Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Purification and Characterization of Thermostable α-Amylase from Soil Bacterium Bacillus sp.

Author(s): Barış Enez*

Volume 28, Issue 12, 2021

Published on: 27 October, 2021

Page: [1372 - 1378] Pages: 7

DOI: 10.2174/0929866528666211027113113

Price: $65

Abstract

Background: Amylases are used in several industrial and biotechnological sectors, including those producing textiles, detergents, paper and bakery products.

Objective: This study aimed to purify an industrially important α-amylase from Bacillus sp. For this purpose, a single and rapid α-amylase purification was performed using the starch affinity method.

Methods: Characterization of the purified enzyme was determined by investigating temperature, pH stability, detergents, and metal ions.

Results: The purification coefficient of 29.8-fold with a yield of 9.2% was found. The molecular weight of the purified α-amylase was determined to be 53 kDa by SDS-PAGE, and thermostability was confirmed with 100% activity at 30ºC and 40ºC after 1 h. The purified enzyme was stable over a wide range of pH values, with optimum activity at pH 6.0, 7.0 and 8.0 after 2 h. The study also investigated the effects of the metal ions and detergents on the purified amylase and found that Mg2+ and Ca2+ ions were the activators of the enzyme, while Zn2+, Co2+ and Na+ ions decreased the activity. Furthermore, Hg2+ indicated complete inhibition of amylase activity. The detergents Triton X-100 and Tween 20 increased the α-amylase activity, while sodium dodecyl sulfate inhibited the activity.

Conclusion: The purified α-amylase obtained from Bacillus sp. is considered to be environmentally friendly, can be processed in a short time, and has a low cost.

Keywords: Bacillus sp., submerged fermentation, isolation, metals, inhibition, detergents.

Graphical Abstract
[1]
Wang, X.; Kan, G.; Shi, C.; Xie, Q.; Ju, Y.; Wang, R.; Qiao, Y.; Ren, X. Purification and characterization of a novel wild-type α-amylase from Antarctic sea ice bacterium Pseudoalteromonas sp. M175. Protein Expr. Purif., 2019, 164, 105444.
[http://dx.doi.org/10.1016/j.pep.2019.06.004] [PMID: 31200017]
[2]
Wang, S.L.; Liang, Y.C.; Liang, T.W. Purification and characterization of anovel alkali-stable α-amylase from Chryseobacterium taeanense TKU001, and application in antioxidant and prebiotic. Process Biochem., 2011, 46, 745-750.
[http://dx.doi.org/10.1016/j.procbio.2010.11.022]
[3]
Du, R.; Song, Q.; Zhang, Q.; Zhao, F.; Kim, R.C.; Zhou, Z.; Han, Y. Purification and characterization of novel thermostable and Ca-independent α-amylase produced by Bacillus amyloliquefaciens BH072. Int. J. Biol. Macromol., 2018, 115, 1151-1156.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.004] [PMID: 29729336]
[4]
Salem, K.; Elgharbi, F.; Ben Hlima, H.; Perduca, M.; Sayari, A.; Hmida-Sayari, A. Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca2+ independent Bacillus subtilis α-amylase. Biotechnol. Prog., 2020, 36(4), e2964.
[http://dx.doi.org/10.1002/btpr.2964] [PMID: 31951110]
[5]
Najafi, M.F.; Kembhavi, A. One step purification and characterization of an extracellular α-amylase from marine Vibrio sp. Enzyme Microb. Technol., 2005, 36, 535-539.
[http://dx.doi.org/10.1016/j.enzmictec.2004.11.014]
[6]
Fincan, S.A.; Özdemir, S.; Karakaya, A.; Enez, B.; Mustafov, S.D.; Ulutaş, M.S.; Şen, F. Purification and characterization of thermostable α-amylase produced from Bacillus licheniformis So-B3 and its potential in hydrolyzing raw starch. Life Sci., 2021, 264, 118639.
[http://dx.doi.org/10.1016/j.lfs.2020.118639] [PMID: 33141041]
[7]
Sachdev, S.; Ojha, S.K.; Mishra, S. Bacillus Spp. amylase: production, isolation, characterisation and its application. Int. J. Appl. Sci. Biotechnol., 2016, 4(1), 3-14.
[http://dx.doi.org/10.3126/ijasbt.v4i1.14574]
[8]
Boyce, A.; Walsh, G. Production, purification and application-relevant characterisation of an endo-1,2 (4)-β-glucanase from Rhizomucor miegei. Appl. Microbiol. Biotechnol., 2007, 76, 835-841.
[http://dx.doi.org/10.1007/s00253-007-1058-x] [PMID: 17589838]
[9]
Gomaa, E.Z. Some applications of α-amylase produced by Bacillus subtilis NCTC-10400 and Bacillus cereus ATCC 14579 under solid state fermentation. Afr. J. Microbiol. Res., 2013, 7(29), 3720-3729.
[10]
Bogar, B.; Szakacs, G.; Tengerdy, R.P.; Linden, J.C.; Pandey, A. Production of α-amylase with Aspergillus oryzae on spent brewing grain by solid substrate fermentation. Appl. Biochem. Biotechnol., 2002, 102-103(1-6), 453-461.
[http://dx.doi.org/10.1385/ABAB:102-103:1-6:453] [PMID: 12396145]
[11]
Lim, S.J.; Oslan, S.N.; Oslan, S.N. Purification and characterisation of thermostable α-amylases from microbial sources. Bioresour, 2019, 15(1), 2005-2029.
[http://dx.doi.org/10.15376/biores.15.1.2005-2029]
[12]
Zou, H.; Luo, Q.; Zhou, D. Affinity membrane chromatography for the analysis and purification of proteins. J. Biochem. Biophys. Methods, 2001, 49(1-3), 199-240.
[http://dx.doi.org/10.1016/S0165-022X(01)00200-7] [PMID: 11694281]
[13]
Enez, B. Isolation and identification of Bacillus sp. from root soil of the Astragalus gummifer Lab.: obtaining and characterization of α-amylase. ADYU. J. Sci., 2020, 10(1), 29-39.
[14]
Bernfeld, P. Enzymes carbohydrate metabolism. Methods Enzymol., 1955, 17, 149-158.
[http://dx.doi.org/10.1016/0076-6879(55)01021-5]
[15]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[16]
Uzun, U.; Demirci, E.; Yildirim Akatin, M. Purification and characterization of Rhizoctonia solani AG-4 strain ZB-34 α-amylase produced by solid-state fermentation using corn bran. T. J. Biochem, 2017, 43(3), 257-267.
[17]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[18]
Xie, F.; Quan, S.; Liu, D.; Ma, H.; Li, F.; Zhou, F.; Chen, G. Purification and characterization of a novel α-amylase from a newly isolated Bacillus methylotrophicus strain P11-2. Process Biochem., 2014, 49, 47-53.
[http://dx.doi.org/10.1016/j.procbio.2013.09.025]
[19]
Hmidet, N.; Bayoudh, A.; Berrin, J.G.; Kanoun, S.; Juge, N.; Nasri, M. Purification and biochemical characterization of a novel α-amylase from Bacillus licheniformis NH1 cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Process Biochem., 2008, 43, 499-510.
[http://dx.doi.org/10.1016/j.procbio.2008.01.017]
[20]
Abd-Elaziz, A.M.; Karam, E.A.; Ghanem, M.M.; Moharam, M.E.; Kansoh, A.L. Production of a novel α-amylase by Bacillus atrophaeus NRC1 isolated from honey: Purification and characterization. Int. J. Biol. Macromol., 2020, 148, 292-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.120] [PMID: 31945438]
[21]
Bukhari, D.A.; Rehman, A. Purification and characterization of α-amylase from Bacillus subtilis isolated from local environment. Pak. J. Zool., 2015, 47(4), 905-911.
[22]
Bano, S.; Ul Qader, S.A.; Aman, A.; Syed, M.N.; Azhar, A.; Azhar, A. Purification and characterization of novel α-amylase from Bacillus subtilis KIBGE HAS. AAPS PharmSciTech, 2011, 12(1), 255-261.
[http://dx.doi.org/10.1208/s12249-011-9586-1] [PMID: 21234823]
[23]
Demirkan, E. Production, purification, and characterization of α-amylase by Bacillus subtilis and its mutant derivates. Turk. J. Biol., 2011, 35, 705-712.
[24]
Ezeji, T.C.; Bahl, H. Purification, characterization, and synergistic action of phytate-resistant α-amylase and α-glucosidase from Geobacillus thermodenitrificans HRO10. J. Biotechnol., 2006, 125(1), 27-38.
[http://dx.doi.org/10.1016/j.jbiotec.2006.02.006] [PMID: 16581150]
[25]
Mamo, G.; Gessesse, A. Purification and characterization of two raw-starchdigesting thermostable α-amylases from a thermophilic Bacillus. Enzyme Microb. Technol., 1999, 25, 433-438.
[http://dx.doi.org/10.1016/S0141-0229(99)00068-X]
[26]
Ozdemir, S.; Aguloglu Fincan, S.; Karakaya, A.; Enez, B. A novel raw starch hydrolyzing thermostable α-amylase produced by newly isolated Bacillus mojavensis SO-10: purification, characterization and usage in starch industries. Braz. Arch. Biol. Technol., 2018, 61, e18160399.
[http://dx.doi.org/10.1590/1678-4324-2018160399]
[27]
Liu, X.D.; Xu, Y. A novel raw starch digesting α-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization. Bioresour. Technol., 2008, 99(10), 4315-4320.
[http://dx.doi.org/10.1016/j.biortech.2007.08.040] [PMID: 17920264]
[28]
Corderio, C.A.M.; Martins, M.L.L.; Luciano, A.B. Production and properties of α-amylase from thermophilic Bacillus sp. Braz. J. Microbiol., 2002, 33, 57-61.
[http://dx.doi.org/10.1590/S1517-83822002000100012]
[29]
Arikan, B. Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15. Bioresour. Technol., 2008, 99(8), 3071-3076.
[http://dx.doi.org/10.1016/j.biortech.2007.06.019] [PMID: 17689242]
[30]
Igarashi, K.; Hatada, Y.; Hagihara, H.; Saeki, K.; Takaiwa, M.; Uemura, T.; Ara, K.; Ozaki, K.; Kawai, S.; Kobayashi, T.; Ito, S. Enzymatic properties of a novel liquefying α-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl. Environ. Microbiol., 1998, 64(9), 3282-3289.
[http://dx.doi.org/10.1128/AEM.64.9.3282-3289.1998] [PMID: 9726872]
[31]
Lin, L.L.; Chyau, C.C.; Hsu, W.H. Production and properties of a raw-starch-degrading amylase from the thermophilic and alkaliphilic Bacillus sp. TS-23. Biotechnol. Appl. Biochem., 1998, 28(1), 61-68.
[PMID: 9693090]
[32]
El-Banna, T.E.; Abd-Aziz, A.A.; Abou-Dobara, M.I.; Ibrahim, R.I. Production and immobilization of α-amylase from Bacillus subtilis. Pak. J. Biol. Sci., 2007, 10(12), 2039-2047.
[http://dx.doi.org/10.3923/pjbs.2007.2039.2047] [PMID: 19093444]
[33]
Kahraman, M.V.; Bayramoğlu, G.; Kayaman, A.N.; Güngör, A. α-amylase immobilization on functionalized glass beads by covalent attachment. Food Chem., 2007, 104, 1385-1392.
[http://dx.doi.org/10.1016/j.foodchem.2007.01.054]
[34]
Liu, J.; Xia, W.; Abdullahi, A.Y.; Wu, F.; Ai, Q.; Feng, D.; Zuo, J. Purification and partial characterization of an acidic α-amylase from a newly isolated Bacillus subtilis ZJ-1 that may be applied to feed enzyme. Prep. Biochem. Biotechnol., 2015, 45(3), 259-267.
[http://dx.doi.org/10.1080/10826068.2014.907184] [PMID: 24679217]
[35]
Agüloğlu Fincan, S.; Enez, B. Production, purification, and characterization of thermostable α-amylase from thermophilic Geobacillus stearothermophilus. Stärke, 2014, 66, 182-189.
[http://dx.doi.org/10.1002/star.201200279]
[36]
Božić, N.; Ruiz, J.; Santίn, J.L.; Vujćić, Z. Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945. Biochem. Eng. J., 2011, 53, 203-209..
[http://dx.doi.org/10.1016/j.bej.2010.10.014]
[37]
Shafiei, M.; Ziaee, A.A.; Amoozegar, M.A. Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting and halophilic α- amylase from a moderately halophilic bacterium Nesterenkonia sp. strain F. Process Biochem., 2010, 45, 694-699..
[http://dx.doi.org/10.1016/j.procbio.2010.01.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy