Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Truncated Lactoferricin Peptide Controls Cervical Cancer Cell Proliferation via lncRNA-NKILA/NF-κB Feedback Loop

Author(s): Yuan Pan*, Yuting Jiang, Yingli Cui, Jihong Zhu and Yang Yu

Volume 29, Issue 3, 2022

Published on: 15 March, 2022

Page: [268 - 280] Pages: 13

DOI: 10.2174/0929866528666211206144110

Price: $65

Abstract

Background: Lactoferricin peptide (LP) has been reported to control cancer cell proliferation. NF-κB interacting lncRNA (NKILA) is a tumor suppressor in several cancers.

Objective: We aimed to explore the potential function of the truncated LP (TLP) in the prevention of cervical cancer cell proliferation.

Methods: Bioinformatics analysis via PPA-Pred2 showed that 18-aa N-terminus of truncated lactoferricin peptide (TLP18, FKCRRWQWRMKKLGAPSI) shows higher affinity with nuclear factor kappaB (NF-κB) than LP. The effects of LP and TLP18 on cervical cancer cells SiHa and HeLa and the related mechanisms were explored by investigating NF-κB and lncRNA-NKILA.

Results: TLP18 shows an inhibitory rate up to 0.4-fold higher than LP on the growth of cervical cancer cells (P<0.05). NKILA siRNA promoted cell growth whether LP or TLP18 treatment (P<0.05). TLP18 treatment increases the level of lncRNA-NKILA and reduces the level of NF-κB up to 0.2-fold and 0.6-fold higher than LP (P<0.05), respectively. NKILA siRNA increased the levels of NF-κB, cleaved caspase-3, and BAX (P<0.05). TLP18 increased apoptotic cell rate up to 0.2-fold higher than LP, while NKILA siRNA inhibited cell apoptosis cell growth even LP or TLP18 treatment.

Conclusion: Truncated Lactoferricin peptide controls cervical cancer cell proliferation via lncRNA- NKILA/NF-κB feedback loop.

Keywords: Long non-coding RNA, cervical cancer, truncated lactoferricin peptide, lncRNA-NKILA, nuclear factor kappaB (NF-κB), cell proliferation.

« Previous
Graphical Abstract
[1]
Fader, A.N. Surgery in cervical cancer. N. Engl. J. Med., 2018, 379(20), 1955-1957.
[http://dx.doi.org/10.1056/NEJMe1814034] [PMID: 30379600]
[2]
Thomas, G.M. Improved treatment for cervical cancer—concurrent chemotherapy and radiotherapy. N Engl. J. Med., 1999, 340(15), 1198-1200.
[http://dx.doi.org/10.1056/NEJM199904153401509]
[3]
Crafton, S.M.; Salani, R. Beyond chemotherapy: An overview and review of targeted therapy in cervical cancer. Clin. Ther., 2016, 38(3), 449-458.
[http://dx.doi.org/10.1016/j.clinthera.2016.02.007] [PMID: 26926322]
[4]
Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-kB in development and progression of human cancer. Virchows Arch., 2005, 446(5), 475-482.
[http://dx.doi.org/10.1007/s00428-005-1264-9] [PMID: 15856292]
[5]
Arias, M.; Hilchie, A.L.; Haney, E.F.; Bolscher, J.G.; Hyndman, M.E.; Hancock, R.E.; Vogel, H.J. Anticancer activities of bovine and human lactoferricin-derived peptides. Biochem. Cell Biol., 2017, 95(1), 91-98.
[http://dx.doi.org/10.1139/bcb-2016-0175] [PMID: 28165293]
[6]
Legrand, D.; Elass, E.; Carpentier, M.; Mazurier, J. Lactoferrin: A modulator of immune and inflammatory responses. Cell. Mol. Life Sci., 2005, 62(22), 2549-2559.
[http://dx.doi.org/10.1007/s00018-005-5370-2] [PMID: 16261255]
[7]
Chen, X.; Wang, X.; Wang, Y.; Yang, L.; Hu, J.; Xiao, W.; Fu, A.; Cai, L.; Li, X.; Ye, X.; Liu, Y.; Wu, W.; Shao, X.; Mao, Y.; Wei, Y.; Chen, L. Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. J. Control. Release, 2010, 145(1), 17-25.
[http://dx.doi.org/10.1016/j.jconrel.2010.03.007] [PMID: 20307599]
[8]
Chen, M.; Chi, Y.; Chen, H.; Zhao, L. Long non-coding RNA USP30-AS1 aggravates the malignant progression of cervical cancer by sequestering microRNA-299-3p and thereby overexpressing PTP4A1. Oncol. Lett., 2021, 22(1), 505.
[http://dx.doi.org/10.3892/ol.2021.12766] [PMID: 33986866]
[9]
Zhong, G.; Fang, X.; Xie, Q.; Wang, Y.; Lin, Z.; Lin, R.; Yao, T. Long non-coding RNA AK001903 regulates tumor progression in cervical cancer. Oncol. Lett., 2021, 21(2), 77.
[http://dx.doi.org/10.3892/ol.2020.12338] [PMID: 33363614]
[10]
Zhang, X.; Wang, Y.; Zhao, A.; Kong, F.; Jiang, L.; Wang, J. Long non-coding RNA LINC00511 accelerates proliferation and invasion in cervical cancer through targeting miR-324-5p/DRAM1 axis. OncoTargets Ther., 2020, 13, 10245-10256.
[http://dx.doi.org/10.2147/OTT.S255067] [PMID: 33116605]
[11]
Li, D.M.; Zhong, M.; Su, Q.B.; Song, F.M.; Xie, T.G.; He, J.H.; Wei, J.; Lu, G.S.; Hu, X.X.; Wei, G.N. Active fraction of Polyrhachis vicina Rogers (AFPR) suppressed breast cancer growth and progression via regulating EGR1/lncRNA-NKILA/NF-κB axis. Biomed. Pharmacother., 2020, 123, 109616.
[http://dx.doi.org/10.1016/j.biopha.2019.109616] [PMID: 31881485]
[12]
Jiang, P.; Han, X.; Zheng, Y.; Sui, J.; Bi, W. Long non-coding RNA NKILA serves as a biomarker in the early diagnosis and prognosis of patients with colorectal cancer. Oncol. Lett., 2019, 18(2), 2109-2117.
[http://dx.doi.org/10.3892/ol.2019.10524] [PMID: 31423284]
[13]
Zhang, W.; Guo, Q.; Liu, G.; Zheng, F.; Chen, J.; Huang, D.; Ding, L.; Yang, X.; Song, E.; Xiang, Y.; Yao, H. NKILA represses nasopharyngeal carcinoma carcinogenesis and metastasis by NF-κB pathway inhibition. PLoS Genet., 2019, 15(8), e1008325.
[http://dx.doi.org/10.1371/journal.pgen.1008325] [PMID: 31430288]
[14]
Hu, D.; Zhong, T.; Dai, Q. Long non-coding RNA NKILA reduces oral squamous cell carcinoma development through the NF-KappaB signaling pathway. Technol. Cancer Res. Treat., 2020, 19, 1533033820960747.
[http://dx.doi.org/10.1177/1533033820960747] [PMID: 33143574]
[15]
Lu, Z.; Li, Y.; Wang, J. Long non-coding RNA NKILA inhibits migration and invasion of non-small cell lung cancer via NF-κB/Snail pathway. J. Exp. Clin. Cancer Res., 2017, 36(1), 1-13.
[http://dx.doi.org/10.1186/s13046-017-0518-0] [PMID: 28049532]
[16]
Abbasi, W.A.; Asif, A.; Ben-Hur, A.; Minhas, F.U.A.A. Learning protein binding affinity using privileged information. BMC Bioinformatics, 2018, 19(1), 425.
[http://dx.doi.org/10.1186/s12859-018-2448-z] [PMID: 30442086]
[17]
Richardson, A.; de Antueno, R.; Duncan, R.; Hoskin, D.W. Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells. Biochem. Biophys. Res. Commun., 2009, 388(4), 736-741.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.083] [PMID: 19699713]
[18]
Esau, L; Sagar, S; Bajic, VB; Kaur, M Autophagy inhibition enhances the mitochondrial-mediated apoptosis induced by mangrove (Avicennia marina) extract in human breast cancer cells. 2015.
[19]
Meergans, T; Hildebrandt, A-K; Horak, D; Haenisch, C; Wendel, A The short prodomain influences caspase-3 activation in HeLa cells. Biochem. J., 2000, 349(1), 135-140.
[http://dx.doi.org/10.1042/bj3490135]
[20]
Karagül, Mİ; Aktaş, S; Yetkin, D; Bayrak, G; Çelikcan, D P53, Bcl2 and Bax expression and apoptosis in perifosine and vitamin D-treated endometrial cancer cell line (HEC1A). 2018, 2018, 1564.
[21]
Wang, J; Yan, S; Lu, H; Wang, S; Xu, D. METTL3 attenuates LPS-induced inflammatory response in macrophages via NF-κB signaling pathway. Mediat. inflam., 2019, 2019, 3120391.
[22]
Yu, N.; Huangyang, P.; Yang, X.; Han, X.; Yan, R.; Jia, H.; Shang, Y.; Sun, L. microRNA-7 suppresses the invasive potential of breast cancer cells and sensitizes cells to DNA damages by targeting histone methyltransferase SET8. J. Biol. Chem., 2013, 288(27), 19633-19642.
[http://dx.doi.org/10.1074/jbc.M113.475657] [PMID: 23720754]
[23]
Hilchie, A.L.; Vale, R.; Zemlak, T.S.; Hoskin, D.W. Generation of a hematologic malignancy-selective membranolytic peptide from the antimicrobial core (RRWQWR) of bovine lactoferricin. Exp. Mol. Pathol., 2013, 95(2), 192-198.
[http://dx.doi.org/10.1016/j.yexmp.2013.07.006] [PMID: 23892223]
[24]
Estrela, C.; Decurcio, Dde.A.; Silva, J.A.; Batista, A.C.; de Souza Lima, N.C.; de Freitas Silva, B.S.; de Souza, J.A.; Souza Costa, C.A. Immune-inflammatory cell profile and receptor activator of nuclear factor Kappa B ligand/osteoprotegerin expression in persistent apical periodontitis after root canal retreatment failure. J. Endod., 2016, 42(3), 439-446.
[http://dx.doi.org/10.1016/j.joen.2015.11.012] [PMID: 26806398]
[25]
Oh, U.; McCormick, M.J.; Datta, D.; Turner, R.V.; Bobb, K.; Monie, D.D.; Sliskovic, D.R.; Tanaka, Y.; Zhang, J.; Meshulam, J.; Jacobson, S. Inhibition of immune activation by a novel nuclear factor-kappa B inhibitor in HTLV-I-associated neurologic disease. Blood, 2011, 117(12), 3363-3369.
[http://dx.doi.org/10.1182/blood-2010-10-306571] [PMID: 21212284]
[26]
Papila, K.B.; Sozer, V.; Cigdem, K.P.; Durmus, S.; Kurtulus, D.; Papila, C.; Gelisgen, R.; Uzun, H. Circulating nuclear factor-kappa B mediates cancer-associated inflammation in human breast and colon cancer. J. Med. Biochem., 2021, 40(2), 150-159.
[http://dx.doi.org/10.5937/jomb0-27128] [PMID: 33776564]
[27]
Wu, N.; Xu, X.F.; Xin, J.Q.; Fan, J.W.; Wei, Y.Y.; Peng, Q.X.; Duan, L.F.; Wang, W.; Zhang, H. The effects of nuclear factor-kappa B in pancreatic stellate cells on inflammation and fibrosis of chronic pancreatitis. J. Cell. Mol. Med., 2021, 25(4), 2213-2227.
[http://dx.doi.org/10.1111/jcmm.16213] [PMID: 33377616]
[28]
Shunan, D.; Yu, M.; Guan, H.; Zhou, Y. Neuroprotective effect of Betalain against AlCl3-induced Alzheimer’s disease in Sprague Dawley Rats via putative modulation of oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway. Biomed. Pharmacother., 2021, 137, 111369.
[http://dx.doi.org/10.1016/j.biopha.2021.111369] [PMID: 33582452]
[29]
Sartori, T.; Santos, A.C.A.; Oliveira da Silva, R.; Kodja, G.; Rogero, M.M.; Borelli, P.; Fock, R.A. Branched chain amino acids improve mesenchymal stem cell proliferation, reducing nuclear factor kappa B expression and modulating some inflammatory properties. Nutrition, 2020, 78, 110935.
[http://dx.doi.org/10.1016/j.nut.2020.110935] [PMID: 32799043]
[30]
Zhang, L.; Wu, F.; Zhao, J. Transmembrane protein 45A regulates the proliferation, migration, and invasion of glioma cells through nuclear factor kappa-B. Anticancer Drugs, 2020, 31(9), 900-907.
[http://dx.doi.org/10.1097/CAD.0000000000000890] [PMID: 32568829]
[31]
Feng, Y.; Xia, J.; Xu, X.; Zhao, T.; Tan, Z.; Wang, Q.; Wang, J.; Meng, J.; Sanderson, C.; Lu, Z.; Yang, Y. Sesquiterpene lactone Bigelovin induces apoptosis of colon cancer cells through inducing IKK-β degradation and suppressing nuclear factor kappa B activation. Anticancer Drugs, 2021, 32(6), 664-673.
[http://dx.doi.org/10.1097/CAD.0000000000001073] [PMID: 33929997]
[32]
AboYoussef, AM.; Khalaf, MM.; Malak, MN.; Hamzawy, MA. Repurposing of sildenafil as antitumour; induction of cyclic guanosine monophosphate/protein kinase G pathway, caspase-dependent apoptosis and pivotal reduction of Nuclear factor kappa light chain enhancer of activated B cells in lung cancer. J. Pharm. Pharmacol., 2021, 73(8), 1080-1091.
[http://dx.doi.org/10.1093/jpp/rgab049]
[33]
Faustmann, G.; Tiran, B.; Trajanoski, S.; Obermayer-Pietsch, B.; Gruber, H.J.; Ribalta, J.; Roob, J.M.; Winklhofer-Roob, B.M. Activation of nuclear factor-kappa B subunits c-Rel, p65 and p50 by plasma lipids and fatty acids across the menstrual cycle. Free Radic. Biol. Med., 2020, 160, 488-500.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.012] [PMID: 32846215]
[34]
Ng, K.L.; Yap, N.Y.; Rajandram, R.; Small, D.; Pailoor, J.; Ong, T.A.; Razack, A.H.; Wood, S.T.; Morais, C.; Gobe, G.C. Nuclear factor-kappa B subunits and their prognostic cancer-specific survival value in renal cell carcinoma patients. Pathology, 2018, 50(5), 511-518.
[http://dx.doi.org/10.1016/j.pathol.2018.03.003] [PMID: 29935727]
[35]
Li, Y.; Yu, Y.; Zhang, Y.; Zhou, Y.; Li, C.; Zhu, J.; Yuan, H.; Lu, H. MAFIP is a tumor suppressor in cervical cancer that inhibits activation of the nuclear factor-kappa B pathway. Cancer Sci., 2011, 102(11), 2043-2050.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02061.x] [PMID: 21834855]
[36]
Gao, C.; Zhang, Z.; Liu, W.; Xiao, S.; Gu, W.; Lu, H. Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer, 2010, 116(1), 41-49.
[http://dx.doi.org/10.1002/cncr.24743] [PMID: 19890957]
[37]
Yao, J.; Duan, L.; Fan, M.; Yuan, J.; Wu, X. Notch1 induces cell cycle arrest and apoptosis in human cervical cancer cells: involvement of nuclear factor kappa B inhibition. Int. J. Gynecol. Cancer, 2007, 17(2), 502-510.
[http://dx.doi.org/10.1111/j.1525-1438.2007.00872.x] [PMID: 17316355]
[38]
Dijkstra, J.M.; Alexander, D.B. The " NF-ĸ B interacting long noncoding RNA" (NKILA) transcript is antisense to cancer-associated gene PMEPA1. F1000 Res., 2015, 4, 96.
[http://dx.doi.org/10.12688/f1000research.6400.1] [PMID: 26069731]
[39]
Huang, W.; Cui, X.; Chen, J.; Feng, Y.; Song, E.; Li, J.; Liu, Y. Long non-coding RNA NKILA inhibits migration and invasion of tongue squamous cell carcinoma cells via suppressing epithelial-mesenchymal transition. Oncotarget, 2016, 7(38), 62520-62532.
[http://dx.doi.org/10.18632/oncotarget.11528] [PMID: 27613832]
[40]
Afrough, H.; Ghafouri-Fard, S.; Yousefi, H.; Pakzad, P.; Kholghi Oskooei, V.; Taheri, M. DICER-AS1 lncRNA: A putative culprit in the pathogenesis of gastric cancer. Exp. Mol. Pathol., 2020, 116, 104490.
[http://dx.doi.org/10.1016/j.yexmp.2020.104490] [PMID: 32663487]
[41]
Liu, D.; Shi, X. Long non-coding RNA NKILA inhibits proliferation and migration of lung cancer via IL-11/STAT3 signaling. Int. J. Clin. Exp. Pathol., 2019, 12(7), 2595-2603.
[PMID: 31934087]
[42]
Chen, J.; Song, Y.; Li, M.; Zhang, Y.; Lin, T.; Sun, J.; Wang, D.; Liu, Y.; Guo, J.; Yu, W. Comprehensive analysis of ceRNA networks reveals prognostic lncRNAs related to immune infiltration in colorectal cancer. BMC Cancer, 2021, 21(1), 255.
[http://dx.doi.org/10.1186/s12885-021-07995-2] [PMID: 33750326]
[43]
Tao, F.; Xu, Y.; Yang, D.; Tian, B.; Jia, Y.; Hou, J.; Dong, M. LncRNA NKILA correlates with the malignant status and serves as a tumor-suppressive role in rectal cancer. J. Cell. Biochem., 2018, 119(12), 9809-9816.
[http://dx.doi.org/10.1002/jcb.27300] [PMID: 30171719]
[44]
Han, J.; Shen, X. Long noncoding RNAs in osteosarcoma via various signaling pathways. J. Clin. Lab. Anal., 2020, 34(6), e23317.
[http://dx.doi.org/10.1002/jcla.23317] [PMID: 32249459]
[45]
Zhang, G.D.; Li, Y.; Liao, G.J.; Qiu, H.W. LncRNA NKILA inhibits invasion and migration of osteosarcoma cells via NF-κB/Snail signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(10), 4118-4125.
[http://dx.doi.org/10.26355/eurrev_201905_17913] [PMID: 31173281]
[46]
Wang, F.; Jiang, X.; Wang, P. NF-κB interaction long non-coding RNA inhibits migration, invasion and epithelial-mesenchymal transition of cervical cancer cells through inhibiting NF-κB signaling pathways. Exp. Ther. Med., 2020, 20(2), 1039-1047.
[http://dx.doi.org/10.3892/etm.2020.8752] [PMID: 32765657]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy