445-58.
[http://dx.doi.org/10.1007/BF02336564] [PMID: 2272779]
[22]
Forno LS, DeLanney LE, Irwin I, Langston JW. Similarities and differences between MPTP-induced parkinsonsim and Parkinson’s disease. Neuropathologic considerations. Adv Neurol 1993; 60: 600-8.
[PMID: 8380528]
[23]
Barbeau A. Etiology of Parkinson's disease: A research strategy. Canadian J Neurol Sci 1984; 11(1): 24-8.
[http://dx.doi.org/10.1017/S0317167100045273]
[24]
Przedborski S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov Disord 1998; 13 (Suppl. 1): 35-8.
[PMID: 9613716]
[25]
Schmidt N, Ferger B. Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm (Vienna) 2001; 108(11): 1263-82.
[http://dx.doi.org/10.1007/s007020100004] [PMID: 11768626]
[26]
Kim-Han JS, Antenor-Dorsey JA, O’Malley KL. The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. J Neurosci 2011; 31(19): 7212-21.
[http://dx.doi.org/10.1523/JNEUROSCI.0711-11.2011] [PMID: 21562285]
[27]
Celesia GG, Barr AN. Psychosis and other psychiatric manifestations of levodopa therapy. Arch Neurol 1970; 23(3): 193-200.
[http://dx.doi.org/10.1001/archneur.1970.00480270003001] [PMID: 5456717]
[28]
Carrera I, Cacabelos R. Current Drugs and Potential Future Neuroprotective Compounds for Parkinson’s Disease. Curr Neuropharmacol 2019; 17(3): 295-306.
[http://dx.doi.org/10.2174/1570159X17666181127125704] [PMID: 30479218]
[29]
Hauser RA, Hsu A, Kell S, et al. IPX066 ADVANCE-PD investigators. Extended-release carbidopa-levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: A phase 3 randomised, double-blind trial. Lancet Neurol 2013; 12(4): 346-56.
[http://dx.doi.org/10.1016/S1474-4422(13)70025-5] [PMID: 23485610]
[30]
Sarkar S, Raymick J, Imam S. Neuroprotective and therapeutic strategies against Parkinson’s Disease: Recent perspectives. Int J Mol Sci 2016; 17(6): E904.
[http://dx.doi.org/10.3390/ijms17060904] [PMID: 27338353]
[31]
Salamon A, Zádori D, Szpisjak L, Klivényi P, Vécsei L. Neuroprotection in Parkinson’s disease: facts and hopes. J Neural Transm (Vienna) 2020; 127(5): 821-9.
[http://dx.doi.org/10.1007/s00702-019-02115-8] [PMID: 31828513]
[32]
Tetrud JW, Langston JW. The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 1989; 245(4917): 519-22.
[http://dx.doi.org/10.1126/science.2502843] [PMID: 2502843]
[33]
Parkinson Study Group. A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol 2004; 61(4): 561-6.
[http://dx.doi.org/10.1001/archneur.61.4.561] [PMID: 15096406]
[34]
Deeks ED. Safinamide: First global approval. Drugs 2015; 75(6): 705-11.
[http://dx.doi.org/10.1007/s40265-015-0389-7] [PMID: 25851099]
[35]
Koller WC, Cersosimo MG. Neuroprotection in Parkinson’s disease: An elusive goal. Curr Neurol Neurosci Rep 2004; 4(4): 277-83.
[http://dx.doi.org/10.1007/s11910-004-0052-2] [PMID: 15217541]
[36]
Thom SR, Taber RL, Mendiguren II, Clark JM, Hardy KR, Fisher AB. Delayed neuropsychologic sequelae after carbon monoxide poisoning: Prevention by treatment with hyperbaric oxygen. Ann Emerg Med 1995; 25(4): 474-80.
[http://dx.doi.org/10.1016/S0196-0644(95)70261-X] [PMID: 7710151]
[37]
Choi IS. Delayed neurologic sequelae in carbon monoxide intoxication. Arch Neurol 1983; 40(7): 433-5.
[http://dx.doi.org/10.1001/archneur.1983.04050070063016] [PMID: 6860181]
[38]
Lai CY, Chou MC, Lin CL, Kao CH. Increased risk of Parkinson disease in patients with carbon monoxide intoxication: A population-based cohort study. Medicine (Baltimore) 2015; 94(19): e869.
[http://dx.doi.org/10.1097/MD.0000000000000869] [PMID: 25984676]
[39]
Alonso JR, Cardellach F, López S, Casademont J, Miró O. Carbon monoxide specifically inhibits cytochrome c oxidase of human mitochondrial respiratory chain. Pharmacol Toxicol 2003; 93(3): 142-6.
[http://dx.doi.org/10.1034/j.1600-0773.2003.930306.x] [PMID: 12969439]
[40]
Thom SR. Carbon monoxide-mediated brain lipid peroxidation in the rat. J Appl Physiol 1990; 68(3): 997-1003.
[http://dx.doi.org/10.1152/jappl.1990.68.3.997] [PMID: 2341364]
[41]
Kao HW, Cho NY, Hsueh CJ, et al. Delayed parkinsonism after CO intoxication: evaluation of the substantia nigra with inversion-recovery MR imaging. Radiology 2012; 265(1): 215-21.
[http://dx.doi.org/10.1148/radiol.12112714] [PMID: 22829682]
[42]
Gash DM, Rutland K, Hudson NL, et al. Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity. Ann Neurol 2008; 63(2): 184-92.
[http://dx.doi.org/10.1002/ana.21288] [PMID: 18157908]
[43]
Guehl D, Bezard E, Dovero S, Boraud T, Bioulac B, Gross C. Trichloroethylene and parkinsonism: A human and experimental observation. Eur J Neurol 1999; 6(5): 609-11.
[http://dx.doi.org/10.1046/j.1468-1331.1999.650609.x] [PMID: 10457397]
[44]
Goldman SM. Trichloroethylene and Parkinson’s disease: Dissolving the puzzle. Expert Rev Neurother 2010; 10(6): 835-7.
[http://dx.doi.org/10.1586/ern.10.61] [PMID: 20518596]
[45]
Liu M, Shin EJ, Dang DK, et al. Trichloroethylene and Parkinson’s disease: Risk assessment. Mol Neurobiol 2018; 55(7): 6201-14.
[http://dx.doi.org/10.1007/s12035-017-0830-x] [PMID: 29270919]
[46]
Farrall AJ, Wardlaw JM. Blood-brain barrier: Ageing and microvascular disease--systematic review and meta-analysis. Neurobiol Aging 2009; 30(3): 337-52.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.07.015] [PMID: 17869382]
[47]
Conde JR, Streit WJ. Microglia in the aging brain. J Neuropathol Exp Neurol 2006; 65(3): 199-203.
[http://dx.doi.org/10.1097/01.jnen.0000202887.22082.63] [PMID: 16651881]
[48]
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 2014; 13(10): 1045-60.
[http://dx.doi.org/10.1016/S1474-4422(14)70117-6] [PMID: 25231526]
[49]
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 461-91.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[50]
Erekat NS. Apoptosis and its Role in Parkinson’s Disease. In: Stoker TB, Greenland JC, Eds. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Brisbane, Australia: Codon Publications 2018.
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch4]
[51]
Mizuno Y, Saitoh T, Sone N. Inhibition of mitochondrial NADH-ubiquinone oxidoreductase activity by 1-methyl-4-phenylpyridinium ion. Biochem Biophys Res Commun 1987; 143(1): 294-9.
[http://dx.doi.org/10.1016/0006-291X(87)90664-4] [PMID: 3103619]
[52]
Wang YM, Pu P, Le WD. ATP depletion is the major cause of MPP+ induced dopamine neuronal death and worm lethality in alpha-synuclein transgenic C. elegans. Neurosci Bull 2007; 23(6): 329-35.
[http://dx.doi.org/10.1007/s12264-007-0049-3] [PMID: 18064062]
[53]
Lo CP, Chen SY, Lee KW, et al. Brain injury after acute carbon monoxide poisoning: early and late complications. AJR Am J Roentgenol 2007; 189(4): W205-11.
[http://dx.doi.org/10.2214/AJR.07.2425] [PMID: 17885032]
[54]
Thom SR. Dehydrogenase conversion to oxidase and lipid peroxidation in brain after carbon monoxide poisoning. J Appl Physiol 1992; 73(4): 1584-9.
[http://dx.doi.org/10.1152/jappl.1992.73.4.1584] [PMID: 1447108]
[55]
Liu M, Choi DY, Hunter RL, et al. Trichloroethylene induces dopaminergic neurodegeneration in Fisher 344 rats. J Neurochem 2010; 112(3): 773-83.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06497.x] [PMID: 19922440]
[56]
Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE. Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med 2013; 62: 65-75.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.032] [PMID: 23395780]
[57]
Gubellini P, Picconi B, Di Filippo M, Calabresi P. Downstream mechanisms triggered by mitochondrial dysfunction in the basal ganglia: From experimental models to neurodegenerative diseases. Biochim Biophys Acta 2010; 1802(1): 151-61.
[http://dx.doi.org/10.1016/j.bbadis.2009.08.001] [PMID: 19683569]
[58]
Keane PC, Kurzawa M, Blain PG, Morris CM. Mitochondrial dysfunction in Parkinson’s disease. Parkinsons Dis 2011; 2011: 716871.
[http://dx.doi.org/10.4061/2011/716871] [PMID: 21461368]
[59]
Wolozin B, Golts N. Iron and Parkinson’s disease. Neuroscientist 2002; 8(1): 22-32.
[http://dx.doi.org/10.1177/107385840200800107] [PMID: 11843096]
[60]
Shi L, Huang C, Luo Q, et al. The association of iron and the pathologies of Parkinson’s Diseases in MPTP/MPP+-induced neuronal degeneration in non-human primates and in cell culture. Front Aging Neurosci 2019; 11: 215.
[http://dx.doi.org/10.3389/fnagi.2019.00215] [PMID: 31543809]
[61]
Sherer TB, Betarbet R, Testa CM, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 2003; 23(34): 10756-64.
[http://dx.doi.org/10.1523/JNEUROSCI.23-34-10756.2003] [PMID: 14645467]
[62]
Greenamyre JT, Betarbet R, Sherer TB. The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord 2003; 9 (Suppl. 2): S59-64.
[http://dx.doi.org/10.1016/S1353-8020(03)00023-3] [PMID: 12915069]
[63]
Perier C, Bové J, Vila M, Przedborski S. The rotenone model of Parkinson’s disease. Trends Neurosci 2003; 26(7): 345-6.
[http://dx.doi.org/10.1016/S0166-2236(03)00144-9] [PMID: 12850429]
[64]
Tawara T, Fukushima T, Hojo N, et al. Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch Toxicol 1996; 70(9): 585-9.
[http://dx.doi.org/10.1007/s002040050316] [PMID: 8831909]
[65]
Cochemé HM, Murphy MP. Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 2008; 283(4): 1786-98.
[http://dx.doi.org/10.1074/jbc.M708597200] [PMID: 18039652]
[66]
Yamada K, Fukushima T. Mechanism of cytotoxicity of paraquat. II. Organ specificity of paraquat-stimulated lipid peroxidation in the inner membrane of mitochondria. Exp Toxicol Pathol 1993; 45(5-6): 375-80.
[67]
Elwan MA, Richardson JR, Guillot TS, Caudle WM, Miller GW. Pyrethroid pesticide-induced alterations in dopamine transporter function. Toxicol Appl Pharmacol 2006; 211(3): 188-97.
[http://dx.doi.org/10.1016/j.taap.2005.06.003] [PMID: 16005927]
[68]
Hansen MRH, Jørs E, Lander F, et al. Neurological deficits after long-term Pyrethroid exposure. Environ Health Insights 2017; 11: 1178630217700628.
[http://dx.doi.org/10.1177/1178630217700628] [PMID: 28469448]
[69]
Gassner B, Wüthrich A, Scholtysik G, Solioz M. The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Ther 1997; 281(2): 855-60.
[PMID: 9152394]
[70]
Cicchetti F, Lapointe N, Roberge-Tremblay A, et al. Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol Dis 2005; 20(2): 360-71.
[http://dx.doi.org/10.1016/j.nbd.2005.03.018] [PMID: 16242641]
[71]
Shukla S, Singh D, Kumar V, et al. NADPH oxidase mediated maneb- and paraquat-induced oxidative stress in rat polymorphs: Crosstalk with mitochondrial dysfunction. Pestic Biochem Physiol 2015; 123: 74-86.
[http://dx.doi.org/10.1016/j.pestbp.2015.03.007] [PMID: 26267055]
[72]
Lhermitte J, Kraus WM, McAlpine D. Original papers: On the occurrence of abnormal deposits of iron in the brain in parkinsonism with special reference to its localisation. J Neurol Psychopathol 1924; 5(19): 195-208.
[http://dx.doi.org/10.1136/jnnp.s1-5.19.195] [PMID: 21611545]
[73]
Mastroberardino PG, Hoffman EK, Horowitz MP, et al. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiol Dis 2009; 34(3): 417-31.
[http://dx.doi.org/10.1016/j.nbd.2009.02.009] [PMID: 19250966]
[74]
Salazar J, Mena N, Hunot S, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA 2008; 105(47): 18578-83.
[http://dx.doi.org/10.1073/pnas.0804373105] [PMID: 19011085]
[75]
Sofic E, Riederer P, Heinsen H, et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm (Vienna) 1988; 74(3): 199-205.
[http://dx.doi.org/10.1007/BF01244786] [PMID: 3210014]
[76]
Nuñez MT, Chana-Cuevas P. New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals (Basel) 2018; 11(4): E109.
[http://dx.doi.org/10.3390/ph11040109] [PMID: 30347635]
[77]
Devos D, Moreau C, Devedjian JC, et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 2014; 21(2): 195-210.
[http://dx.doi.org/10.1089/ars.2013.5593] [PMID: 24251381]
[78]
Galvin JE, Giasson B, Hurtig HI, Lee VM, Trojanowski JQ. Neurodegeneration with brain iron accumulation, type 1 is characterized by alpha-, beta-, and gamma-synuclein neuropathology. Am J Pathol 2000; 157(2): 361-8.
[http://dx.doi.org/10.1016/S0002-9440(10)64548-8] [PMID: 10934140]
[79]
Wakabayashi K, Fukushima T, Koide R, et al. Juvenile-onset generalized neuroaxonal dystrophy (Hallervorden-Spatz disease) with diffuse neurofibrillary and lewy body pathology. Acta Neuropathol 2000; 99(3): 331-6.
[http://dx.doi.org/10.1007/s004010050049] [PMID: 10663979]
[80]
Uversky VN. Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 2007; 103(1): 17-37.
[PMID: 17623039]
[81]
Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004; 5(11): 863-73.
[http://dx.doi.org/10.1038/nrn1537] [PMID: 15496864]
[82]
Koeppen AH. The history of iron in the brain. J Neurol Sci 1995; 134 (Suppl.): 1-9.
[http://dx.doi.org/10.1016/0022-510X(95)00202-D] [PMID: 8847538]
[83]
Aschner M, Erikson KM, Dorman DC. Manganese dosimetry: Species differences and implications for neurotoxicity. Crit Rev Toxicol 2005; 35(1): 1-32.
[http://dx.doi.org/10.1080/10408440590905920] [PMID: 15742901]
[84]
Aschner M, Lukey B, Tremblay A. The Manganese Health Research Program (MHRP): status report and future research needs and directions. Neurotoxicology 2006; 27(5): 733-6.
[http://dx.doi.org/10.1016/j.neuro.2005.10.005] [PMID: 16325914]
[85]
McMillan DE. A brief history of the neurobehavioral toxicity of manganese: Some unanswered questions. Neurotoxicology 1999; 20(2-3): 499-507.
[PMID: 10385908]
[86]
Peres TV, Ong LK, Costa AP, et al. Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics 2016; 8(6): 597-604.
[http://dx.doi.org/10.1039/C5MT00265F] [PMID: 26790482]
[87]
Peres TV, Schettinger MR, Chen P, et al. Manganese-induced neurotoxicity: A review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 2016; 17(1): 57.
[http://dx.doi.org/10.1186/s40360-016-0099-0] [PMID: 27814772]
[88]
Bowman AB, Kwakye GF, Herrero Hernández E, Aschner M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 2011; 25(4): 191-203.
[http://dx.doi.org/10.1016/j.jtemb.2011.08.144] [PMID: 21963226]
[89]
Sadeghi L, Tanwir F, Yousefi BV. Physiological and biochemical effects of echium amoenum extract on Mn2+-imposed Parkinson like disorder in rats. Adv Pharm Bull 2018; 8(4): 705-13.
[http://dx.doi.org/10.15171/apb.2018.079] [PMID: 30607343]
[90]
Olanow CW. Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci 2004; 1012: 209-23.
[http://dx.doi.org/10.1196/annals.1306.018] [PMID: 15105268]
[91]
Ellingsen DG, Shvartsman G, Bast-Pettersen R, Chashchin M, Thomassen Y, Chashchin V. Neurobehavioral performance of patients diagnosed with manganism and idiopathic Parkinson disease. Int Arch Occup Environ Health 2019; 92(3): 383-94.
[http://dx.doi.org/10.1007/s00420-019-01415-6] [PMID: 30790043]
[92]
Burton NC, Schneider JS, Syversen T, Guilarte TR. Effects of chronic manganese exposure on glutamatergic and GABAergic neurotransmitter markers in the nonhuman primate brain. Toxicol Sci 2009; 111(1): 131-9.
[http://dx.doi.org/10.1093/toxsci/kfp124] [PMID: 19520674]
[93]
Ali SF, Duhart HM, Newport GD, Lipe GW, Slikker W Jr. Manganese-induced reactive oxygen species: comparison between Mn+2 and Mn+3. Neurodegeneration 1995; 4(3): 329-34.
[http://dx.doi.org/10.1016/1055-8330(95)90023-3] [PMID: 8581566]
[94]
Dobson AW, Weber S, Dorman DC, Lash LK, Erikson KM, Aschner M. Oxidative stress is induced in the rat brain following repeated inhalation exposure to manganese sulfate. Biol Trace Elem Res 2003; 93(1-3): 113-26.
[http://dx.doi.org/10.1385/BTER:93:1-3:113] [PMID: 12835496]
[95]
Erikson KM, Dorman DC, Lash LH, Dobson AW, Aschner M. Airborne manganese exposure differentially affects end points of oxidative stress in an age- and sex-dependent manner. Biol Trace Elem Res 2004; 100(1): 49-62.
[http://dx.doi.org/10.1385/BTER:100:1:049] [PMID: 15258319]
[96]
Milatovic D, Yin Z, Gupta RC, et al. Manganese induces oxidative impairment in cultured rat astrocytes. Toxicol Sci 2007; 98(1): 198-205.
[http://dx.doi.org/10.1093/toxsci/kfm095] [PMID: 17468184]
[97]
Verina T, Kiihl SF, Schneider JS, Guilarte TR. Manganese exposure induces microglia activation and dystrophy in the substantia nigra of non-human primates. Neurotoxicology 2011; 32(2): 215-26.
[http://dx.doi.org/10.1016/j.neuro.2010.11.003] [PMID: 21112353]
[98]
Zhao F, Cai T, Liu M, Zheng G, Luo W, Chen J. Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci 2009; 107(1): 156-64.
[http://dx.doi.org/10.1093/toxsci/kfn213] [PMID: 18836210]
[99]
Galvani P, Fumagalli P, Santagostino A. Vulnerability of mitochondrial complex I in PC12 cells exposed to manganese. Eur J Pharmacol 1995; 293(4): 377-83.
[http://dx.doi.org/10.1016/0926-6917(95)90058-6] [PMID: 8748691]
[100]
Zwingmann C, Leibfritz D, Hazell AS. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis. J Cereb Blood Flow Metab 2003; 23(6): 756-71.
[http://dx.doi.org/10.1097/01.WCB.0000056062.25434.4D] [PMID: 12796724]
[101]
Singh J, Husain R, Tandon SK, Seth PK, Chandra SV. Biochemical and histopathological alterations in early manganese toxicity in rats. Environ Physiol Biochem 1974; 4(1): 16-23.
[PMID: 4282072]
[102]
Sloot WN, Gramsbergen JB. Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res 1994; 657(1-2): 124-32.
[http://dx.doi.org/10.1016/0006-8993(94)90959-8] [PMID: 7820609]
[103]
Sloot WN, van der Sluijs-Gelling AJ, Gramsbergen JB. Selective lesions by manganese and extensive damage by iron after injection into rat striatum or hippocampus. J Neurochem 1994; 62(1): 205-16.
[http://dx.doi.org/10.1046/j.1471-4159.1994.62010205.x] [PMID: 7505311]
[104]
Parenti M, Rusconi L, Cappabianca V, Parati EA, Groppetti A. Role of dopamine in manganese neurotoxicity. Brain Res 1988; 473(2): 236-40.
[http://dx.doi.org/10.1016/0006-8993(88)90852-9] [PMID: 2852985]
[105]
Gavin CE, Gunter KK, Gunter TE. Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology 1999; 20(2-3): 445-53.
[PMID: 10385903]
[106]
Fleming L, Mann JB, Bean J, Briggle T, Sanchez-Ramos JR. Parkinson’s disease and brain levels of organochlorine pesticides. Ann Neurol 1994; 36(1): 100-3.
[http://dx.doi.org/10.1002/ana.410360119] [PMID: 7517654]
[107]
Corrigan FM, Murray L, Wyatt CL, Shore RF. Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson’s disease. Exp Neurol 1998; 150(2): 339-42.
[http://dx.doi.org/10.1006/exnr.1998.6776] [PMID: 9527905]
[108]
Corrigan FM, Wienburg CL, Shore RF, Daniel SE, Mann D. Organochlorine insecticides in substantia nigra in Parkinson’s disease. J Toxicol Environ Health A 2000; 59(4): 229-34.
[http://dx.doi.org/10.1080/009841000156907] [PMID: 10706031]
[109]
Weisskopf MG, Knekt P, O’Reilly EJ, et al. Persistent organochlorine pesticides in serum and risk of Parkinson disease. Neurology 2010; 74(13): 1055-61.
[http://dx.doi.org/10.1212/WNL.0b013e3181d76a93] [PMID: 20350979]
[110]
Petersen MS, Halling J, Bech S, et al. Impact of dietary exposure to food contaminants on the risk of Parkinson’s disease. Neurotoxicology 2008; 29(4): 584-90.
[http://dx.doi.org/10.1016/j.neuro.2008.03.001] [PMID: 18455239]
[111]
Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 1990; 54(3): 823-7.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb02325.x] [PMID: 2154550]
[112]
Schapira AH, Mann VM, Cooper JM, et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 1990; 55(6): 2142-5.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb05809.x] [PMID: 2121905]
[113]
Hirata Y, Nagatsu T. Rotenone and CCCP inhibit tyrosine hydroxylation in rat striatal tissue slices. Toxicology 2005; 216(1): 9-14.
[http://dx.doi.org/10.1016/j.tox.2005.07.010] [PMID: 16115719]
[114]
Bywood PT, Johnson SM. Mitochondrial complex inhibitors preferentially damage substantia nigra dopamine neurons in rat brain slices. Exp Neurol 2003; 179(1): 47-59.
[http://dx.doi.org/10.1006/exnr.2002.8044] [PMID: 12504867]
[115]
Miller GW. Paraquat: The red herring of Parkinson’s disease research. Toxicol Sci 2007; 100(1): 1-2.
[http://dx.doi.org/10.1093/toxsci/kfm223] [PMID: 17934192]
[116]
Tanner CM, Kamel F, Ross GW, et al. Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 2011; 119(6): 866-72.
[http://dx.doi.org/10.1289/ehp.1002839] [PMID: 21269927]
[117]
Moretto A, Colosio C. The role of pesticide exposure in the genesis of Parkinson’s disease: epidemiological studies and experimental data. Toxicology 2013; 307: 24-34.
[http://dx.doi.org/10.1016/j.tox.2012.11.021] [PMID: 23246862]
[118]
Pezzoli G, Cereda E. Exposure to pesticides or solvents and risk of Parkinson disease. Neurology 2013; 80(22): 2035-41.
[http://dx.doi.org/10.1212/WNL.0b013e318294b3c8] [PMID: 23713084]
[119]
McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson’s disease: Selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 2002; 10(2): 119-27.
[http://dx.doi.org/10.1006/nbdi.2002.0507] [PMID: 12127150]
[120]
Fahim MA, Howarth FC, Nemmar A, et al. Vitamin E ameliorates the decremental effect of paraquat on cardiomyocyte contractility in rats. PLoS One 2013; 8(3): e57651.
[http://dx.doi.org/10.1371/journal.pone.0057651] [PMID: 23526948]
[121]
McCormack AL, Atienza JG, Johnston LC, Andersen JK, Vu S, Di Monte DA. Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. J Neurochem 2005; 93(4): 1030-7.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03088.x] [PMID: 15857406]
[122]
Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW. Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci 2005; 88(1): 193-201.
[http://dx.doi.org/10.1093/toxsci/kfi304]
[123]
Peng J, Mao XO, Stevenson FF, Hsu M, Andersen JK. The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J Biol Chem 2004; 279(31): 32626-32.
[http://dx.doi.org/10.1074/jbc.M404596200] [PMID: 15155744]
[124]
Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol 2003; 53 (Suppl. 3): S26-36.
[http://dx.doi.org/10.1002/ana.10483] [PMID: 12666096]
[125]
Castello PR, Drechsel DA, Patel M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem 2007; 282(19): 14186-93.
[http://dx.doi.org/10.1074/jbc.M700827200] [PMID: 17389593]
[126]
Wu S, Lei L, Song Y, et al. Mutation of hop-1 and pink-1 attenuates vulnerability of neurotoxicity in C. elegans: the role of mitochondria-associated membrane proteins in Parkinsonism. Exp Neurol 2018; 309: 67-78.
[http://dx.doi.org/10.1016/j.expneurol.2018.07.018] [PMID: 30076829]
[127]
Adam A, Smith LL, Cohen GM. An assessment of the role of redox cycling in mediating the toxicity of paraquat and nitrofurantoin. Environ Health Perspect 1990; 85: 113-7.
[PMID: 2384057]
[128]
Ho YS, Vincent R, Dey MS, Slot JW, Crapo JD. Transgenic models for the study of lung antioxidant defense: enhanced manganese-containing superoxide dismutase activity gives partial protection to B6C3 hybrid mice exposed to hyperoxia. Am J Respir Cell Mol Biol 1998; 18(4): 538-47.
[http://dx.doi.org/10.1165/ajrcmb.18.4.2959] [PMID: 9533942]
[129]
Tripathi P, Singh A, Agrawal S, Prakash O, Singh MP. Cypermethrin alters the status of oxidative stress in the peripheral blood: Relevance to Parkinsonism. J Physiol Biochem 2014; 70(4): 915-24.
[http://dx.doi.org/10.1007/s13105-014-0359-7] [PMID: 25270427]
[130]
Ferraz HB, Bertolucci PH, Pereira JS, Lima JG, Andrade LA. Chronic exposure to the fungicide maneb may produce symptoms and signs of CNS manganese intoxication. Neurology 1988; 38(4): 550-3.
[http://dx.doi.org/10.1212/WNL.38.4.550] [PMID: 3352909]
[131]
Sandhir R, Gill KD. Effect of lead on the biological activity of calmodulin in rat brain. Exp Mol Pathol 1994; 61(1): 69-75.
[http://dx.doi.org/10.1006/exmp.1994.1026] [PMID: 7995380]
[132]
Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 2001; 276(47): 44284-96.
[http://dx.doi.org/10.1074/jbc.M105343200] [PMID: 11553618]
[133]
Aquilonius SM, Hartvig P. A Swedish county with unexpectedly high utilization of anti-parkinsonian drugs. Acta Neurol Scand 1986; 74(5): 379-82.
[http://dx.doi.org/10.1111/j.1600-0404.1986.tb03529.x] [PMID: 3825495]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy