Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Breviscapine Combined with BMSCs Reduces Aβ Deposition in Rat with Alzheimer's Disease by Regulating Circular RNA ciRS-7

Author(s): Fengqin Sun, Yulin Zhang, Xinran Wu, Xu Xu, Chaodie Zhu and Wei Huang*

Volume 23, Issue 1, 2023

Published on: 13 January, 2022

Page: [76 - 86] Pages: 11

DOI: 10.2174/1566524022666220113151044

Price: $65

Open Access Journals Promotions 2
Abstract

Aims: This study aimed to clarify that breviscapine combined with bone marrow mesenchymal stem cells (BMSCs) treatment can reduce Aβ deposition in Alzheimer's disease (AD) patients.

Background: AD is a common degenerative disease of the central nervous system. Aβ protein deposition in the cerebral cortex and hippocampus causes neuronal peroxidation damage, synaptic dysfunction, neuroinflammation, and nerve cell apoptosis, and ultimately leads to AD.

Objective: To investigate whether breviscapine combined with BMSCs treatment can reduce Aβ deposition in AD.

Methods: The AD rat model was successfully induced by Aβ1-42. The expression of protein and mRNA was detected by western blot and reverse transcription-quantitative PCR (RT-qPCR), respectively.

Results: In AD rat brain tissue, the expression of circular RNA ciRS-7 (ciRS-7), ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), and NF-kappaB p65 was significantly downregulated, and the expression of β-amyloid precursor protein (APP), β-site APPcleaving enzyme 1 (BAEC1), and Aβ was upregulated. The expression of ciRS-7, UCHL1, and p65 was significantly upregulated after breviscapine or BMSCs treatment, and there was increased APP and BAEC1 degradation. Notably, breviscapine combined with BMSCs treatment was more effective than either treatment alone. In SH-SY5Y cells, overexpression of ciRS-7 reduced Aβ deposition by upregulating UCHL1 to degrade APP and BAEC1, but these effects were reversed with inhibition of NF-kB signaling. Finally, knockdown of ciRS-7 elevated Aβ, APP, and BAEC1 expression in each group of rats compared with the control.

Conclusion: Breviscapine combined with BMSCs treatment can reduce Aβ deposition in AD rats and promote the degradation of APP and BAEC1 by activating NF-kB to promote UCHL1 expression.

Keywords: Alzheimer's disease, breviscapine, bone marrow mesenchymal stem cells, circular RNA ciRS-7, Aβ deposition.

[1]
Weidner WS, Barbarino P. The state of the art of dementia research: new frontiers. Alzheimers Dement 2019; 15(7): 1473.
[http://dx.doi.org/10.1016/j.jalz.2019.06.4115]
[2]
Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer’s disease. Medical principles and practice: international journal of the Kuwait University. Health Science Centre 2015; 24(1): 1-10.
[http://dx.doi.org/10.1159/000369101] [PMID: 25471398]
[3]
Breydo L, Kurouski D, Rasool S, et al. Structural differences between amyloid beta oligomers. Biochem Biophys Res Commun 2016; 477(4): 700-5.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.122] [PMID: 27363332]
[4]
Manczak M, Kandimalla R, Fry D, Sesaki H, Reddy PH. Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer’s disease. Hum Mol Genet 2016; 25(23): 5148-66.
[http://dx.doi.org/10.1093/hmg/ddw330] [PMID: 27677309]
[5]
Hung SY, Fu WM. Drug candidates in clinical trials for Alzheimer’s disease. J Biomed Sci 2017; 24(1): 47.
[http://dx.doi.org/10.1186/s12929-017-0355-7] [PMID: 28720101]
[6]
Liu XY, Yang LP, Zhao L. Stem cell therapy for Alzheimer’s disease. World J Stem Cells 2020; 12(8): 787-802.
[http://dx.doi.org/10.4252/wjsc.v12.i8.787] [PMID: 32952859]
[7]
Xie Q, Liu R, Jiang J, et al. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment? Stem Cell Res Ther 2020; 11(1): 519.
[http://dx.doi.org/10.1186/s13287-020-02011-z] [PMID: 33261658]
[8]
Pombero A, Garcia-Lopez R, Martinez S. Brain mesenchymal stem cells: physiology and pathological implications. Dev Growth Differ 2016; 58(5): 469-80.
[http://dx.doi.org/10.1111/dgd.12296] [PMID: 27273235]
[9]
Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004; 95(1): 9-20.
[http://dx.doi.org/10.1161/01.RES.0000135902.99383.6f] [PMID: 15242981]
[10]
Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 2010; 21(9): 1045-56.
[http://dx.doi.org/10.1089/hum.2010.115] [PMID: 20565251]
[11]
Dezawa M, Kanno H, Hoshino M, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004; 113(12): 1701-10.
[http://dx.doi.org/10.1172/JCI200420935] [PMID: 15199405]
[12]
Li WY, Choi YJ, Lee PH, et al. Mesenchymal stem cells for ischemic stroke: Changes in effects after ex vivo culturing. Cell Transplant 2008; 17(9): 1045-59.
[http://dx.doi.org/10.3727/096368908786991551] [PMID: 19177841]
[13]
Kim YJ, Park HJ, Lee G, et al. Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 2009; 57(1): 13-23.
[http://dx.doi.org/10.1002/glia.20731] [PMID: 18661552]
[14]
López-González R, Kunckles P, Velasco I. Transient recovery in a rat model of familial amyotrophic lateral sclerosis after transplantation of motor neurons derived from mouse embryonic stem cells. Cell Transplant 2009; 18(10): 1171-81.
[http://dx.doi.org/10.3727/096368909X12483162197123] [PMID: 19660174]
[15]
Lee PH, Kim JW, Bang OY, Ahn YH, Joo IS, Huh K. Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther 2008; 83(5): 723-30.
[http://dx.doi.org/10.1038/sj.clpt.6100386] [PMID: 17898702]
[16]
Li W-Y, Jin RL, Hu X-Y. Migration of PKH26-labeled mesenchymal stem cells in rats with Alzheimer's disease. Zhejiang Da Xue Xue Bao Yi Xue Ban 2012; 41(6): 659-64.
[PMID: 23239658]
[17]
Bae JS, Jin HK, Lee JK, Richardson JC, Carter JE. Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-β deposits and the improvement of synaptic transmission in a mouse model of pre-dementia Alzheimer’s disease. Curr Alzheimer Res 2013; 10(5): 524-31.
[http://dx.doi.org/10.2174/15672050113109990027] [PMID: 23036020]
[18]
Salem AM, Ahmed HH, Atta HM, Ghazy MA, Aglan HA. Potential of bone marrow mesenchymal stem cells in management of Alzheimer’s disease in female rats. Cell Biol Int 2014; 38(12): 1367-83.
[http://dx.doi.org/10.1002/cbin.10331] [PMID: 25044885]
[19]
Nakano M, Kubota K, Kobayashi E, et al. Bone marrow-derived mesenchymal stem cells improve cognitive impairment in an Alzheimer’s disease model by increasing the expression of microRNA-146a in hippocampus. Sci Rep 2020; 10(1): 10772.
[http://dx.doi.org/10.1038/s41598-020-67460-1] [PMID: 32612165]
[20]
Qin C, Lu Y, Wang K, et al. Transplantation of bone marrow mesenchymal stem cells improves cognitive deficits and alleviates neuropathology in animal models of Alzheimer’s disease: a meta-analytic review on potential mechanisms. Transl Neurodegener 2020; 9(1): 20.
[http://dx.doi.org/10.1186/s40035-020-00199-x] [PMID: 32460886]
[21]
Wen L, He T, Yu A, et al. Breviscapine: a review on its phytochemistry, pharmacokinetics and therapeutic effects. Am J Chin Med 2021; 49(6): 1369-97.
[http://dx.doi.org/10.1142/S0192415X21500646] [PMID: 34263720]
[22]
Wang JM, Xiu-Yun LV, Wang CH. Clinical study of breviscapine treated the patients with vascular dementia. Acta Academiae Medicinae Weifang 2007; 29(6): 428-30.
[23]
Li Z, Zhang XB, Gu JH, Zeng YQ, Li JT. Breviscapine exerts neuroprotective effects through multiple mechanisms in APP/PS1 transgenic mice. Mol Cell Biochem 2020; 468(1-2): 1-11.
[http://dx.doi.org/10.1007/s11010-020-03698-7] [PMID: 32144518]
[24]
Wang Z, Li H, Yan J, Liu Y. Flavonoid compound breviscapine suppresses human osteosarcoma Saos-2 progression property and induces apoptosis by regulating mitochondria-dependent pathway. J Biochem Mol Toxicol 2021; 35(1): e22633.
[http://dx.doi.org/10.1002/jbt.22633] [PMID: 32969555]
[25]
Li Y, Li S, Li D. Breviscapine alleviates cognitive impairments induced by transient cerebral ischemia/reperfusion through its anti-inflammatory and anti-oxidant properties in a rat model. ACS Chem Neurosci 2020; 11(24): 4489-98.
[http://dx.doi.org/10.1021/acschemneuro.0c00697] [PMID: 33270442]
[26]
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011; 377(9770): 1019-31.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[27]
Xia H, Wu L, Chu M, et al. Effects of breviscapine on amyloid beta 1-42 induced Alzheimer’s disease mice: A HPLC-QTOF-MS based plasma metabonomics study. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1057: 92-100.
[http://dx.doi.org/10.1016/j.jchromb.2017.05.003] [PMID: 28511119]
[28]
Mei ZG, Situ B, Huang HH, et al. Influence of breviscapine on memory and antioxidation ability in rats with Alzheimer′s disease. Chung Kuo Yao Hsueh Tsa Chih 2012; 47: 347-50.
[29]
Liu MQ, Wei DF, Liu ZQ, et al. Research progress of Scutellarin’S effects on cognitive impairment and its mechanism. Chin J Basic Medicine Trad Chin Med 2019; 25(01): 139-42.
[30]
Chen L-L, Yang L. Regulation of circRNA biogenesis 2015; 12(4): 381-8.
[http://dx.doi.org/10.1080/15476286.2015.1020271]
[31]
Belousova EA, Filipenko ML, Kushlinskii NE. Circular RNA: new regulatory molecules. Bull Exp Biol Med 2018; 164(6): 803-15.
[http://dx.doi.org/10.1007/s10517-018-4084-z] [PMID: 29658072]
[32]
Wolf Agnieszka R, Stottmeister C, Jens M, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 2015; 58(5): 870-85.
[33]
You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 2015; 18(4): 603-10.
[http://dx.doi.org/10.1038/nn.3975] [PMID: 25714049]
[34]
Akhter R. Circular RNA and Alzheimer’s disease. Adv Exp Med Biol 2018; 1087: 239-43.
[http://dx.doi.org/10.1007/978-981-13-1426-1_19] [PMID: 30259371]
[35]
Ghafouri-Fard S, Safari M, Taheri M, Samadian M. Expression of linear and circular lncrnas in Alzheimer’s disease. J Mol Neurosci 2021. Online ahead of print
[http://dx.doi.org/10.1007/s12031-021-01900-z] [PMID: 34415549]
[36]
Zhao Y, Alexandrov PN, Jaber V, Lukiw WJ. Deficiency in the ubiquitin conjugating enzyme ube2a in Alzheimer’s disease (AD) is linked to deficits in a natural circular mirna-7 sponge (circRNA; ciRS-7). Genes (Basel) 2016; 7(12): 116.
[http://dx.doi.org/10.3390/genes7120116] [PMID: 27929395]
[37]
Hu Z, Yang B, Mo X, Xiao H. Mechanism and regulation of autophagy and its role in neuronal diseases. Mol Neurobiol 2015; 52(3): 1190-209.
[http://dx.doi.org/10.1007/s12035-014-8921-4] [PMID: 25316381]
[38]
Shi Z, Chen T, Yao Q, et al. The circular RNA ciRS-7 promotes APP and BACE1 degradation in an NF-κB-dependent manner. FEBS J 2017; 284(7): 1096-109.
[http://dx.doi.org/10.1111/febs.14045] [PMID: 28296235]
[39]
Kim HY, Lee DK, Chung BR, Kim HV, Kim Y. Intracerebroventricular injection of amyloid-β peptides in normal mice to acutely induce Alzheimer-like cognitive deficits. J Vis Exp 2016; 109(109): 53308.
[http://dx.doi.org/10.3791/53308] [PMID: 27023127]
[40]
Rezaeiasl Z, Salami M, Sepehri G. The effects of probiotic lactobacillus and bifidobacterium strains on memory and learning behavior, long-term potentiation (LTP), and some biochemical parameters in β-amyloid-induced rat’s model of Alzheimer’s disease. Prev Nutr Food Sci 2019; 24(3): 265-73.
[http://dx.doi.org/10.3746/pnf.2019.24.3.265] [PMID: 31608251]
[41]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[42]
Lee JK, Jin HK, Bae JS. Bone marrow-derived mesenchymal stem cells attenuate amyloid β-induced memory impairment and apoptosis by inhibiting neuronal cell death. Curr Alzheimer Res 2010; 7(6): 540-8.
[http://dx.doi.org/10.2174/156720510792231739] [PMID: 20455866]
[43]
Zhang H, Sun Y, Hu R, et al. The regulation of the UCH-L1 gene by transcription factor NF-κB in podocytes. Cell Signal 2013; 25(7): 1574-85.
[http://dx.doi.org/10.1016/j.cellsig.2013.03.018] [PMID: 23567262]
[44]
Zhang L, Dong ZF, Zhang JY. Immunomodulatory role of mesenchymal stem cells in Alzheimer’s disease. Life Sci 2020; 246: 117405.
[http://dx.doi.org/10.1016/j.lfs.2020.117405] [PMID: 32035129]
[45]
Barczewska M, Maksymowicz S, Zdolińska-Malinowska I, Siwek T, Grudniak M. Umbilical cord mesenchymal stem cells in amyotrophic lateral sclerosis: an original study. Stem Cell Rev Rep 2020; 16(5): 922-32.
[http://dx.doi.org/10.1007/s12015-020-10016-7] [PMID: 32725316]
[46]
Boika A, Aleinikava N, Chyzhyk V, Zafranskaya M, Nizheharodava D, Ponomarev V. Mesenchymal stem cells in Parkinson’s disease: motor and nonmotor symptoms in the early posttransplant period. Surg Neurol Int 2020; 11: 380.
[http://dx.doi.org/10.25259/SNI_233_2020] [PMID: 33408914]
[47]
Badyra B, Sułkowski M, Milczarek O, Majka M. Mesenchymal stem cells as a multimodal treatment for nervous system diseases. Stem Cells Transl Med 2020; 9(10): 1174-89.
[http://dx.doi.org/10.1002/sctm.19-0430] [PMID: 32573961]
[48]
Wu R, Liang Y, Xu M, et al. Advances in chemical constituents, clinical applications, pharmacology, pharmacokinetics and toxicology of Erigeron breviscapus. Front Pharmacol 2021; 12: 656335.
[http://dx.doi.org/10.3389/fphar.2021.656335] [PMID: 34539390]
[49]
Chen ZQ, Zhou Y, Chen F, et al. Breviscapine pretreatment inhibits myocardial inflammation and apoptosis in rats after coronary microembolization by activating the PI3K/Akt/GSK-3β signaling pathway. Drug Des Devel Ther 2021; 15: 843-55.
[http://dx.doi.org/10.2147/DDDT.S293382] [PMID: 33658766]
[50]
Ma Y, Li H, Guan S. Enhancement of the oral bioavailability of breviscapine by nanoemulsions drug delivery system. Drug Dev Ind Pharm 2015; 41(2): 177-82.
[http://dx.doi.org/10.3109/03639045.2014.947510] [PMID: 25113432]
[51]
Shi SL, Xu LY, Wu JJ, Li CY, Ge WH, Dai WY. Comparison of the distribution of breviscapine in the brain by different administration routes. Yao Xue Xue Bao 2009; 44(5): 515-8.
[PMID: 19618729]
[52]
Chen J, Yang J, Fei X, Wang X, Wang K. CircRNA ciRS-7: a novel oncogene in multiple cancers. Int J Biol Sci 2021; 17(1): 379-89.
[http://dx.doi.org/10.7150/ijbs.54292] [PMID: 33390857]
[53]
Zhou X, Li J, Zhou Y, et al. Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis. Aging (Albany NY) 2020; 12(20): 20163-83.
[http://dx.doi.org/10.18632/aging.103731] [PMID: 33099538]
[54]
Moldovan LI, Tsoi LC, Ranjitha U, et al. Characterization of circular RNA transcriptomes in psoriasis and atopic dermatitis reveals disease-specific expression profiles. Exp Dermatol 2021; 30(8): 1187-96.
[http://dx.doi.org/10.1111/exd.14227] [PMID: 33113213]
[55]
Cui M, Shen W, Qin W, et al. Circular RNA ciRS-7 promotes tube formation in microvascular endothelial cells through downregulation of miR-26a-5p. J Biochem Mol Toxicol 2020; 34(5): e22468.
[http://dx.doi.org/10.1002/jbt.22468] [PMID: 32053286]
[56]
Guglielmotto M, Monteleone D, Boido M, et al. Aβ1-42-mediated down-regulation of Uch-L1 is dependent on NF-κB activation and impaired BACE1 lysosomal degradation. Aging Cell 2012; 11(5): 834-44.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00854.x] [PMID: 22726800]
[57]
Zhang M, Deng Y, Luo Y, et al. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J Neurochem 2012; 120(6): 1129-38.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07644.x] [PMID: 22212137]
[58]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495(7441): 384-8.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[59]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[60]
Fernández-de Frutos M, Galán-Chilet I, Goedeke L, et al. MicroRNA 7 impairs insulin signaling and regulates aβ levels through posttranscriptional regulation of the insulin receptor substrate 2, insulin receptor, insulin-degrading enzyme, and liver x receptor pathway. Mol Cell Biol 2019; 39(22): e00170-17.
[http://dx.doi.org/10.1128/MCB.00170-19] [PMID: 31501273]
[61]
Latreille M, Hausser J, Stützer I, et al. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest 2014; 124(6): 2722-35.
[http://dx.doi.org/10.1172/JCI73066] [PMID: 24789908]
[62]
Huang H, Wei L, Qin T, Yang N, Li Z, Xu Z. Circular RNA ciRS-7 triggers the migration and invasion of esophageal squamous cell carcinoma via miR-7/KLF4 and NF-κB signals. Cancer Biol Ther 2019; 20(1): 73-80.
[http://dx.doi.org/10.1080/15384047.2018.1507254] [PMID: 30207835]
[63]
Su C, Han Y, Zhang H, et al. CiRS-7 targeting miR-7 modulates the progression of non-small cell lung cancer in a manner dependent on NF-κB signalling. J Cell Mol Med 2018; 22(6): 3097-107.
[http://dx.doi.org/10.1111/jcmm.13587] [PMID: 29532994]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy