Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Progress on the Drug Resistance of ALK Kinase Inhibitors

Author(s): Zhen Li, Fang Liu , Shuang Wu , Shi Ding , Ye Chen* and Ju Liu*

Volume 29, Issue 14, 2022

Published on: 06 August, 2021

Page: [2456 - 2475] Pages: 20

DOI: 10.2174/0929867328666210806120347

Price: $65

Abstract

Background: The fusion and rearrangement of the ALK gene of anaplastic lymphoma kinase is an important cause of a variety of cancers, including non-small cell lung cancer (NSCLC) and anaplastic large cell lymphoma (ALCL). Since crizotinib first came out, many ALK inhibitors have come out one after another, but the fatal flaw in each generation of ALK inhibitors is the body's resistance to drugs. Therefore, how to solve the problem of drug resistance has become an important bottleneck in the application and development of ALK inhibitors. This article briefly introduces the drug resistance of ALK inhibitors and the modified forms of ALK inhibitors, which provide a theoretical basis for solving the drug resistance of ALK inhibitors and the development of a new generation of ALK kinase inhibitors.

Methods: We use relevant databases to query relevant literature, and then screen and select based on the relevance and cutting edge of the content. We then summarize and analyze appropriate articles, integrate and classify relevant studies, and finally write articles based on topics.

Results: This article starts with the problem of ALK resistance, first introduces the composition of ALK kinase, and then introduces the problem of resistance of ALK kinase inhibitors. Later, the structural modification to overcome ALK resistance was introduced, and finally, the method to overcome ALK resistance was introduced.

Conclusion: This article summarizes the resistance pathways of ALK kinase inhibitors, and integrates the efforts made to overcome the structural modification of ALK resistance problems, and hopes to provide some inspiration for the development of the next generation of ALK kinase inhibitors.

Keywords: Non-small cell lung cancer, anaplastic lymphoma kinase, ALK inhibitors, ALK drug-resistant, ALK drug modification, overcome resistance.

[1]
Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med., 2020, 383(7), 640-649.
[http://dx.doi.org/10.1056/NEJMoa1916623] [PMID: 32786189]
[2]
Takeuchi, K.; Soda, M.; Togashi, Y.; Suzuki, R.; Sakata, S.; Hatano, S.; Asaka, R.; Hamanaka, W.; Ninomiya, H.; Uehara, H.; Lim Choi, Y.; Satoh, Y.; Okumura, S.; Nakagawa, K.; Mano, H.; Ishikawa, Y. RET, ROS1 and ALK fusions in lung cancer. Nat. Med., 2012, 18(3), 378-381.
[http://dx.doi.org/10.1038/nm.2658] [PMID: 22327623]
[3]
Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448(7153), 561-566.
[http://dx.doi.org/10.1038/nature05945] [PMID: 17625570]
[4]
Puccini, A.; Marín-Ramos, N.I.; Bergamo, F.; Schirripa, M.; Lonardi, S.; Lenz, H.J.; Loupakis, F.; Battaglin, F. Safety and tolerability of c-MET inhibitors in cancer. Drug Saf., 2019, 42(2), 211-233.
[http://dx.doi.org/10.1007/s40264-018-0780-x] [PMID: 30649748]
[5]
Wong, D.W.; Leung, E.L.; So, K.K.; Tam, I.Y.; Sihoe, A.D.; Cheng, L.C.; Ho, K.K.; Au, J.S.; Chung, L.P.; Pik Wong, M. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer, 2009, 115(8), 1723-1733.
[http://dx.doi.org/10.1002/cncr.24181] [PMID: 19170230]
[6]
Kwak, E.L.; Bang, Y.J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.H.; Dezube, B.J.; Jänne, P.A.; Costa, D.B.; Varella-Garcia, M.; Kim, W.H.; Lynch, T.J.; Fidias, P.; Stubbs, H.; Engelman, J.A.; Sequist, L.V.; Tan, W.; Gandhi, L.; Mino-Kenudson, M.; Wei, G.C.; Shreeve, S.M.; Ratain, M.J.; Settleman, J.; Christensen, J.G.; Haber, D.A.; Wilner, K.; Salgia, R.; Shapiro, G.I.; Clark, J.W.; Iafrate, A.J. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med., 2010, 363(18), 1693-1703.
[http://dx.doi.org/10.1056/NEJMoa1006448] [PMID: 20979469]
[7]
Shaw, A.T.; Kim, D.W.; Mehra, R.; Tan, D.S.; Felip, E.; Chow, L.Q.; Camidge, D.R.; Vansteenkiste, J.; Sharma, S.; De Pas, T.; Riely, G.J.; Solomon, B.J.; Wolf, J.; Thomas, M.; Schuler, M.; Liu, G.; Santoro, A.; Lau, Y.Y.; Goldwasser, M.; Boral, A.L.; Engelman, J.A. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med., 2014, 370(13), 1189-1197.
[http://dx.doi.org/10.1056/NEJMoa1311107] [PMID: 24670165]
[8]
Morris, S.W.; Kirstein, M.N.; Valentine, M.B.; Dittmer, K.; Shapiro, D.N.; Look, A.T.; Saltman, D.L. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 1995, 267(5196), 316-317.
[http://dx.doi.org/10.1126/science.267.5196.316-b] [PMID: 7824924]
[9]
Palmer, R.H.; Vernersson, E.; Grabbe, C.; Hallberg, B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem. J., 2009, 420(3), 345-361.
[http://dx.doi.org/10.1042/BJ20090387] [PMID: 19459784]
[10]
Iwahara, T.; Fujimoto, J.; Wen, D.; Cupples, R.; Bucay, N.; Arakawa, T.; Mori, S.; Ratzkin, B.; Yamamoto, T. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene, 1997, 14(4), 439-449.
[http://dx.doi.org/10.1038/sj.onc.1200849]
[11]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[12]
Mossé, Y.P.; Wood, A.; Maris, J.M. Inhibition of ALK signaling for cancer therapy. Clin. Cancer Res., 2009, 15(18), 5609-5614.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2762] [PMID: 19737948]
[13]
Barreca, A.; Lasorsa, E.; Riera, L.; Machiorlatti, R.; Piva, R.; Ponzoni, M.; Kwee, I.; Bertoni, F.; Piccaluga, P.P.; Pileri, S.A.; Inghirami, G. European T-cell lymphoma study group. anaplastic lymphoma kinase (ALK) in human cancer. J. Mol. Endocrinol., 2011, 47, R11-R23.
[http://dx.doi.org/10.1530/JME-11-0004] [PMID: 21502284]
[14]
Chiarle, R.; Voena, C.; Ambrogio, C.; Piva, R.; Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer, 2008, 8(1), 11-23.
[http://dx.doi.org/10.1038/nrc2291] [PMID: 18097461]
[15]
Duyster, J.; Bai, R.Y.; Morris, S.W. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene, 2001, 20(40), 5623-5637.
[http://dx.doi.org/10.1038/sj.onc.1204594] [PMID: 11607814]
[16]
Woo, C.G.; Seo, S.; Kim, S.W.; Jang, S.J.; Park, K.S.; Song, J.Y.; Lee, B.; Richards, M.W.; Bayliss, R.; Lee, D.H.; Choi, J. Differential protein stability and clinical responses of EML4-ALK fusion variants to various ALK inhibitors in advanced ALK-rearranged non-small cell lung cancer. Ann. Oncol., 2017, 28(4), 791-797.
[http://dx.doi.org/10.1093/annonc/mdw693] [PMID: 28039177]
[17]
Coffin, C.M.; Patel, A.; Perkins, S.; Elenitoba-Johnson, K.S.; Perlman, E.; Griffin, C.A. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod. Pathol., 2001, 14(6), 569-576.
[http://dx.doi.org/10.1038/modpathol.3880352] [PMID: 11406658]
[18]
Hallberg, B.; Palmer, R.H. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat. Rev. Cancer, 2013, 13(10), 685-700.
[http://dx.doi.org/10.1038/nrc3580] [PMID: 24060861]
[19]
Spagnuolo, A.; Maione, P.; Gridelli, C. Evolution in the treatment landscape of non-small cell lung cancer with ALK gene alterations: from the first- to third-generation of ALK inhibitors. Expert Opin. Emerg. Drugs, 2018, 23(3), 231-241.
[http://dx.doi.org/10.1080/14728214.2018.1527902] [PMID: 30251885]
[20]
Choi, Y.L.; Soda, M.; Yamashita, Y.; Ueno, T.; Takashima, J.; Nakajima, T.; Yatabe, Y.; Takeuchi, K.; Hamada, T.; Haruta, H.; Ishikawa, Y.; Kimura, H.; Mitsudomi, T.; Tanio, Y.; Mano, H. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med., 2010, 363(18), 1734-1739.
[http://dx.doi.org/10.1056/NEJMoa1007478] [PMID: 20979473]
[21]
Doebele, R.C.; Pilling, A.B.; Aisner, D.L.; Kutateladze, T.G.; Le, A.T.; Weickhardt, A.J.; Kondo, K.L.; Linderman, D.J.; Heasley, L.E.; Franklin, W.A.; Varella-Garcia, M.; Camidge, D.R. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res., 2012, 18(5), 1472-1482.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2906] [PMID: 22235099]
[22]
Karachaliou, N.; Santarpia, M.; Gonzalez Cao, M.; Teixido, C.; Sosa, A.E.; Berenguer, J.; Rodriguez Capote, A.; Altavilla, G.; Rosell, R. Anaplastic lymphoma kinase inhibitors in phase I and phase II clinical trials for non-small cell lung cancer. Expert Opin. Investig. Drugs, 2017, 26(6), 713-722.
[http://dx.doi.org/10.1080/13543784.2017.1324572] [PMID: 28463570]
[23]
Katayama, R.; Friboulet, L.; Koike, S.; Lockerman, E.L.; Khan, T.M.; Gainor, J.F.; Iafrate, A.J.; Takeuchi, K.; Taiji, M.; Okuno, Y.; Fujita, N.; Engelman, J.A.; Shaw, A.T. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin. Cancer Res., 2014, 20(22), 5686-5696.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1511] [PMID: 25228534]
[24]
Lin, J.J.; Choudhury, N.J.; Yoda, S.; Zhu, V.W.; Johnson, T.W.; Sakhtemani, R.; Dagogo-Jack, I.; Digumarthy, S.R.; Lee, C.; Do, A.; Peterson, J.; Prutisto-Chang, K.; Malik, W.; Hubbeling, H.G.; Langenbucher, A.; Schoenfeld, A.J.; Falcon, C.J.; Temel, J.S.; Sequist, L.V.; Yeap, B.Y.; Lennerz, J.K.; Shaw, A.T.; Lawrence, M.S.; Ou, S.I.; Hata, A.N.; Drilon, A.; Gainor, J.F. Spectrum of mechanisms of resistance to crizotinib and lorlatinib in ROS1 fusion-positive lung cancer. Clin. Cancer Res., 2021, 27(10), 2899-2909. Epub ahead of print
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0032] [PMID: 33685866]
[25]
Heuckmann, J.M.; Hölzel, M.; Sos, M.L.; Heynck, S.; Balke-Want, H.; Koker, M.; Peifer, M.; Weiss, J.; Lovly, C.M.; Grütter, C.; Rauh, D.; Pao, W.; Thomas, R.K. ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin. Cancer Res., 2011, 17(23), 7394-7401.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1648] [PMID: 21948233]
[26]
Toyokawa, G.; Seto, T. Updated evidence on the mechanisms of resistance to ALK inhibitors and strategies to overcome such resistance: clinical and preclinical data. Oncol. Res. Treat., 2015, 38(6), 291-298.
[http://dx.doi.org/10.1159/000430852] [PMID: 26045026]
[27]
Katayama, R.; Khan, T.M.; Benes, C.; Lifshits, E.; Ebi, H.; Rivera, V.M.; Shakespeare, W.C.; Iafrate, A.J.; Engelman, J.A.; Shaw, A.T. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc. Natl. Acad. Sci. USA, 2011, 108(18), 7535-7540.
[http://dx.doi.org/10.1073/pnas.1019559108] [PMID: 21502504]
[28]
Katayama, R.; Shaw, A.T.; Khan, T.M.; Mino-Kenudson, M.; Solomon, B.J.; Halmos, B.; Jessop, N.A.; Wain, J.C.; Yeo, A.T.; Benes, C.; Drew, L.; Saeh, J.C.; Crosby, K.; Sequist, L.V.; Iafrate, A.J.; Engelman, J.A. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci. Transl. Med., 2012, 4(120) ,120ra17.
[http://dx.doi.org/10.1126/scitranslmed.3003316] [PMID: 22277784]
[29]
Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer, 2013, 49(6), 1374-1403.
[http://dx.doi.org/10.1016/j.ejca.2012.12.027] [PMID: 23485231]
[30]
Tabchi, S.; Kourie, H.R.; Klastersky, J. Concurrent driver mutations/rearrangements in non-small-cell lung cancer. Curr. Opin. Oncol., 2017, 29(2), 118-122.
[http://dx.doi.org/10.1097/CCO.0000000000000353] [PMID: 28027105]
[31]
da Cunha Santos, G.; Shepherd, F.A.; Tsao, M.S. EGFR mutations and lung cancer. Annu. Rev. Pathol., 2011, 6(1), 49-69.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130206] [PMID: 20887192]
[32]
Ignatius Ou, S.H.; Azada, M.; Hsiang, D.J.; Herman, J.M.; Kain, T.S.; Siwak-Tapp, C.; Casey, C.; He, J.; Ali, S.M.; Klempner, S.J.; Miller, V.A. Next-generation sequencing reveals a Novel NSCLC ALK F1174V mutation and confirms ALK G1202R mutation confers high-level resistance to alectinib (CH5424802/RO5424802) in ALK-rearranged NSCLC patients who progressed on crizotinib. J. Thorac. Oncol., 2014, 9(4), 549-553.
[http://dx.doi.org/10.1097/JTO.0000000000000094] [PMID: 24736079]
[33]
Dehghanian, F.; Kay, M.; Vallian, S. F1174V mutation alters the ALK active conformation in response to Crizotinib in NSCLC: Insight from molecular simulations. J. Mol. Graph. Model., 2017, 75, 287-293.
[http://dx.doi.org/10.1016/j.jmgm.2017.06.010] [PMID: 28622610]
[34]
Toyokawa, G.; Hirai, F.; Inamasu, E.; Yoshida, T.; Nosaki, K.; Takenaka, T.; Yamaguchi, M.; Seto, T.; Takenoyama, M.; Ichinose, Y. Secondary mutations at I1171 in the ALK gene confer resistance to both Crizotinib and Alectinib. J. Thorac. Oncol., 2014, 9(12), e86-e87.
[http://dx.doi.org/10.1097/JTO.0000000000000358] [PMID: 25393798]
[35]
Sakamoto, H.; Tsukaguchi, T.; Hiroshima, S.; Kodama, T.; Kobayashi, T.; Fukami, T.A.; Oikawa, N.; Tsukuda, T.; Ishii, N.; Aoki, Y. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell, 2011, 19(5), 679-690.
[http://dx.doi.org/10.1016/j.ccr.2011.04.004] [PMID: 21575866]
[36]
Morcos, P.N.; Yu, L.; Bogman, K.; Sato, M.; Katsuki, H.; Kawashima, K.; Moore, D.J.; Whayman, M.; Nieforth, K.; Heinig, K.; Guerini, E.; Muri, D.; Martin-Facklam, M.; Phipps, A. Absorption, distribution, metabolism and excretion (ADME) of the ALK inhibitor alectinib: results from an absolute bioavailability and mass balance study in healthy subjects. Xenobiotica, 2017, 47(3), 217-229.
[http://dx.doi.org/10.1080/00498254.2016.1179821] [PMID: 27180975]
[38]
Friboulet, L.; Li, N.; Katayama, R.; Lee, C.C.; Gainor, J.F.; Crystal, A.S.; Michellys, P.Y.; Awad, M.M.; Yanagitani, N.; Kim, S.; Pferdekamper, A.C.; Li, J.; Kasibhatla, S.; Sun, F.; Sun, X.; Hua, S.; McNamara, P.; Mahmood, S.; Lockerman, E.L.; Fujita, N.; Nishio, M.; Harris, J.L.; Shaw, A.T.; Engelman, J.A. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov., 2014, 4(6), 662-673.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0846] [PMID: 24675041]
[39]
Ni, Z.; Wang, X.; Zhang, T.; Jin, R.Z. Molecular dynamics simulations reveal the allosteric effect of F1174C resistance mutation to ceritinib in ALK-associated lung cancer. Comput. Biol. Chem., 2016, 65, 54-60.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.10.005] [PMID: 27764703]
[40]
Zhao, D.; Chen, J.; Chu, M.; Long, X.; Wang, J. Pharmacokinetic-based drug-drug interactions with anaplastic lymphoma kinase inhibitors: a review. Drug Des. Devel. Ther., 2020, 14, 1663-1681.
[http://dx.doi.org/10.2147/DDDT.S249098] [PMID: 32431491]
[42]
Zhang, S.; Anjum, R.; Squillace, R.; Nadworny, S.; Zhou, T.; Keats, J.; Ning, Y.; Wardwell, S.D.; Miller, D.; Song, Y.; Eichinger, L.; Moran, L.; Huang, W.S.; Liu, S.; Zou, D.; Wang, Y.; Mohemmad, Q.; Jang, H.G.; Ye, E.; Narasimhan, N.; Wang, F.; Miret, J.; Zhu, X.; Clackson, T.; Dalgarno, D.; Shakespeare, W.C.; Rivera, V.M. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin. Cancer Res., 2016, 22(22), 5527-5538.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0569] [PMID: 27780853]
[43]
Camidge, D.R.; Kim, H.R.; Ahn, M.J.; Yang, J.C.H.; Han, J.Y.; Hochmair, M.J.; Lee, K.H.; Delmonte, A.; García Campelo, M.R.; Kim, D.W.; Griesinger, F.; Felip, E.; Califano, R.; Spira, A.; Gettinger, S.N.; Tiseo, M.; Lin, H.M.; Gupta, N.; Hanley, M.J.; Ni, Q.; Zhang, P.; Popat, S. Brigatinib versus crizotinib in advanced ALK inhibitor-naive ALK-positive non-small cell lung cancer: second interim analysis of the Phase III ALTA-1L Trial. J. Clin. Oncol., 2020, 38(31), 3592-3603.
[http://dx.doi.org/10.1200/JCO.20.00505] [PMID: 32780660]
[44]
Stinchcombe, T.E.; Doebele, R.C.; Wang, X.; Gerber, D.E.; Horn, L.; Camidge, D.R. Preliminary clinical and molecular analysis results from a single-arm phase 2 trial of brigatinib in patients with disease progression after next-generation ALK tyrosine kinase inhibitors in advanced ALK+ NSCLC. J. Thorac. Oncol., 2021, 16(1), 156-161.
[http://dx.doi.org/10.1016/j.jtho.2020.09.018] [PMID: 33039599]
[47]
Ou, S.H.; Greenbowe, J.; Khan, Z.U.; Azada, M.C.; Ross, J.S.; Stevens, P.J.; Ali, S.M.; Miller, V.A.; Gitlitz, B. I1171 missense mutation (particularly I1171N) is a common resistance mutation in ALK-positive NSCLC patients who have progressive disease while on alectinib and is sensitive to ceritinib. Lung Cancer, 2015, 88(2), 231-234.
[http://dx.doi.org/10.1016/j.lungcan.2015.02.005] [PMID: 25736571]
[48]
Shaw, A.T.; Felip, E.; Bauer, T.M.; Besse, B.; Navarro, A.; Postel-Vinay, S.; Gainor, J.F.; Johnson, M.; Dietrich, J.; James, L.P.; Clancy, J.S.; Chen, J.; Martini, J.F.; Abbattista, A.; Solomon, B.J. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol., 2017, 18(12), 1590-1599.
[http://dx.doi.org/10.1016/S1470-2045(17)30680-0] [PMID: 29074098]
[49]
Hu, J.; Zhang, B.; Yao, F.; Fu, Y.; Chen, D.; Li, D.; Du, N.; Lizaso, A.; Song, J.; Zhang, L.; Li, X. Acquired multiple mutations ALK I1171N, L1196M and G1202R mediate lorlatinib resistance in EML4-ALK-rearranged malignant pleural mesothelioma: a case report. Ther. Adv. Respir. Dis., 2020, 14 ,1753466620935770.
[http://dx.doi.org/10.1177/1753466620935770] [PMID: 32600123]
[50]
Yoda, S.; Lin, J.J.; Lawrence, M.S.; Burke, B.J.; Friboulet, L.; Langenbucher, A.; Dardaei, L.; Prutisto-Chang, K.; Dagogo-Jack, I.; Timofeevski, S.; Hubbeling, H.; Gainor, J.F.; Ferris, L.A.; Riley, A.K.; Kattermann, K.E.; Timonina, D.; Heist, R.S.; Iafrate, A.J.; Benes, C.H.; Lennerz, J.K.; Mino-Kenudson, M.; Engelman, J.A.; Johnson, T.W.; Hata, A.N.; Shaw, A.T. Sequential ALK inhibitors can select for lorlatinib-resistant compound ALK mutations in ALK-positive lung cancer. Cancer Discov., 2018, 8(6), 714-729.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1256] [PMID: 29650534]
[51]
Shaw, A.T.; Solomon, B.J.; Chiari, R.; Riely, G.J.; Besse, B.; Soo, R.A.; Kao, S.; Lin, C.C.; Bauer, T.M.; Clancy, J.S.; Thurm, H.; Martini, J.F.; Peltz, G.; Abbattista, A.; Li, S.; Ou, S.I. Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol., 2019, 20(12), 1691-1701.
[http://dx.doi.org/10.1016/S1470-2045(19)30655-2] [PMID: 31669155]
[53]
Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Jänne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2005, 352(8), 786-792.
[http://dx.doi.org/10.1056/NEJMoa044238] [PMID: 15728811]
[54]
Sasaki, T.; Koivunen, J.; Ogino, A.; Yanagita, M.; Nikiforow, S.; Zheng, W.; Lathan, C.; Marcoux, J.P.; Du, J.; Okuda, K.; Capelletti, M.; Shimamura, T.; Ercan, D.; Stumpfova, M.; Xiao, Y.; Weremowicz, S.; Butaney, M.; Heon, S.; Wilner, K.; Christensen, J.G.; Eck, M.J.; Wong, K.K.; Lindeman, N.; Gray, N.S.; Rodig, S.J.; Jänne, P.A. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res., 2011, 71(18), 6051-6060.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1340] [PMID: 21791641]
[55]
Ercan, D.; Zejnullahu, K.; Yonesaka, K.; Xiao, Y.; Capelletti, M.; Rogers, A.; Lifshits, E.; Brown, A.; Lee, C.; Christensen, J.G.; Kwiatkowski, D.J.; Engelman, J.A.; Jänne, P.A. Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene, 2010, 29(16), 2346-2356.
[http://dx.doi.org/10.1038/onc.2009.526] [PMID: 20118985]
[56]
Camidge, D.R.; Pao, W.; Sequist, L.V. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol., 2014, 11(8), 473-481.
[http://dx.doi.org/10.1038/nrclinonc.2014.104] [PMID: 24981256]
[57]
Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2070-2075.
[http://dx.doi.org/10.1073/pnas.0709662105] [PMID: 18227510]
[58]
Nukaga, S.; Yasuda, H.; Tsuchihara, K.; Hamamoto, J.; Masuzawa, K.; Kawada, I.; Naoki, K.; Matsumoto, S.; Mimaki, S.; Ikemura, S.; Goto, K.; Betsuyaku, T.; Soejima, K. Amplification of EGFR wild-type alleles in non-small cell lung cancer cells confers acquired resistance to mutation-selective EGFR tyrosine kinase inhibitors. Cancer Res., 2017, 77(8), 2078-2089.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2359] [PMID: 28202511]
[59]
Yan, Y.; Jiang, G.; Ma, W.; Li, T.; Wang, L. Emerging EML4-ALK variant 5 as a concurrent resistance mechanism to osimertinib in a patient with EGFR E19del/T790M NSCLC. Clin. Lung Cancer, 2020, 21(6), 562-567.
[http://dx.doi.org/10.1016/j.cllc.2020.05.009] [PMID: 32622727]
[60]
Tani, T.; Yasuda, H.; Hamamoto, J.; Kuroda, A.; Arai, D.; Ishioka, K.; Ohgino, K.; Miyawaki, M.; Kawada, I.; Naoki, K.; Hayashi, Y.; Betsuyaku, T.; Soejima, K. Activation of EGFR bypass signaling by TGFα overexpression induces acquired resistance to alectinib in ALK-translocated lung cancer cells. Mol. Cancer Ther., 2016, 15(1), 162-171.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0084] [PMID: 26682573]
[61]
Huang, X. The potential role of HGF-MET signaling and autophagy in the war of Alectinib versus Crizotinib against ALK-positive NSCLC. J. Exp. Clin. Cancer Res., 2018, 37(1), 33.
[http://dx.doi.org/10.1186/s13046-018-0707-5] [PMID: 29463284]
[62]
Ji, C.; Zhang, L.; Cheng, Y.; Patel, R.; Wu, H.; Zhang, Y.; Wang, M.; Ji, S.; Belani, C.P.; Yang, J.M.; Ren, X. Induction of autophagy contributes to crizotinib resistance in ALK-positive lung cancer. Cancer Biol. Ther., 2014, 15(5), 570-577.
[http://dx.doi.org/10.4161/cbt.28162] [PMID: 24556908]
[63]
Kogita, A.; Togashi, Y.; Hayashi, H.; Sogabe, S.; Terashima, M.; De Velasco, M.A.; Sakai, K.; Fujita, Y.; Tomida, S.; Takeyama, Y.; Okuno, K.; Nakagawa, K.; Nishio, K. Hypoxia induces resistance to ALK inhibitors in the H3122 non-small cell lung cancer cell line with an ALK rearrangement via epithelial-mesenchymal transition. Int. J. Oncol., 2014, 45(4), 1430-1436.
[http://dx.doi.org/10.3892/ijo.2014.2574] [PMID: 25096400]
[64]
Harris, A.L. Hypoxia--a key regulatory factor in tumour growth. Nat. Rev. Cancer, 2002, 2(1), 38-47.
[http://dx.doi.org/10.1038/nrc704] [PMID: 11902584]
[65]
Li, Y.; Wang, K.; Song, N.; Hou, K.; Che, X.; Zhou, Y.; Liu, Y.; Zhang, J. Activation of IGF-1R pathway and NPM-ALK G1269A mutation confer resistance to crizotinib treatment in NPM-ALK positive lymphoma. Invest. New Drugs, 2020, 38(3), 599-609.
[http://dx.doi.org/10.1007/s10637-019-00802-7] [PMID: 31177400]
[66]
Wilson, C.; Nimick, M.; Nehoff, H.; Ashton, J.C. ALK and IGF-1R as independent targets in crizotinib resistant lung cancer. Sci. Rep., 2017, 7(1), 13955.
[http://dx.doi.org/10.1038/s41598-017-14289-w] [PMID: 29066738]
[67]
Shi, R.; Filho, S.N.M.; Li, M.; Fares, A.; Weiss, J.; Pham, N.A.; Ludkovski, O.; Raghavan, V.; Li, Q.; Ravi, D.; Cabanero, M.; Moghal, N.; Leighl, N.B.; Bradbury, P.; Sacher, A.; Shepherd, F.A.; Yasufuku, K.; Tsao, M.S.; Liu, G. BRAF V600E mutation and MET amplification as resistance pathways of the second-generation anaplastic lymphoma kinase (ALK) inhibitor alectinib in lung cancer. Lung Cancer, 2020, 146, 78-85.
[http://dx.doi.org/10.1016/j.lungcan.2020.05.018] [PMID: 32521388]
[68]
Chen, H.; Lin, C.; Peng, T.; Hu, C.; Lu, C.; Li, L.; Wang, Y.; Han, R.; Feng, M.; Sun, F.; He, Y. Metformin reduces HGF-induced resistance to alectinib via the inhibition of Gab1. Cell Death Dis., 2020, 11(2), 111.
[http://dx.doi.org/10.1038/s41419-020-2307-5] [PMID: 32041944]
[69]
Berberich, A.; Schmitt, L.M.; Pusch, S.; Hielscher, T.; Rübmann, P.; Hucke, N.; Latzer, P.; Heßling, B.; Lemke, D.; Kessler, T.; Platten, M.; Wick, W. cMyc and ERK activity are associated with resistance to ALK inhibitory treatment in glioblastoma. J. Neurooncol., 2020, 146(1), 9-23.
[http://dx.doi.org/10.1007/s11060-019-03348-z] [PMID: 31776900]
[70]
Rihawi, K.; Alfieri, R.; Fiorentino, M.; Fontana, F.; Capizzi, E.; Cavazzoni, A.; Terracciano, M.; La Monica, S.; Ferrarini, A.; Buson, G.; Petronini, P.G.; Ardizzoni, A. MYC amplification as a potential mechanism of primary resistance to crizotinib in ALK-rearranged non-small cell lung cancer: a brief report. Transl. Oncol., 2019, 12(1), 116-121.
[http://dx.doi.org/10.1016/j.tranon.2018.09.013] [PMID: 30290287]
[71]
Holla, V.R.; Elamin, Y.Y.; Bailey, A.M.; Johnson, A.M.; Litzenburger, B.C.; Khotskaya, Y.B.; Sanchez, N.S.; Zeng, J.; Shufean, M.A.; Shaw, K.R.; Mendelsohn, J.; Mills, G.B.; Meric-Bernstam, F.; Simon, G.R. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb. Mol. Case Stud., 2017, 3(1) ,a001115.
[http://dx.doi.org/10.1101/mcs.a001115] [PMID: 28050598]
[72]
Huang, Q.; Johnson, T.W.; Bailey, S.; Brooun, A.; Bunker, K.D.; Burke, B.J.; Collins, M.R.; Cook, A.S.; Cui, J.J.; Dack, K.N.; Deal, J.G.; Deng, Y.L.; Dinh, D.; Engstrom, L.D.; He, M.; Hoffman, J.; Hoffman, R.L.; Johnson, P.S.; Kania, R.S.; Lam, H.; Lam, J.L.; Le, P.T.; Li, Q.; Lingardo, L.; Liu, W.; Lu, M.W.; McTigue, M.; Palmer, C.L.; Richardson, P.F.; Sach, N.W.; Shen, H.; Smeal, T.; Smith, G.L.; Stewart, A.E.; Timofeevski, S.; Tsaparikos, K.; Wang, H.; Zhu, H.; Zhu, J.; Zou, H.Y.; Edwards, M.P. Design of potent and selective inhibitors to overcome clinical anaplastic lymphoma kinase mutations resistant to crizotinib. J. Med. Chem., 2014, 57(4), 1170-1187.
[http://dx.doi.org/10.1021/jm401805h] [PMID: 24432909]
[73]
Mologni, L. Inhibitors of the anaplastic lymphoma kinase. Expert Opin. Investig. Drugs, 2012, 21(7), 985-994.
[http://dx.doi.org/10.1517/13543784.2012.690031] [PMID: 22612599]
[74]
Johnson, T.W.; Richardson, P.F.; Bailey, S.; Brooun, A.; Burke, B.J.; Collins, M.R.; Cui, J.J.; Deal, J.G.; Deng, Y.L.; Dinh, D.; Engstrom, L.D.; He, M.; Hoffman, J.; Hoffman, R.L.; Huang, Q.; Kania, R.S.; Kath, J.C.; Lam, H.; Lam, J.L.; Le, P.T.; Lingardo, L.; Liu, W.; McTigue, M.; Palmer, C.L.; Sach, N.W.; Smeal, T.; Smith, G.L.; Stewart, A.E.; Timofeevski, S.; Zhu, H.; Zhu, J.; Zou, H.Y.; Edwards, M.P. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h] [2,5,11]benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of ALK/ROS1 with pre-clinical brain exposure and broad spectrum potency against ALK-resistant mutations. J. Med. Chem., 2014, 57(11), 4720-4744.
[http://dx.doi.org/10.1021/jm500261q] [PMID: 24819116]
[75]
Bryan, M.C.; Whittington, D.A.; Doherty, E.M.; Falsey, J.R.; Cheng, A.C.; Emkey, R.; Brake, R.L.; Lewis, R.T. Rapid development of piperidine carboxamides as potent and selective anaplastic lymphoma kinase inhibitors. J. Med. Chem., 2012, 55(4), 1698-1705.
[http://dx.doi.org/10.1021/jm201565s] [PMID: 22263917]
[76]
Pan, P.; Yu, H.; Liu, Q.; Kong, X.; Chen, H.; Chen, J.; Liu, Q.; Li, D.; Kang, Y.; Sun, H.; Zhou, W.; Tian, S.; Cui, S.; Zhu, F.; Li, Y.; Huang, Y.; Hou, T. Combating drug-resistant mutants of anaplastic lymphoma kinase with potent and selective type-I1/2 inhibitors by stabilizing unique DFG-shifted loop conformation. ACS Cent. Sci., 2017, 3(11), 1208-1220.
[http://dx.doi.org/10.1021/acscentsci.7b00419] [PMID: 29202023]
[77]
Liu, S.; Jiang, Y.; Yan, R.; Li, Z.; Wan, S.; Zhang, T.; Wu, X.; Hou, J.; Zhu, Z.; Tian, Y.; Zhang, J. Design, synthesis and biological evaluations of 2-amino-4-(1-piperidine) pyridine derivatives as novel anti crizotinib-resistant ALK/ROS1 dual inhibitors. Eur. J. Med. Chem., 2019, 179, 358-375.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.043] [PMID: 31260890]
[78]
Tian, Y.; Zhang, T.; Long, L.; Li, Z.; Wan, S.; Wang, G.; Yu, Y.; Hou, J.; Wu, X.; Zhang, J. Design, synthesis, biological evaluation and molecular modeling of novel 2-amino-4-(1-phenylethoxy) pyridine derivatives as potential ROS1 inhibitors. Eur. J. Med. Chem., 2018, 143, 182-199.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.002] [PMID: 29174814]
[79]
El-Deeb, I.M.; Park, B.S.; Jung, S.J.; Yoo, K.H.; Oh, C.H.; Cho, S.J.; Han, D.K.; Lee, J.Y.; Lee, S.H. Design, synthesis, screening, and molecular modeling study of a new series of ROS1 receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(19), 5622-5626.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.029] [PMID: 19700314]
[80]
Ou, S.H.; Tan, J.; Yen, Y.; Soo, R.A. ROS1 as a ‘druggable’ receptor tyrosine kinase: lessons learned from inhibiting the ALK pathway. Expert Rev. Anticancer Ther., 2012, 12(4), 447-456.
[http://dx.doi.org/10.1586/era.12.17] [PMID: 22500682]
[81]
Basit, S.; Ashraf, Z.; Lee, K.; Latif, M. First macrocyclic 3rd-generation ALK inhibitor for treatment of ALK/ROS1 cancer: Clinical and designing strategy update of lorlatinib. Eur. J. Med. Chem., 2017, 134, 348-356.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.032] [PMID: 28431340]
[82]
Marsilje, T.H.; Pei, W.; Chen, B.; Lu, W.; Uno, T.; Jin, Y.; Jiang, T.; Kim, S.; Li, N.; Warmuth, M.; Sarkisova, Y.; Sun, F.; Steffy, A.; Pferdekamper, A.C.; Li, A.G.; Joseph, S.B.; Kim, Y.; Liu, B.; Tuntland, T.; Cui, X.; Gray, N.S.; Steensma, R.; Wan, Y.; Jiang, J.; Chopiuk, G.; Li, J.; Gordon, W.P.; Richmond, W.; Johnson, K.; Chang, J.; Groessl, T.; He, Y.Q.; Phimister, A.; Aycinena, A.; Lee, C.C.; Bursulaya, B.; Karanewsky, D.S.; Seidel, H.M.; Harris, J.L.; Michellys, P.Y. Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials. J. Med. Chem., 2013, 56(14), 5675-5690.
[http://dx.doi.org/10.1021/jm400402q] [PMID: 23742252]
[83]
Wang, Y.; Chen, S.; Hu, G.; Wang, J.; Gou, W.; Zuo, D.; Gu, Y.; Gong, P.; Zhai, X. Discovery of novel 2,4-diarylaminopyrimidine analogues as ALK and ROS1 dual inhibitors to overcome crizotinib-resistant mutants including G1202R. Eur. J. Med. Chem., 2018, 143, 123-136.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.008] [PMID: 29174809]
[84]
Guo, M.; Zuo, D.; Zhang, J.; Xing, L.; Gou, W.; Jiang, F.; Jiang, N.; Zhang, D.; Zhai, X. Dual potent ALK and ROS1 inhibitors combating drug-resistant mutants: Synthesis and biological evaluation of aminopyridine-containing diarylaminopyrimidine derivatives. Eur. J. Med. Chem., 2018, 158(58), 322-333.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.012] [PMID: 30223120]
[85]
Jang, J.; Son, J.B.; To, C.; Bahcall, M.; Kim, S.Y.; Kang, S.Y.; Mushajiang, M.; Lee, Y.; Jänne, P.A.; Choi, H.G.; Gray, N.S. Discovery of a potent dual ALK and EGFR T790M inhibitor. Eur. J. Med. Chem., 2017, 136, 497-510.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.079] [PMID: 28528303]
[86]
Chen, H.; Li, R.; Ning, X.; Zhao, X.; Jin, Y.; Yin, Y. Synthesis and anti-tumor efficacy of novel 2, 4-diarylaminopyrimidine derivatives bearing N-(3-pyridinylmethyl) urea moiety as anaplastic lymphoma kinase inhibitors. Eur. J. Med. Chem., 2019, 178, 141-153.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.060] [PMID: 31177074]
[87]
Achary, R.; Yun, J.I.; Park, C.M.; Mathi, G.R.; Lee, J.Y.; Ha, J.D.; Chae, C.H.; Ahn, S.; Park, C.H.; Lee, C.O.; Hwang, J.Y.; Yun, C.S.; Jung, H.J.; Cho, S.Y.; Kim, H.R.; Kim, P. Discovery of novel tetrahydroisoquinoline-containing pyrimidines as ALK inhibitors. Bioorg. Med. Chem., 2016, 24(2), 207-219.
[http://dx.doi.org/10.1016/j.bmc.2015.12.004] [PMID: 26712094]
[88]
Kang, G.A.; Lee, M.; Song, D.; Lee, H.K.; Ahn, S.; Park, C.H.; Lee, C.O.; Yun, C.S.; Jung, H.; Kim, P.; Ha, J.D.; Cho, S.Y.; Kim, H.R.; Hwang, J.Y. Synthesis and evaluation of novel 2,4-diaminopyrimidines bearing bicyclic aminobenzazepines for anaplastic lymphoma kinase (ALK) inhibitor. Bioorg. Med. Chem. Lett., 2015, 25(18), 3992-3998.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.004] [PMID: 26235945]
[89]
Song, D.; Lee, M.; Park, C.H.; Ahn, S.; Yun, C.S.; Lee, C.O.; Kim, H.R.; Hwang, J.Y. Novel 2,4-diaminopyrimidines bearing tetrahydronaphthalenyl moiety against anaplastic lymphoma kinase (ALK): Synthesis, in vitro, ex vivo, and in vivo efficacy studies. Bioorg. Med. Chem. Lett., 2016, 26(7), 1720-1725.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.052] [PMID: 26923695]
[90]
Achary, R.; Mathi, G.R.; Lee, D.H.; Yun, C.S.; Lee, C.O.; Kim, H.R.; Park, C.H.; Kim, P.; Hwang, J.Y. Novel 2,4-diaminopyrimidines bearing fused tricyclic ring moiety for anaplastic lymphoma kinase (ALK) inhibitor. Bioorg. Med. Chem. Lett., 2017, 27(10), 2185-2191.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.073] [PMID: 28385505]
[91]
Song, Z.; Yang, Y.; Liu, Z.; Peng, X.; Guo, J.; Yang, X.; Wu, K.; Ai, J.; Ding, J.; Geng, M.; Zhang, A. Discovery of novel 2,4-diarylaminopyrimidine analogues (DAAPalogues) showing potent inhibitory activities against both wild-type and mutant ALK kinases. J. Med. Chem., 2015, 58(1), 197-211.
[http://dx.doi.org/10.1021/jm5005144] [PMID: 24785465]
[92]
Geng, K.; Xia, Z.; Ji, Y.; Zhang, R.R.; Sun, D.; Ai, J.; Song, Z.; Geng, M.; Zhang, A. Discovery of 2,4-diarylaminopyrimidines bearing a resorcinol motif as novel ALK inhibitors to overcome the G1202R resistant mutation. Eur. J. Med. Chem., 2018, 144, 386-397.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.060] [PMID: 29288940]
[93]
Nam, Y.; Hwang, D.; Kim, N.; Seo, H.S.; Selim, K.B.; Sim, T. Identification of 1H-pyrazolo[3,4-b]pyridine derivatives as potent ALK-L1196M inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1426-1438.
[http://dx.doi.org/10.1080/14756366.2019.1639694] [PMID: 31401883]
[94]
Iikubo, K.; Kondoh, Y.; Shimada, I.; Matsuya, T.; Mori, K.; Ueno, Y.; Okada, M. Discovery of N-2-Methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl-N¢-[2-(propane-2-sulfonyl)phenyl]-1,3,5-triazine-2,4-diamine (ASP3026), a Potent and Selective Anaplastic Lymphoma Kinase (ALK). Inhibitor. Chem. Pharm. Bull. (Tokyo), 2018, 66(3), 251-262.
[http://dx.doi.org/10.1248/cpb.c17-00784] [PMID: 29491259]
[95]
Iikubo, K.; Kurosawa, K.; Matsuya, T.; Kondoh, Y.; Kamikawa, A.; Moritomo, A.; Iwai, Y.; Tomiyama, H.; Shimada, I. Synthesis and structure-activity relationships of pyrazine-2-carboxamide derivatives as novel echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1683-1692.
[http://dx.doi.org/10.1016/j.bmc.2019.03.018] [PMID: 30878193]
[96]
Kogita, A.; Togashi, Y.; Hayashi, H.; Banno, E.; Terashima, M.; De Velasco, M.A.; Sakai, K.; Fujita, Y.; Tomida, S.; Takeyama, Y.; Okuno, K.; Nakagawa, K.; Nishio, K. Activated MET acts as a salvage signal after treatment with alectinib, a selective ALK inhibitor, in ALK-positive non-small cell lung cancer. Int. J. Oncol., 2015, 46(3), 1025-1030.
[http://dx.doi.org/10.3892/ijo.2014.2797] [PMID: 25502629]
[97]
Shaw, A.T.; Friboulet, L.; Leshchiner, I.; Gainor, J.F.; Bergqvist, S.; Brooun, A.; Burke, B.J.; Deng, Y.L.; Liu, W.; Dardaei, L.; Frias, R.L.; Schultz, K.R.; Logan, J.; James, L.P.; Smeal, T.; Timofeevski, S.; Katayama, R.; Iafrate, A.J.; Le, L.; McTigue, M.; Getz, G.; Johnson, T.W.; Engelman, J.A. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N. Engl. J. Med., 2016, 374(1), 54-61.
[http://dx.doi.org/10.1056/NEJMoa1508887] [PMID: 26698910]
[98]
Yamaguchi, N.; Lucena-Araujo, A.R.; Nakayama, S.; de Figueiredo-Pontes, L.L.; Gonzalez, D.A.; Yasuda, H.; Kobayashi, S.; Costa, D.B. Dual ALK and EGFR inhibition targets a mechanism of acquired resistance to the tyrosine kinase inhibitor crizotinib in ALK rearranged lung cancer. Lung Cancer, 2014, 83(1), 37-43.
[http://dx.doi.org/10.1016/j.lungcan.2013.09.019] [PMID: 24199682]
[99]
Lovly, C.M.; Iyengar, P.; Gainor, J.F. Managing resistance to EFGR- and ALK-targeted therapies. Am. Soc. Clin. Oncol. Educ. Book, 2017, 37, 607-618.
[http://dx.doi.org/10.1200/EDBK_176251] [PMID: 28561721]
[100]
Yun, M.R.; Choi, H.M.; Lee, Y.W.; Joo, H.S.; Park, C.W.; Choi, J.W.; Kim, D.H.; Kang, H.N.; Pyo, K.H.; Shin, E.J.; Shim, H.S.; Soo, R.A.; Yang, J.C.; Lee, S.S.; Chang, H.; Kim, M.H.; Hong, M.H.; Kim, H.R.; Cho, B.C. Targeting YAP to overcome acquired resistance to ALK inhibitors in ALK-rearranged lung cancer. EMBO Mol. Med., 2019, 11(12) ,e10581.
[http://dx.doi.org/10.15252/emmm.201910581] [PMID: 31633304]
[101]
Taipale, M.; Jarosz, D.F.; Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol., 2010, 11(7), 515-528.
[http://dx.doi.org/10.1038/nrm2918] [PMID: 20531426]
[102]
Sang, J.; Acquaviva, J.; Friedland, J.C.; Smith, D.L.; Sequeira, M.; Zhang, C.; Jiang, Q.; Xue, L.; Lovly, C.M.; Jimenez, J.P.; Shaw, A.T.; Doebele, R.C.; He, S.; Bates, R.C.; Camidge, D.R.; Morris, S.W.; El-Hariry, I.; Proia, D.A. Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov., 2013, 3(4), 430-443.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0440] [PMID: 23533265]
[103]
Kong, X.; Pan, P.; Sun, H.; Xia, H.; Wang, X.; Li, Y.; Hou, T. Drug discovery targeting anaplastic lymphoma kinase (ALK). J. Med. Chem., 2019, 62(24), 10927-10954.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00446] [PMID: 31419130]
[104]
Singhi, E.K.; Horn, L.; Sequist, L.V.; Heymach, J.; Langer, C.J. Advanced non-small cell lung cancer: sequencing agents in the EGFR-mutated/ALK-rearranged populations. Am. Soc. Clin. Oncol. Educ. Book, 2019, 39, e187-e197.
[http://dx.doi.org/10.1200/EDBK_237821] [PMID: 31099642]
[105]
Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; Finley, G.; Kelsch, C.; Lee, A.; Coleman, S.; Deng, Y.; Shen, Y.; Kowanetz, M.; Lopez-Chavez, A.; Sandler, A.; Reck, M. Atezolizumab for First-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med., 2018, 378(24), 2288-2301.
[http://dx.doi.org/10.1056/NEJMoa1716948] [PMID: 29863955]
[106]
Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; O’Brien, M.; Rao, S.; Hotta, K.; Leiby, M.A.; Lubiniecki, G.M.; Shentu, Y.; Rangwala, R.; Brahmer, J.R. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med., 2016, 375(19), 1823-1833.
[http://dx.doi.org/10.1056/NEJMoa1606774] [PMID: 27718847]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy