Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

The Impact of Traditional Chinese Medicine on Mitophagy in Disease Models

Author(s): Li-Ping Yu, Ting-Ting Shi, Yan-Qin Li, Jian-Kang Mu, Ya-Qin Yang, Wei-Xi Li, Jie Yu* and Xing-Xin Yang*

Volume 28, Issue 6, 2022

Published on: 06 October, 2021

Page: [488 - 496] Pages: 9

DOI: 10.2174/1381612827666211006150410

Price: $65

Open Access Journals Promotions 2
Abstract

Mitophagy plays an important role in maintaining mitochondrial quality and cell homeostasis through the degradation of damaged, aged, and dysfunctional mitochondria and misfolded proteins. Many human diseases, particularly neurodegenerative diseases, are related to disorders of mitochondrial phagocytosis. Exploring the regulatory mechanisms of mitophagy is of great significance for revealing the molecular mechanisms underlying the related diseases. Herein, we summarize the major mechanisms of mitophagy, the relationship of mitophagy with human diseases, and the role of traditional Chinese medicine (TCM) in mitophagy. These discussions enhance our knowledge of mitophagy and its potential therapeutic targets using TCM.

Keywords: Traditional chinese medicine, mitochondria, mitophagy, parkin, PINK1, BNIP3, Nix, diseases.

[1]
Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 2012; 26(6): 711-23.
[http://dx.doi.org/10.1016/j.beem.2012.05.003] [PMID: 23168274]
[2]
Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet 2009; 43: 95-118.
[http://dx.doi.org/10.1146/annurev-genet-102108-134850] [PMID: 19659442]
[3]
Montava-Garriga L, Ganley IG. Outstanding questions in mitophagy: What we do and do not know. J Mol Biol 2020; 432(1): 206-30.
[http://dx.doi.org/10.1016/j.jmb.2019.06.032] [PMID: 31299243]
[4]
Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 2018; 20(9): 1013-22.
[http://dx.doi.org/10.1038/s41556-018-0176-2] [PMID: 30154567]
[5]
Liu J, Liu W, Li R, Yang H. Mitophagy in Parkinson’s disease: From pathogenesis to treatment. Cells 2019; 8(7): 712.
[http://dx.doi.org/10.3390/cells8070712] [PMID: 31336937]
[6]
Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 2019; 22(3): 401-12.
[http://dx.doi.org/10.1038/s41593-018-0332-9] [PMID: 30742114]
[7]
Liu L, Liao X, Wu H, Li Y, Zhu Y, Chen Q. Mitophagy and its contribution to metabolic and aging-associated disorders. Antioxid Redox Signal 2020; 32(12): 906-27.
[http://dx.doi.org/10.1089/ars.2019.8013] [PMID: 31969001]
[8]
Gibellini L, Bianchini E, De Biasi S, Nasi M, Cossarizza A, Pinti M. Natural compounds modulating mitochondrial functions. Evid Based Complement Alternat Med 2015; 527209.
[http://dx.doi.org/10.1155/2015/527209] [PMID: 26167193]
[9]
Chen SY, Gao Y, Sun JY, et al. Traditional chinese medicine: role in reducing β-amyloid, apoptosis, autophagy, neuroinflammation, oxidative stress, and mitochondrial dysfunction of Alzheimer’s disease. Front Pharmacol 2020; 11: 497.
[http://dx.doi.org/10.3389/fphar.2020.00497] [PMID: 32390843]
[10]
Wang J, Lin F, Guo LL, Xiong XJ, Fan X. Cardiovascular disease, mitochondria, and traditional Chinese medicine. Evid Based Complement Alternat Med 2015; 143145.
[http://dx.doi.org/10.1155/2015/143145] [PMID: 26074984]
[11]
Barazzuol L, Giamogante F, Brini M, Calì T. PINK1/parkin mediated mitophagy, Ca2+ signalling, and ER-mitochondria contacts in Parkinson’s disease. Int J Mol Sci 2020; 21(5): 1772.
[http://dx.doi.org/10.3390/ijms21051772] [PMID: 32150829]
[12]
Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 2018; 28(4): R170-85.
[http://dx.doi.org/10.1016/j.cub.2018.01.004] [PMID: 29462587]
[13]
Eiyama A, Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 2015; 33: 95-101.
[http://dx.doi.org/10.1016/j.ceb.2015.01.002] [PMID: 25697963]
[14]
Trempe JF, Sauvé V, Grenier K, et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 2013; 340(6139): 1451-5.
[http://dx.doi.org/10.1126/science.1237908] [PMID: 23661642]
[15]
Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010; 8(1): e1000298.
[http://dx.doi.org/10.1371/journal.pbio.1000298] [PMID: 20126261]
[16]
Kondapalli C, Kazlauskaite A, Zhang N, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2012; 2(5): 120080.
[http://dx.doi.org/10.1098/rsob.120080] [PMID: 22724072]
[17]
Shiba-Fukushima K, Imai Y, Yoshida S, et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2012; 2: 1002.
[http://dx.doi.org/10.1038/srep01002] [PMID: 23256036]
[18]
Ordureau A, Paulo JA, Zhang W, et al. Dynamics of PARKIN-dependent mitochondrial ubiquitylation in induced neurons and model systems revealed by digital snapshot proteomics. Mol Cell 2018; 70(2): 211-227.e8.
[http://dx.doi.org/10.1016/j.molcel.2018.03.012] [PMID: 29656925]
[19]
Chan NC, Salazar AM, Pham AH, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 2011; 20(9): 1726-37.
[http://dx.doi.org/10.1093/hmg/ddr048] [PMID: 21296869]
[20]
Fritsch LE, Moore ME, Sarraf SA, Pickrell AM. Ubiquitin and receptor-dependent mitophagy pathways and their implication in neurodegeneration. J Mol Biol 2020; 432(8): 2510-24.
[http://dx.doi.org/10.1016/j.jmb.2019.10.015] [PMID: 31689437]
[21]
Li J, Qi W, Chen G, et al. Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy. Autophagy 2015; 11(8): 1216-29.
[http://dx.doi.org/10.1080/15548627.2015.1017180] [PMID: 26018823]
[22]
Orvedahl A, Sumpter R Jr, Xiao G, et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011; 480(7375): 113-7.
[http://dx.doi.org/10.1038/nature10546] [PMID: 22020285]
[23]
Yamashita SI, Jin X, Furukawa K, et al. Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J Cell Biol 2016; 215(5): 649-65.
[http://dx.doi.org/10.1083/jcb.201605093] [PMID: 27903607]
[24]
Yamaguchi O, Murakawa T, Nishida K, Otsu K. Receptor-mediated mitophagy. J Mol Cell Cardiol 2016; 95: 50-6.
[http://dx.doi.org/10.1016/j.yjmcc.2016.03.010] [PMID: 27021519]
[25]
Gao F, Chen D, Si J, et al. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum Mol Genet 2015; 24(9): 2528-38.
[http://dx.doi.org/10.1093/hmg/ddv017] [PMID: 25612572]
[26]
Van Humbeeck C, Cornelissen T, Hofkens H, et al. Parkin interacts with Ambra1 to induce mitophagy. J Neurosci 2011; 31(28): 10249-61.
[http://dx.doi.org/10.1523/JNEUROSCI.1917-11.2011] [PMID: 21753002]
[27]
Wang X, Winter D, Ashrafi G, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011; 147(4): 893-906.
[http://dx.doi.org/10.1016/j.cell.2011.10.018] [PMID: 22078885]
[28]
Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 2010; 11(1): 45-51.
[http://dx.doi.org/10.1038/embor.2009.256] [PMID: 20010802]
[29]
Schwarten M, Mohrlüder J, Ma P, et al. Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 2009; 5(5): 690-8.
[http://dx.doi.org/10.4161/auto.5.5.8494] [PMID: 19363302]
[30]
Rogov VV, Suzuki H, Marinković M, et al. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Sci Rep 2017; 7(1): 1131.
[http://dx.doi.org/10.1038/s41598-017-01258-6] [PMID: 28442745]
[31]
Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008; 454(7201): 232-5.
[http://dx.doi.org/10.1038/nature07006] [PMID: 18454133]
[32]
Zhang J, Ney PA. NIX induces mitochondrial autophagy in reticulocytes. Autophagy 2008; 4(3): 354-6.
[http://dx.doi.org/10.4161/auto.5552] [PMID: 18623629]
[33]
Schweers RL, Zhang J, Randall MS, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 2007; 104(49): 19500-5.
[http://dx.doi.org/10.1073/pnas.0708818104] [PMID: 18048346]
[34]
Ney PA. Mitochondrial autophagy: Origins, significance, and role of BNIP3 and NIX. Biochim Biophys Acta 2015; 1853(10 Pt B): 2775-83.
[http://dx.doi.org/10.1016/j.bbamcr.2015.02.022] [PMID: 25753537]
[35]
Marinković M, Šprung M, Novak I. Dimerization of mitophagy receptor BNIP3L/NIX is essential for recruitment of autophagic machinery. Autophagy 2021; 17(5): 1232-43.
[http://dx.doi.org/10.1080/15548627.2020.1755120] [PMID: 32286918]
[36]
Zhu Y, Massen S, Terenzio M, et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem 2013; 288(2): 1099-113.
[http://dx.doi.org/10.1074/jbc.M112.399345] [PMID: 23209295]
[37]
Ma Z, Chen C, Tang P, Zhang H, Yue J, Yu Z. BNIP3 induces apoptosis and protective autophagy under hypoxia in esophageal squamous cell carcinoma cell lines: BNIP3 regulates cell death. Dis Esophagus 2017; 30(9): 1-8.
[http://dx.doi.org/10.1093/dote/dox059] [PMID: 28859361]
[38]
Zhang Y, Liu D, Hu H, Zhang P, Xie R, Cui W. HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury. Biomed Pharmacother 2019; 120: 109464.
[http://dx.doi.org/10.1016/j.biopha.2019.109464] [PMID: 31590128]
[39]
Liu L, Sakakibara K, Chen Q, Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 2014; 24(7): 787-95.
[http://dx.doi.org/10.1038/cr.2014.75] [PMID: 24903109]
[40]
Lv M, Wang C, Li F, et al. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Protein Cell 2017; 8(1): 25-38.
[http://dx.doi.org/10.1007/s13238-016-0328-8] [PMID: 27757847]
[41]
Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012; 14(2): 177-85.
[http://dx.doi.org/10.1038/ncb2422] [PMID: 22267086]
[42]
Wu W, Tian W, Hu Z, et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 2014; 15(5): 566-75.
[http://dx.doi.org/10.1002/embr.201438501] [PMID: 24671035]
[43]
Ma K, Zhang Z, Chang R, et al. Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate. Cell Death Differ 2020; 27(3): 1036-51.
[http://dx.doi.org/10.1038/s41418-019-0396-4] [PMID: 31367011]
[44]
Zhang H, Liu B, Li T, et al. AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia. Int J Mol Med 2018; 41(1): 69-76.
[PMID: 29115402]
[45]
Li Y, Chen Y. AMPK and Autophagy. Adv Exp Med Biol 2019; 1206: 85-108.
[http://dx.doi.org/10.1007/978-981-15-0602-4_4] [PMID: 31776981]
[46]
Toyama EQ, Herzig S, Courchet J, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 2016; 351(6270): 275-81.
[http://dx.doi.org/10.1126/science.aab4138] [PMID: 26816379]
[47]
Liang J, Xu ZX, Ding Z, et al. Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nat Commun 2015; 6: 7926.
[http://dx.doi.org/10.1038/ncomms8926] [PMID: 26272043]
[48]
Hardie DG. AMPK and autophagy get connected. EMBO J 2011; 30(4): 634-5.
[http://dx.doi.org/10.1038/emboj.2011.12] [PMID: 21326174]
[49]
Joseph BK, Liu HY, Francisco J, et al. Inhibition of AMP Kinase by the Protein Phosphatase 2A Heterotrimer, PP2APpp2r2d. J Biol Chem 2015; 290(17): 10588-98.
[http://dx.doi.org/10.1074/jbc.M114.626259] [PMID: 25694423]
[50]
Rodolfo C, Campello S, Cecconi F. Mitophagy in neurodegenerative diseases. Neurochem Int 2018; 117: 156-66.
[http://dx.doi.org/10.1016/j.neuint.2017.08.004] [PMID: 28797885]
[51]
Um JH, Yun J. Emerging role of mitophagy in human diseases and physiology. BMB Rep 2017; 50(6): 299-307.
[http://dx.doi.org/10.5483/BMBRep.2017.50.6.056] [PMID: 28366191]
[52]
Ke PY. Mitophagy in the pathogenesis of liver diseases. Cells 2020; 9(4): 831.
[http://dx.doi.org/10.3390/cells9040831] [PMID: 32235615]
[53]
Ma X, McKeen T, Zhang J, Ding WX. Role and mechanisms of mitophagy in liver diseases. Cells 2020; 9(4): 837.
[http://dx.doi.org/10.3390/cells9040837] [PMID: 32244304]
[54]
Wang H, Ni HM, Chao X, et al. Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice. Redox Biol 2019; 22: 101148.
[http://dx.doi.org/10.1016/j.redox.2019.101148] [PMID: 30818124]
[55]
Williams JA, Ni HM, Haynes A, et al. Chronic deletion and acute knockdown of parkin have differential responses to acetaminophen-induced mitophagy and liver injury in mice. J Biol Chem 2015; 290(17): 10934-46.
[http://dx.doi.org/10.1074/jbc.M114.602284] [PMID: 25752611]
[56]
Peng KY, Watt MJ, Rensen S, et al. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J Lipid Res 2018; 59(10): 1977-86.
[http://dx.doi.org/10.1194/jlr.M085613] [PMID: 30042157]
[57]
Costa DK, Huckestein BR, Edmunds LR, et al. Reduced intestinal lipid absorption and body weight-independent improvements in insulin sensitivity in high-fat diet-fed Park2 knockout mice. Am J Physiol Endocrinol Metab 2016; 311(1): E105-16.
[http://dx.doi.org/10.1152/ajpendo.00042.2016] [PMID: 27166280]
[58]
Liu P, Lin H, Xu Y, et al. Frataxin-mediated PINK1-parkin-dependent mitophagy in hepatic steatosis: the protective effects of quercetin. Mol Nutr Food Res 2018; 62(16): e1800164.
[http://dx.doi.org/10.1002/mnfr.201800164] [PMID: 29935106]
[59]
Glick D, Zhang W, Beaton M, et al. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 2012; 32(13): 2570-84.
[http://dx.doi.org/10.1128/MCB.00167-12] [PMID: 22547685]
[60]
Hong JM, Lee SM. Heme oxygenase-1 protects liver against ischemia/reperfusion injury via phosphoglycerate mutase family member 5-mediated mitochondrial quality control. Life Sci 2018; 200: 94-104.
[http://dx.doi.org/10.1016/j.lfs.2018.03.017] [PMID: 29524517]
[61]
Huang XY, Li D, Chen ZX, et al. Hepatitis B Virus X protein elevates Parkin-mediated mitophagy through Lon Peptidase in starvation. Exp Cell Res 2018; 368(1): 75-83.
[http://dx.doi.org/10.1016/j.yexcr.2018.04.016] [PMID: 29689279]
[62]
Kim SJ, Syed GH, Siddiqui A. Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy. PLoS Pathog 2013; 9(3): e1003285.
[http://dx.doi.org/10.1371/journal.ppat.1003285] [PMID: 23555273]
[63]
Chi HC, Chen SL, Lin SL, et al. Thyroid hormone protects hepatocytes from HBx-induced carcinogenesis by enhancing mitochondrial turnover. Oncogene 2017; 36(37): 5274-84.
[http://dx.doi.org/10.1038/onc.2017.136] [PMID: 28504722]
[64]
Li W, Li Y, Siraj S, et al. FUN14 domain-containing 1-mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice. Hepatology 2019; 69(2): 604-21.
[http://dx.doi.org/10.1002/hep.30191] [PMID: 30053328]
[65]
Lin D, He H, Ji H, et al. Wolfberries potentiate mitophagy and enhance mitochondrial biogenesis leading to prevention of hepatic steatosis in obese mice: the role of AMP-activated protein kinase α2 subunit. Mol Nutr Food Res 2014; 58(5): 1005-15.
[http://dx.doi.org/10.1002/mnfr.201300186] [PMID: 24449471]
[66]
Cai Q, Jeong YY. Mitophagy in Alzheimer’s disease and other age-related neurodegenerative diseases. Cells 2020; 9(1): 150.
[http://dx.doi.org/10.3390/cells9010150] [PMID: 31936292]
[67]
Wang Y, Liu N, Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci Ther 2019; 25(7): 859-75.
[http://dx.doi.org/10.1111/cns.13140] [PMID: 31050206]
[68]
Ye X, Sun X, Starovoytov V, Cai Q. Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer’s disease patient brains. Hum Mol Genet 2015; 24(10): 2938-51.
[http://dx.doi.org/10.1093/hmg/ddv056] [PMID: 25678552]
[69]
Homayoun H. Parkinson Disease. Ann Intern Med 2018; 169(5): ITC33-48.
[http://dx.doi.org/10.7326/AITC201809040] [PMID: 30178019]
[70]
Dave KD, De Silva S, Sheth NP, et al. Phenotypic characterization of recessive gene knockout rat models of Parkinson’s disease. Neurobiol Dis 2014; 70: 190-203.
[http://dx.doi.org/10.1016/j.nbd.2014.06.009] [PMID: 24969022]
[71]
Pirooznia SK, Yuan C, Khan MR, et al. PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency. Mol Neurodegener 2020; 15(1): 17.
[http://dx.doi.org/10.1186/s13024-020-00363-x] [PMID: 32138754]
[72]
Miller S, Muqit MMK. Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson’s disease. Neurosci Lett 2019; 705: 7-13.
[http://dx.doi.org/10.1016/j.neulet.2019.04.029] [PMID: 30995519]
[73]
Tan S, Yu CY, Sim ZW, et al. Pomegranate activates TFEB to promote autophagy-lysosomal fitness and mitophagy. Sci Rep 2019; 9(1): 727.
[http://dx.doi.org/10.1038/s41598-018-37400-1] [PMID: 30679718]
[74]
Lan R, Xiang J, Wang GH, et al. Xiao-Xu-Ming decoction protects against blood-brain barrier disruption and neurological injury induced by cerebral ischemia and reperfusion in rats. Evid Based Complement Alternat Med 2013; 629782.
[PMID: 23710225]
[75]
Lan R, Zhang Y, Xiang J, et al. Xiao-Xu-Ming decoction preserves mitochondrial integrity and reduces apoptosis after focal cerebral ischemia and reperfusion via the mitochondrial p53 pathway. J Ethnopharmacol 2014; 151(1): 307-16.
[http://dx.doi.org/10.1016/j.jep.2013.10.042] [PMID: 24189031]
[76]
Lan R, Zhang Y, Wu T, et al. Xiao-Xu-Ming decoction reduced mitophagy activation and improved mitochondrial function in cerebral ischemia and reperfusion injury. Behav Neurol 2018; 4147502.
[http://dx.doi.org/10.1155/2018/4147502] [PMID: 30018669]
[77]
Chang JY, Yi HS, Kim HW, Shong M. Dysregulation of mitophagy in carcinogenesis and tumor progression. Biochim Biophys Acta Bioenerg 2017; 1858(8): 633-40.
[http://dx.doi.org/10.1016/j.bbabio.2016.12.008] [PMID: 28017650]
[78]
Panigrahi DP, Praharaj PP, Bhol CS, et al. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Semin Cancer Biol 2020; 66: 45-58.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.015] [PMID: 31351198]
[79]
Liu YH, Weng YP, Tsai HY, et al. Aqueous extracts of Paeonia suffruticosa modulates mitochondrial proteostasis by reactive oxygen species-induced endoplasmic reticulum stress in pancreatic cancer cells. Phytomedicine 2018; 46: 184-92.
[http://dx.doi.org/10.1016/j.phymed.2018.03.037] [PMID: 30097117]
[80]
Fan YY, Chen YZ, Lu YK. Effects of herba Hedyotis and herba Scutellariae Barbatae Couplet medicines component on the proliferation, autophagy and apoptosis in gastric cancer SGC-7901 cells. Acta Chin Med 2020; 35: 130-5.
[81]
Yang M, Linn BS, Zhang Y, Ren J. Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2019; 1865(9): 2293-302.
[http://dx.doi.org/10.1016/j.bbadis.2019.05.007] [PMID: 31100337]
[82]
Fan H, He Z, Huang H, et al. Mitochondrial quality control in cardiomyocytes: A critical role in the progression of cardiovascular diseases. Front Physiol 2020; 11: 252.
[http://dx.doi.org/10.3389/fphys.2020.00252] [PMID: 32292354]
[83]
Zhang R, Krigman J, Luo H, Ozgen S, Yang M, Sun N. Mitophagy in cardiovascular homeostasis. Mech Ageing Dev 2020; 188: 111245.
[http://dx.doi.org/10.1016/j.mad.2020.111245] [PMID: 32289324]
[84]
Saito T, Nah J, Oka SI, et al. An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia. J Clin Invest 2019; 129(2): 802-19.
[http://dx.doi.org/10.1172/JCI122035] [PMID: 30511961]
[85]
Kanamori H, Takemura G, Goto K, et al. Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am J Physiol Heart Circ Physiol 2011; 300(6): H2261-71.
[http://dx.doi.org/10.1152/ajpheart.01056.2010] [PMID: 21421825]
[86]
Kubli DA, Zhang X, Lee Y, et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 2013; 288(2): 915-26.
[http://dx.doi.org/10.1074/jbc.M112.411363] [PMID: 23152496]
[87]
Yang HX, Wang P, Wang NN. Tongxinluo ameliorates myocardial ischemia-reperfusion injury mainly via activating parkin-mediated mitophagy and downregulating ubiquitin-proteasome system. Chin J Integr Med 2019.
[http://dx.doi.org/10.1007/s11655-019-3166-8] [PMID: 31227964]
[88]
Yu J, Li Y, Liu X, et al. Mitochondrial dynamics modulation as a critical contribution for Shenmai injection in attenuating hypoxia/reoxygenation injury. J Ethnopharmacol 2019; 237: 9-19.
[http://dx.doi.org/10.1016/j.jep.2019.03.033] [PMID: 30880258]
[89]
Cao Y, Han X, Pan H, et al. Emerging protective roles of shengmai injection in septic cardiomyopathy in mice by inducing myocardial mitochondrial autophagy via caspase-3/Beclin-1 axis. Inflamm Res 2020; 69(1): 41-50.
[http://dx.doi.org/10.1007/s00011-019-01292-2] [PMID: 31712853]
[90]
Li J, Shi W, Zhang J, Ren L. To explore the protective mechanism of PTEN-Induced kinase 1 (PINK1)/parkin mitophagy-mediated extract of periplaneta americana on lipopolysaccharide-induced cardiomyocyte injury. Med Sci Monit 2019; 25: 1383-91.
[http://dx.doi.org/10.12659/MSM.912980] [PMID: 30789157]
[91]
Chen X, Wu J, Guo S. Cardioprotective effect of Yiqi Huoxue granule through regulation of mitophagy after myocardial infarction in rats. J Tradit Chin Med Sci 2020; 7: 171-80.
[92]
Cao CH, Han LH, Zhang HC. To ameriorate the post-infarction heart failure in rats with a traditional Chinese medicine, Wenyang-Yiqi recipe, and to analyze its pharmacological mechanism by AMPK-mediated mitochondrial autophagy. Chin J Comp Med 2019; 29: 39-44.
[93]
Qiu Z, Hu Y, Geng Y, et al. Xin Fu Kang oral liquid inhibits excessive myocardial mitophagy in a rat model of advanced heart failure. Am J Transl Res 2018; 10(10): 3198-210.
[PMID: 30416661]
[94]
Wang Y, Cai J, Tang C, Dong Z. Mitophagy in acute kidney injury and kidney repair. Cells 2020; 9(2): 338.
[http://dx.doi.org/10.3390/cells9020338] [PMID: 32024113]
[95]
Tang C, Han H, Yan M, et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 2018; 14(5): 880-97.
[http://dx.doi.org/10.1080/15548627.2017.1405880] [PMID: 29172924]
[96]
Livingston MJ, Wang J, Zhou J, et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy 2019; 15(12): 2142-62.
[http://dx.doi.org/10.1080/15548627.2019.1615822] [PMID: 31066324]
[97]
Zhao C, Chen Z, Xu X, et al. Pink1/Parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury. Exp Cell Res 2017; 350(2): 390-7.
[http://dx.doi.org/10.1016/j.yexcr.2016.12.015] [PMID: 28024839]
[98]
Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003; 300(5622): 1140-2.
[http://dx.doi.org/10.1126/science.1082889] [PMID: 12750520]
[99]
Bhansali S, Bhansali A, Walia R, Saikia UN, Dhawan V. Alterations in mitochondrial oxidative stress and mitophagy in subjects with prediabetes and type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2017; 8: 347.
[http://dx.doi.org/10.3389/fendo.2017.00347] [PMID: 29326655]
[100]
Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia 2019; 62(1): 3-16.
[http://dx.doi.org/10.1007/s00125-018-4711-2] [PMID: 30171279]
[101]
Yang YY, Gong DJ, Zhang JJ, Liu XH, Wang L. Diabetes aggravates renal ischemia-reperfusion injury by repressing mitochondrial function and PINK1/Parkin-mediated mitophagy. Am J Physiol Renal Physiol 2019; 317(4): F852-64.
[http://dx.doi.org/10.1152/ajprenal.00181.2019] [PMID: 31390235]
[102]
Liu X, Lu J, Liu S, et al. Huangqi-Danshen decoction alleviates diabetic nephropathy in db/db mice by inhibiting PINK1/Parkin-mediated mitophagy. Am J Transl Res 2020; 12(3): 989-98.
[PMID: 32269729]
[103]
Li WS, Niu Y, Nan Y. Effect of Buqing granules medicated sera on mitochondrial autophagy in high glucose-induced human lens epithelial cells based on Pink-1/Parkin signaling pathway. Chin J Exp Tradit Med Form 2017; 23: 128-33.
[104]
Li WS, Niu Y, Nan Y. Effects of Buqing Granules on mitochondrial autophagy Bnip3/Nix signaling pathway in high glucose induced human lens epithelium cells. Chin J Tradit Chin Med Pharm 2018; 33: 3056-60.
[105]
Luan P, D’Amico D, Andreux PA, et al. Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Sci Transl Med 2021; 13(588): eabb0319.
[http://dx.doi.org/10.1126/scitranslmed.abb0319] [PMID: 33827972]
[106]
Chen CCW, Erlich AT, Crilly MJ, Hood DA. Parkin is required for exercise-induced mitophagy in muscle: impact of aging. Am J Physiol Endocrinol Metab 2018; 315(3): E404-15.
[http://dx.doi.org/10.1152/ajpendo.00391.2017] [PMID: 29812989]
[107]
Triolo M, Hood DA. Manifestations of age on autophagy, mitophagy and lysosomes in skeletal muscle. Cells 2021; 10(5): 1054.
[http://dx.doi.org/10.3390/cells10051054] [PMID: 33946883]
[108]
Kang C, Badr MA, Kyrychenko V, Eskelinen EL, Shirokova N. Deficit in PINK1/PARKIN-mediated mitochondrial autophagy at late stages of dystrophic cardiomyopathy. Cardiovasc Res 2018; 114(1): 90-102.
[http://dx.doi.org/10.1093/cvr/cvx201] [PMID: 29036556]
[109]
Leermakers PA, Kneppers AEM, Schols AMWJ, et al. Skeletal muscle unloading results in increased mitophagy and decreased mitochondrial biogenesis regulation. Muscle Nerve 2019; 60(6): 769-78.
[http://dx.doi.org/10.1002/mus.26702] [PMID: 31495926]
[110]
Ramesh M, Campos JC, Lee P, et al. Mitophagy protects against statin-mediated skeletal muscle toxicity. FASEB J 2019; 33(11): 11857-69.
[http://dx.doi.org/10.1096/fj.201900807RR] [PMID: 31365836]
[111]
Hou Y, Tang Y, Wang X, et al. Rhodiola crenulata ameliorates exhaustive exercise-induced fatigue in mice by suppressing mitophagy in skeletal muscle. Exp Ther Med 2020; 20(4): 3161-73.
[PMID: 32855685]
[112]
Wang D, Chen J, Liu X, et al. A Chinese herbal formula, Jian-Pi-Yi-Shen decoction, improves muscle atrophy via regulating mitochondrial quality control process in 5/6 nephrectomised rats. Sci Rep 2017; 7(1): 9253.
[http://dx.doi.org/10.1038/s41598-017-10027-4] [PMID: 28835671]
[113]
Zhou XY, Song YH, Xue D. Protective mechanism of Shenling Baizhu powder on the injured cells of COPD skeletal muscle based on mitochondrial autophagy. Guangdong Yaoxueyuan Xuebao 2020; 36: 369-74.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy