Review Article

组蛋白修饰及其在癌症表观遗传学中的作用

卷 29, 期 14, 2022

发表于: 14 January, 2022

页: [2399 - 2411] 页: 13

弟呕挨: 10.2174/0929867328666211108105214

价格: $65

摘要

表观遗传调控在对正常细胞功能很重要的各种基因的表达中起着至关重要的作用。 这些表观遗传机制的任何改变都可能导致组蛋白和 DNA 的修饰,从而导致某些基因沉默或增强表达,从而导致各种疾病。 组蛋白的乙酰化、甲基化、核糖基化或磷酸化会改变其与 DNA 的相互作用,从而改变异染色质和常染色质的比例。 组蛋白的末端赖氨酸残基作为这种表观遗传修饰的潜在目标。 目前的审查侧重于组蛋白修饰及其影响因素; 这些修饰对代谢的作用会导致癌症,而癌症中组蛋白的甲基化会影响 DNA 修复机制。

关键词: 癌症,表观遗传学,常染色质,异染色质,磷酸化,核糖基化。

[1]
Yang, J.; Zhong, W.; Xue, K.; Wang, Z. Epigenetic changes: An emerging potential pharmacological target in allergic rhinitis. Int. Immunopharmacol., 2019, 71, 76-83.
[http://dx.doi.org/10.1016/j.intimp.2019.03.004] [PMID: 30878818]
[2]
Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature, 2019, 571(7766), 489-499.
[http://dx.doi.org/10.1038/s41586-019-1411-0] [PMID: 31341302]
[3]
Segal, E.; Fondufe-Mittendorf, Y.; Chen, L.; Thastrom, A.; Field, Y.; Moore, I.K.; Wang, J.P.Z.; Widom, J. A genomic code for nucleosome positioning. Nature, 2006, 442(7104), 772-778.
[http://dx.doi.org/10.1038/nature04979] [PMID: 16862119]
[4]
Milavetz, B.I.; Balakrishnan, L. Viral epigenetics. Methods Mol. Biol., 2015, 1238, 569-596.
[http://dx.doi.org/10.1007/978-1-4939-1804-1_30] [PMID: 25421681]
[5]
Bhaumik, S.R.; Smith, E.; Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol., 2007, 14(11), 1008-1016.
[http://dx.doi.org/10.1038/nsmb1337] [PMID: 17984963]
[6]
Li, J.; Ahn, J.H.; Wang, G.G. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell. Mol. Life Sci., 2019, 76(15), 2899-2916.
[http://dx.doi.org/10.1007/s00018-019-03144-y] [PMID: 31147750]
[7]
Gordon, J.A.R.; Stein, J.L.; Westendorf, J.J.; van Wijnen, A.J. Chromatin modifiers and histone modifications in bone formation, regeneration, and therapeutic intervention for bone-related disease. Bone, 2015, 81, 739-745.
[http://dx.doi.org/10.1016/j.bone.2015.03.011] [PMID: 25836763]
[8]
Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol., 2010, 28(10), 1057-1068.
[http://dx.doi.org/10.1038/nbt.1685]

[PMID: 20944598]
[9]
Rahman, M.R.; Islam, T.; Zaman, T.; Shahjaman, M.; Karim, M.R.; Huq, F.; Quinn, J.M.W.; Holsinger, R.M.D.; Gov, E.; Moni, M.A. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: insights from a systems biomedicine perspective. Genomics, 2020, 112(2), 1290-1299.
[http://dx.doi.org/10.1016/j.ygeno.2019.07.018] [PMID: 31377428]
[10]
Bhat, S.A.; Majid, S.; Wani, H.A.; Rashid, S. Diagnostic utility of epigenetics in breast cancer - a review. Cancer Treat. Res. Commun., 2019, 19, 100125.
[http://dx.doi.org/10.1016/j.ctarc.2019.100125] [PMID: 30802811]
[11]
Okugawa, Y.; Grady, W.M.; Goel, A. Epigenetic alterations in colorectal cancer: Emerging biomarkers. Gastroenterology, 2015, 149(5), 1204-1225.
[http://dx.doi.org/10.1053/j.gastro.2015.07.011] [PMID: 26216839]
[12]
Kim, S.; Kaang, B.K. Epigenetic regulation and chromatin remodeling in learning and memory. Exp. Mol. Med., 2017, 49(1), e281-e281.
[http://dx.doi.org/10.1038/emm.2016.140] [PMID: 28082740]
[13]
Tost, J. A translational perspective on epigenetics in allergic diseases. J. Allergy Clin. Immunol., 2018, 142(3), 715-726.
[http://dx.doi.org/10.1016/j.jaci.2018.07.009] [PMID: 30195377]
[14]
How Kit, A.; Nielsen, H.M.; Tost, J. DNA methylation based biomarkers: Practical considerations and applications. Biochimie, 2012, 94(11), 2314-2337.
[http://dx.doi.org/10.1016/j.biochi.2012.07.014] [PMID: 22847185]
[15]
Mazzone, R.; Zwergel, C.; Artico, M.; Taurone, S.; Ralli, M.; Greco, A.; Mai, A. The emerging role of epigenetics in human autoimmune disorders. Clin. Epigenetics, 2019, 11(1), 34.
[http://dx.doi.org/10.1186/s13148-019-0632-2] [PMID: 30808407]
[16]
Pulugulla, S.H.; Adamik, J. Epigenetics of multiple myeloma bone disease. Curr. Mol. Biol. Rep., 2019, 5(2), 86-96.
[http://dx.doi.org/10.1007/s40610-019-0117-2]
[17]
Ma, F.; Jiang, S.; Zhang, C.Y. Recent advances in histone modification and histone modifying enzyme assays. Expert Rev. Mol. Diagn., 2019, 19(1), 27-36.
[http://dx.doi.org/10.1080/14737159.2019.1559053] [PMID: 30563379]
[18]
Spencer, V.A.; Davie, J.R. Role of covalent modifications of histones in regulating gene expression. Gene, 1999, 240(1), 1-12.
[http://dx.doi.org/10.1016/S0378-1119(99)00405-9] [PMID: 10564807]
[19]
Luger, K.; Rechsteiner, T.J.; Flaus, A.J.; Waye, M.M.; Richmond, T.J. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol., 1997, 272(3), 301-311.
[http://dx.doi.org/10.1006/jmbi.1997.1235] [PMID: 9325091]
[20]
Kulis, M.; Esteller, M. DNA methylation and cancer.Adv. Genet., 2010, 70, 27-56.
[http://dx.doi.org/10.1016/B978-0-12-380866-0.60002-2] [PMID: 20920744]
[21]
Kebede, A.F.; Schneider, R.; Daujat, S. Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J., 2015, 282(9), 1658-1674.
[http://dx.doi.org/10.1111/febs.13047] [PMID: 25220185]
[22]
Tan, M.; Luo, H.; Lee, S.; Jin, F.; Yang, J.S.; Montellier, E.; Buchou, T.; Cheng, Z.; Rousseaux, S.; Rajagopal, N.; Lu, Z.; Ye, Z.; Zhu, Q.; Wysocka, J.; Ye, Y.; Khochbin, S.; Ren, B.; Zhao, Y. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146(6), 1016-1028.
[http://dx.doi.org/10.1016/j.cell.2011.08.008] [PMID: 21925322]
[23]
Borkin, D.; He, S.; Miao, H.; Kempinska, K.; Pollock, J.; Chase, J.; Purohit, T.; Malik, B.; Zhao, T.; Wang, J.; Wen, B.; Zong, H.; Jones, M.; Danet-Desnoyers, G.; Guzman, M.L.; Talpaz, M.; Bixby, D.L.; Sun, D.; Hess, J.L.; Muntean, A.G.; Maillard, I.; Cierpicki, T.; Grembecka, J. Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell, 2015, 27(4), 589-602.
[http://dx.doi.org/10.1016/j.ccell.2015.02.016] [PMID: 25817203]
[24]
Goudarzi, A.; Zhang, D.; Huang, H.; Barral, S.; Kwon, O.K.; Qi, S.; Tang, Z.; Buchou, T.; Vitte, A.L.; He, T.; Cheng, Z.; Montellier, E.; Gaucher, J.; Curtet, S.; Debernardi, A.; Charbonnier, G.; Puthier, D.; Petosa, C.; Panne, D.; Rousseaux, S.; Roeder, R.G.; Zhao, Y.; Khochbin, S. Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol. Cell, 2016, 62(2), 169-180.
[http://dx.doi.org/10.1016/j.molcel.2016.03.014] [PMID: 27105113]
[25]
Zhao, Y. Identification and initial characterization of histone lysine propionylation and lysine butyrylation pathways. FASEB J., 2010, 24, 306-1.
[http://dx.doi.org/10.1096/fasebj.24.1_supplement.306.1]
[26]
Jiang, T.; Zhou, X.; Taghizadeh, K.; Dong, M.; Dedon, P.C. N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proc. Natl. Acad. Sci. USA, 2007, 104(1), 60-65.
[http://dx.doi.org/10.1073/pnas.0606775103] [PMID: 17190813]
[27]
Wang, Y.; Wysocka, J.; Sayegh, J.; Lee, Y.H.; Perlin, J.R.; Leonelli, L.; Sonbuchner, L.S.; McDonald, C.H.; Cook, R.G.; Dou, Y.; Roeder, R.G.; Clarke, S.; Stallcup, M.R.; Allis, C.D.; Coonrod, S.A. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science, 2004, 306(5694), 279-283.
[http://dx.doi.org/10.1126/science.1101400] [PMID: 15345777]
[28]
Cuthbert, G.L.; Daujat, S.; Snowden, A.W. Erdjument- Bromage, H.; Hagiwara, T.; Yamada, M.; Schneider, R.; Gregory, P.D.; Tempst, P.; Bannister, A.J.; Kouzarides, T. Histone deimination antagonizes arginine methylation. Cell, 2004, 118(5), 545-553.
[http://dx.doi.org/10.1016/j.cell.2004.08.020] [PMID: 15339660]
[29]
Reid, M.A.; Dai, Z.; Locasale, J.W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol., 2017, 19(11), 1298-1306.
[http://dx.doi.org/10.1038/ncb3629] [PMID: 29058720]
[30]
Dai, Z.; Ramesh, V.; Locasale, J.W. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet., 2020, 21(12), 737-753.
[http://dx.doi.org/10.1038/s41576-020-0270-8] [PMID: 32908249]
[31]
Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[32]
Ravanel, S.; Gakière, B.; Job, D.; Douce, R. The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. USA, 1998, 95(13), 7805-7812.
[http://dx.doi.org/10.1073/pnas.95.13.7805] [PMID: 9636232]
[33]
Sanderson, S.M.; Gao, X.; Dai, Z.; Locasale, J.W. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat. Rev. Cancer, 2019, 19(11), 625-637.
[http://dx.doi.org/10.1038/s41568-019-0187-8] [PMID: 31515518]
[34]
Young, J.I.; Züchner, S.; Wang, G. Regulation of the epigenome by vitamin C. Annu. Rev. Nutr., 2015, 35, 545-564.
[http://dx.doi.org/10.1146/annurev-nutr-071714-034228] [PMID: 25974700]
[35]
Graham, T.A.; Sottoriva, A. Measuring cancer evolution from the genome. J. Pathol., 2017, 241(2), 183-191.
[http://dx.doi.org/10.1002/path.4821] [PMID: 27741350]
[36]
Nebbioso, A.; Tambaro, F.P.; Dell’Aversana, C.; Altucci, L. Cancer epigenetics: moving forward. PLoS Genet., 2018, 14(6) ,e1007362.
[http://dx.doi.org/10.1371/journal.pgen.1007362] [PMID: 29879107]
[37]
Audia, J.E.; Campbell, R.M. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol., 2016, 8(4) ,a019521.
[http://dx.doi.org/10.1101/cshperspect.a019521] [PMID: 27037415]
[38]
Wu, Y.; Sarkissyan, M.; Vadgama, J.V. Epigenetics in breast and prostate cancer. Methods Mol. Biol., 2015, 1238, 425-466.
[http://dx.doi.org/10.1007/978-1-4939-1804-1_23] [PMID: 25421674]
[39]
Guo, P.; Chen, W.; Li, H.; Li, M.; Li, L. The histone acetylation modifications of breast cancer and their therapeutic implications. Pathol. Oncol. Res., 2018, 24(4), 807-813.
[http://dx.doi.org/10.1007/s12253-018-0433-5] [PMID: 29948617]
[40]
Liu, Z.; Luo, X.; Liu, L.; Zhao, W.; Guo, S.; Guo, Y.; Wang, N.; He, H.; Liao, X.; Ma, W.; Zhou, H.; Zhang, T. Histone acetyltransferase p300 promotes MKL1-mediated transactivation of catechol-O-methyltransferase gene. Acta Biochim. Biophys. Sin. (Shanghai), 2013, 45(12), 1002-1010.
[http://dx.doi.org/10.1093/abbs/gmt108] [PMID: 24096006]
[41]
Hervouet, E.; Claude-Taupin, A.; Gauthier, T.; Perez, V.; Fraichard, A.; Adami, P.; Despouy, G.; Monnien, F.; Algros, M.P.; Jouvenot, M.; Delage-Mourroux, R. Boyer- Guittaut, M. The autophagy GABARAPL1 gene is epigenetically regulated in breast cancer models. BMC Cancer, 2015, 15(1), 729.
[http://dx.doi.org/10.1186/s12885-015-1761-4] [PMID: 26474850]
[42]
Ray, A.; Alalem, M.; Ray, B.K. Loss of epigenetic Kruppel-Like Factor 4 Histone Deacetylase (KLF-4- HDAC)-mediated transcriptional suppression is crucial in increasing Vascular Endothelial Growth Factor (VEGF) ex in breast cancer. J. Biol. Chem., 2013, 288(38), 27232-27242.
[http://dx.doi.org/10.1074/jbc.M113.481184] [PMID: 23926105]
[43]
Nandy, D.; Rajam, S.M.; Dutta, D. A three layered histone epigenetics in breast cancer metastasis. Cell Biosci., 2020, 10(1), 52.
[http://dx.doi.org/10.1186/s13578-020-00415-1] [PMID: 32257110]
[44]
Joosten, S.C.; Smits, K.M.; Aarts, M.J.; Melotte, V.; Koch, A.; Tjan-Heijnen, V.C.; van Engeland, M. Epigenetics in renal cell cancer: mechanisms and clinical applications. Nat. Rev. Urol., 2018, 15(7), 430-451.
[http://dx.doi.org/10.1038/s41585-018-0023-z] [PMID: 29867106]
[45]
Morris, M.R.; Latif, F. The epigenetic landscape of renal cancer. Nat. Rev. Nephrol., 2017, 13(1), 47-60.
[http://dx.doi.org/10.1038/nrneph.2016.168] [PMID: 27890923]
[46]
Hainsworth, J.D.; Infante, J.R.; Spigel, D.R.; Arrowsmith, E.R.; Boccia, R.V.; Burris, H.A. A phase II trial of panobinostat, a histone deacetylase inhibitor, in the treatment of patients with refractory metastatic renal cell carcinoma. Cancer Invest., 2011, 29(7), 451-455.
[http://dx.doi.org/10.3109/07357907.2011.590568] [PMID: 21696296]
[47]
Connell, L.C.; Mota, J.M.; Braghiroli, M.I.; Hoff, P.M. The rising incidence of younger patients with colorectal cancer: questions about screening, biology, and treatment. Curr. Treat. Options Oncol., 2017, 18(4), 23.
[http://dx.doi.org/10.1007/s11864-017-0463-3] [PMID: 28391421]
[48]
Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer, 2013, 49(6), 1374-1403.
[http://dx.doi.org/10.1016/j.ejca.2012.12.027] [PMID: 23485231]
[49]
Sun, W.J.; Zhou, X.; Zheng, J.H.; Lu, M.D.; Nie, J.Y.; Yang, X.J.; Zheng, Z.Q. Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis. Acta Biochim. Biophys. Sin. (Shanghai), 2012, 44(1), 80-91.
[http://dx.doi.org/10.1093/abbs/gmr113] [PMID: 22194016]
[50]
Ashktorab, H.; Belgrave, K.; Hosseinkhah, F.; Brim, H.; Nouraie, M.; Takkikto, M.; Hewitt, S.; Lee, E.L.; Dashwood, R.H.; Smoot, D. Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig. Dis. Sci., 2009, 54(10), 2109-2117.
[http://dx.doi.org/10.1007/s10620-008-0601-7] [PMID: 19057998]
[51]
Fraga, M.F.; Ballestar, E.; Villar-Garea, A.; Boix-Chornet, M.; Espada, J.; Schotta, G.; Bonaldi, T.; Haydon, C.; Ropero, S.; Pétrie, K.; Iyer, N.G.; Perez-Rosado, A.; Calvo, E.; Lopez, J.A.; Cano, A.; Calasanz, M.J.; Colomer, D.; Piris, M.A.; Ahn, N.; Imhof, A.; Caldas, C.; Jenuwein, T.; Esteller, M. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet., 2005, 37(4), 391-400.
[http://dx.doi.org/10.1038/ng1531] [PMID: 15765097]
[52]
Tamagawa, H.; Oshima, T.; Shiozawa, M.; Morinaga, S.; Nakamura, Y.; Yoshihara, M.; Sakuma, Y.; Kameda, Y.; Akaike, M.; Masuda, M.; Imada, T.; Miyagi, Y. The global histone modification pattern correlates with overall survival in metachronous liver metastasis of colorectal cancer. Oncol. Rep., 2012, 27(3), 637-642.
[PMID: 22076537]
[53]
Hashimoto, T.; Yamakawa, M.; Kimura, S.; Usuba, O.; Toyono, M. Expression of acetylated and dimethylated histone H3 in colorectal cancer. Dig. Surg., 2013, 30(3), 249-258.
[http://dx.doi.org/10.1159/000351444] [PMID: 23921187]
[54]
Yokoyama, Y.; Hieda, M.; Nishioka, Y.; Matsumoto, A.; Higashi, S.; Kimura, H.; Yamamoto, H.; Mori, M.; Matsuura, S.; Matsuura, N. Cancer-associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo. Cancer Sci., 2013, 104(7), 889-895.
[http://dx.doi.org/10.1111/cas.12166] [PMID: 23557258]
[55]
Kryczek, I.; Lin, Y.; Nagarsheth, N.; Peng, D.; Zhao, L.; Zhao, E.; Vatan, L.; Szeliga, W.; Dou, Y.; Owens, S.; Zgodzinski, W.; Majewski, M.; Wallner, G.; Fang, J.; Huang, E.; Zou, W. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity, 2014, 40(5), 772-784.
[http://dx.doi.org/10.1016/j.immuni.2014.03.010] [PMID: 24816405]
[56]
Cordeiro, M.H.; Smith, R.J.; Saurin, A.T. A fine balancing act: a delicate kinase-phosphatase equilibrium that protects against chromosomal instability and cancer. Int. J. Biochem. Cell Biol., 2018, 96, 148-156.
[http://dx.doi.org/10.1016/j.biocel.2017.10.017] [PMID: 29108876]
[57]
Yu, D.; Li, Z.; Gan, M.; Zhang, H.; Yin, X.; Tang, S.; Wan, L.; Tian, Y.; Zhang, S.; Zhu, Y.; Lai, M.; Zhang, D. Decreased expression of dual specificity phosphatase 22 in colorectal cancer and its potential prognostic relevance for stage IV CRC patients. Tumour Biol., 2015, 36(11), 8531-8535.
[http://dx.doi.org/10.1007/s13277-015-3588-7] [PMID: 26032091]
[58]
Lee, Y.C.; Yin, T.C.; Chen, Y.T.; Chai, C.Y.; Wang, J.Y.; Liu, M.C.; Lin, Y.C.; Kan, J.Y. High expression of phospho- H2AX predicts a poor prognosis in colorectal cancer. Anticancer Res., 2015, 35(4), 2447-2453.
[PMID: 25862913]
[59]
Xiao, J.; Duan, Q.; Wang, Z.; Yan, W.; Sun, H.; Xue, P.; Fan, X.; Zeng, X.; Chen, J.; Shao, C.; Zhu, F. Phosphorylation of TOPK at Y74, Y272 by Src increases the stability of TOPK and promotes tumorigenesis of colon. Oncotarget, 2016, 7(17), 24483-24494.
[http://dx.doi.org/10.18632/oncotarget.8231] [PMID: 27016416]
[60]
Alvarez, M.C.; Maso, V.; Torello, C.O.; Ferro, K.P.; Saad, S.T.O. The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes. Clin. Epigenetics, 2018, 10(1), 139.
[http://dx.doi.org/10.1186/s13148-018-0563-3] [PMID: 30409182]
[61]
Barbagiovanni, G.; Germain, P.L.; Zech, M.; Atashpaz, S.; Lo Riso, P.; D’Antonio-Chronowska, A.; Tenderini, E.; Caiazzo, M.; Boesch, S.; Jech, R.; Haslinger, B.; Broccoli, V.; Stewart, A.F.; Winkelmann, J.; Testa, G. KMT2B is selectively required for neuronal transdifferentiation, and its loss exposes dystonia candidate genes. Cell Rep., 2018, 25(4), 988-1001.
[http://dx.doi.org/10.1016/j.celrep.2018.09.067] [PMID: 30355503]
[62]
Ledford, H. Cancer researchers seek to harness mysterious DNA ‘super-enhancers’. Nature, 2018, 564(7735), 173-174.
[http://dx.doi.org/10.1038/d41586-018-07602-8] [PMID: 30531879]
[63]
Leung, K.K.; Nguyen, A.; Shi, T.; Tang, L.; Ni, X.; Escoubet, L.; MacBeth, K.J.; DiMartino, J.; Wells, J.A. Multiomics of azacitidine-treated AML cells reveals variable and convergent targets that remodel the cell-surface proteome. Proc. Natl. Acad. Sci. USA, 2019, 116(2), 695-700.
[http://dx.doi.org/10.1073/pnas.1813666116] [PMID: 30584089]
[64]
Liu, X.L.; Liu, H.Q.; Li, J.; Mao, C.Y.; He, J.T.; Zhao, X. Role of epigenetic in leukemia: from mechanism to therapy. Chem. Biol. Interact., 2020, 317 ,108963.
[http://dx.doi.org/10.1016/j.cbi.2020.108963] [PMID: 31978391]
[65]
Gupta, G.; Kazmi, I.; Afzal, M.; Rahman, M.; Saleem, S.; Ashraf, M.S.; Khusroo, M.J.; Nazeer, K.; Ahmed, S.; Mujeeb, M.; Ahmed, Z.; Anwar, F. Sedative, antiepileptic and antipsychotic effects of Viscum album L. (Loranthaceae) in mice and rats. J. Ethnopharmacol., 2012, 141(3), 810-816.
[http://dx.doi.org/10.1016/j.jep.2012.03.013] [PMID: 22449438]
[66]
Khichar, G.S.; Gupta, G.; Singh, R.; Rathi, R. Maximum correlation with migration control based on modified knapsack (MC_MC) approach for VM selection for green cloud computing. 8th International Conference on Cloud Computing, Data Science & Engineering, Noida, India11-12 Jan. 2018 IEEE: NJ,2018.
[67]
Ayton, P.M.; Cleary, M.L. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene, 2001, 20(40), 5695-5707.
[http://dx.doi.org/10.1038/sj.onc.1204639] [PMID: 11607819]
[68]
Ballabio, E.; Milne, T.A. Molecular and epigenetic mechanisms of MLL in human leukemogenesis. Cancers (Basel), 2012, 4(3), 904-944.
[http://dx.doi.org/10.3390/cancers4030904] [PMID: 24213472]
[69]
Zhang, Y.; Sun, Z.; Jia, J.; Du, T.; Zhang, N.; Tang, Y.; Fang, Y.; Fang, D. Overview of histone modification. Adv. Exp. Med. Biol., 2021, 1283, 1-16.
[http://dx.doi.org/10.1007/978-981-15-8104-5_1] [PMID: 33155134]
[70]
Santillan, D.A.; Theisler, C.M.; Ryan, A.S.; Popovic, R.; Stuart, T.; Zhou, M.M.; Alkan, S.; Zeleznik-Le, N.J. Bromodomain and histone acetyltransferase domain specificities control mixed lineage leukemia phenotype. Cancer Res., 2006, 66(20), 10032-10039.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2597] [PMID: 17047066]
[71]
Sobulo, O.M.; Borrow, J.; Tomek, R.; Reshmi, S.; Harden, A.; Schlegelberger, B.; Housman, D.; Doggett, N.A.; Rowley, J.D.; Zeleznik-Le, N.J. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc. Natl. Acad. Sci. USA, 1997, 94(16), 8732-8737.
[http://dx.doi.org/10.1073/pnas.94.16.8732] [PMID: 9238046]
[72]
Dhall, A.; Zee, B.M.; Yan, F.; Blanco, M.A. Intersection of epigenetic and metabolic regulation of histone modifications in acute myeloid leukemia. Front. Oncol., 2019, 9, 432.
[http://dx.doi.org/10.3389/fonc.2019.00432] [PMID: 31192132]
[73]
Lu, Q.R.; Qian, L.; Zhou, X. Developmental origins and oncogenic pathways in malignant brain tumors. Wiley Interdiscip. Rev. Dev. Biol., 2019, 8(4) ,e342.
[http://dx.doi.org/10.1002/wdev.342] [PMID: 30945456]
[74]
Kozono, D.; Li, J.; Nitta, M.; Sampetrean, O.; Gonda, D.; Kushwaha, D.S.; Merzon, D.; Ramakrishnan, V.; Zhu, S.; Zhu, K.; Matsui, H.; Harismendy, O.; Hua, W.; Mao, Y.; Kwon, C.H.; Saya, H.; Nakano, I.; Pizzo, D.P. Vanden- Berg, S.R.; Chen, C.C. Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression. Proc. Natl. Acad. Sci. USA, 2015, 112(30), E4055-E4064.
[http://dx.doi.org/10.1073/pnas.1501967112] [PMID: 26159421]
[75]
Suvà, M.L.; Rheinbay, E.; Gillespie, S.M.; Patel, A.P.; Wakimoto, H.; Rabkin, S.D.; Riggi, N.; Chi, A.S.; Cahill, D.P.; Nahed, B.V.; Curry, W.T.; Martuza, R.L.; Rivera, M.N.; Rossetti, N.; Kasif, S.; Beik, S.; Kadri, S.; Tirosh, I.; Wortman, I.; Shalek, A.K.; Rozenblatt-Rosen, O.; Regev, A.; Louis, D.N.; Bernstein, B.E. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell, 2014, 157(3), 580-594.
[http://dx.doi.org/10.1016/j.cell.2014.02.030] [PMID: 24726434]
[76]
Yi, L.; Cui, Y.; Xu, Q.; Jiang, Y. Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncol. Rep., 2016, 36(5), 2935-2945.
[http://dx.doi.org/10.3892/or.2016.5099] [PMID: 27632941]
[77]
Huang, J.; Vogel, G.; Yu, Z.; Almazan, G.; Richard, S. Type II arginine methyltransferase PRMT5 regulates gene expression of inhibitors of differentiation/DNA binding Id2 and Id4 during glial cell differentiation. J. Biol. Chem., 2011, 286(52), 44424-44432.
[http://dx.doi.org/10.1074/jbc.M111.277046] [PMID: 22041901]
[78]
Banasavadi-Siddegowda, Y.K.; Russell, L.; Frair, E.; Karkhanis, V.A.; Relation, T.; Yoo, J.Y.; Zhang, J.; Sif, S.; Imitola, J.; Baiocchi, R.; Kaur, B. PRMT5-PTEN molecular pathway regulates senescence and self-renewal of primary glioblastoma neurosphere cells. Oncogene, 2017, 36(2), 263-274.
[http://dx.doi.org/10.1038/onc.2016.199] [PMID: 27292259]
[79]
Ene, C.I.; Edwards, L.; Riddick, G.; Baysan, M.; Woolard, K.; Kotliarova, S.; Lai, C.; Belova, G.; Cam, M.; Walling, J.; Zhou, M.; Stevenson, H.; Kim, H.S.; Killian, K.; Veenstra, T.; Bailey, R.; Song, H.; Zhang, W.; Fine, H.A. Histone demethylase Jumonji D3 (JMJD3) as a tumor suppressor by regulating p53 protein nuclear stabilization. PLoS One, 2012, 7(12) ,e51407.
[http://dx.doi.org/10.1371/journal.pone.0051407] [PMID: 23236496]
[80]
Lv, D.; Jia, F.; Hou, Y.; Sang, Y.; Alvarez, A.A.; Zhang, W.; Gao, W.Q.; Hu, B.; Cheng, S.Y.; Ge, J.; Li, Y.; Feng, H. Histone acetyltransferase KAT6A upregulates PI3K/AKT signaling through TRIM24 binding. Cancer Res., 2017, 77(22), 6190-6201.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1388] [PMID: 29021135]
[81]
Wang, Y.; Guo, Y.R.; Liu, K.; Yin, Z.; Liu, R.; Xia, Y.; Tan, L.; Yang, P.; Lee, J.H.; Li, X.J.; Hawke, D.; Zheng, Y.; Qian, X.; Lyu, J.; He, J.; Xing, D.; Tao, Y.J.; Lu, Z. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. Nature, 2017, 552(7684), 273-277.
[http://dx.doi.org/10.1038/nature25003] [PMID: 2921171]
[82]
Dickinson, M.; Johnstone, R.W.; Prince, H.M. Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest. New Drugs, 2010, 28(1)(Suppl. 1), S3-S20.
[http://dx.doi.org/10.1007/s10637-010-9596-y] [PMID: 21161327]
[83]
Masui, K.; Tanaka, K.; Akhavan, D.; Babic, I.; Gini, B.; Matsutani, T.; Iwanami, A.; Liu, F.; Villa, G.R.; Gu, Y.; Campos, C.; Zhu, S.; Yang, H.; Yong, W.H.; Cloughesy, T.F.; Mellinghoff, I.K.; Cavenee, W.K.; Shaw, R.J.; Mischel, P.S. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab., 2013, 18(5), 726-739.
[http://dx.doi.org/10.1016/j.cmet.2013.09.013] [PMID: 24140020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy