Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Role of Potential COVID-19 Immune System Associated Genes and the Potential Pathways Linkage with Type-2 Diabetes

Author(s): Nawal Helmi, Dalia Alammari and Mohammad Mobashir*

Volume 25, Issue 14, 2022

Published on: 11 January, 2022

Page: [2452 - 2462] Pages: 11

DOI: 10.2174/1386207324666210804124416

Price: $65

Abstract

Background: Coronavirus is an enclosed positive-sense RNA virus with club-like spikes extending from its surface. It is most typically associated with acute respiratory infections in humans, but its capacity to infect many host species and cause multiple illnesses makes it a complicated pathogen. The frequent encounters between wild animals and humans are a typical cause of infection. The zoonotic infections SARS-CoV and MERS-CoV are among the most common causes of serious respiratory illnesses in humans.

Aim: The main goal of this research was to look at gene expression profiles in human samples that were either infected with coronavirus or were not, and compare the varied expression patterns and their functional implications.

Methods: The previously researched samples were acquired from a public database for this purpose, and the study was conducted, which included gene expression analysis, pathway analysis, and network-level comprehension. The results for differentially expressed genes, enriched pathways, and networks for prospective genes and gene sets are presented in the analysis. In terms of COVID-19 gene expression and its relationship to type 2 diabetes.

Results: We see a lot of genes that have different gene expression patterns than normal for coronavirus infection, but in terms of pathways, it appears that there are only a few sets of functions that are affected by altered gene expression, and they are related to infection, inflammation, and the immune system.

Conclusion: Based on our study, we conclude that the potential genes which are affected due to infection are NFKBIA, MYC, FOXO3, BIRC3, ICAM1, IL8, CXCL1/2/5, GADD45A, RELB, SGK1, AREG, BBC3, DDIT3/4, EGR1, MTHFD2, and SESN2 and the functional changes are mainly associated with these pathways: TNF, cytokine, NF-kB, TLR, TCR, BCR, Foxo, and TGF signaling pathways are among them and there are additional pathways such as hippo signaling, apoptosis, estrogen signaling, regulating pluropotency of stem cells, ErbB, Wnt, p53, cAMP, MAPK, PI3K-AKT, oxidative phosphorylation, protein processing in endoplasmic reticulum, prolactin signaling, adipocytokine, neurotrophine signaling, and longevity regulating pathways. SMARCD3, PARL, GLIPR1, STAT2, PMAIP1, GP1BA, and TOX genes and PI3K-Akt, focal adhesion, Foxo, phagosome, adrenergic, osteoclast differentiation, platelet activation, insulin, cytokine- cytokine interaction, apoptosis, ECM, JAK-STAT, and oxytocin signaling appear as the linkage between COVID-19 and Type-2 diabetes.

Keywords: Coronavirus, gene expression profiling, pathological biomarkers, infection and immune system, differentially expressed genes, enriched pathways, networks.

Graphical Abstract
[1]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J-H.; Pei, Y.-Y.; Yuan, M-L.; Zhang, Y.-L.; Dai, F.-H.; Liu, Y.; Wang, Q.-M.; Zheng, J-J.; Xu, L.; Holmes, E.C.; Zhang, Y.-Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 1-20.
[http://dx.doi.org/10.1038/s41586-020-2008-3]
[2]
Laxminarayan, R.; Wahl, B.; Dudala, S.R.; Gopal, K.; Mohan, B. C.; Neelima, S.; Jawahar Reddy, K.S.; Radhakrishnan, J.; Lewnard, J.A. Epidemiology and transmission dynamics of COVID-19 in two Indian states. Science, 2020, 370(6517), 691-697.
[http://dx.doi.org/10.1126/science.abd7672] [PMID: 33154136]
[3]
Zhao, N.; Zhou, Z.-L.; Wu, L.; Zhang, X.-D.; Han, S-B.; Bao, H.-J.; Shu, Y.; Shu, X.-G. An update on the status of COVID-19: a comprehensive review. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4597-4606.
[PMID: 32374000]
[4]
Zhou, P.; Yang, X.-L.; Wang, X.-G.; Ben, Hu.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; Chen, H.-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.-D.; Liu, M-Q.; Chen, Y.; Shen, X.-R.; Wang, X.; Zheng, X.-S.; Zhao, K.; Chen, Q.-J.; Deng, F.; Liu, L.-L.; Yan, B.; Zhan, F.-X.; Wang, Y.-Y.; Xiao, G.-F.; Shi, Z.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 1-20.
[5]
Greenwood, E.; Swanton, C. Consequences of COVID-19 for Cancer Care — a CRUK Perspective. Nat. Rev. Clin. Oncol., 2020, 1, 565.
[http://dx.doi.org/10.1038/s41571-020-00446-0] [PMID: 33097915]
[6]
Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat. Rev. Cardiol., 2020, 17(9), 543-558.
[http://dx.doi.org/10.1038/s41569-020-0413-9] [PMID: 32690910]
[7]
Heymann, D.L.; Shindo, N.; Hazards, W.S.A.T.A.G.F.I. COVID-19: what is next for public health? Lancet, 2020, 395(10224), 542-545.
[http://dx.doi.org/10.1016/S0140-6736(20)30374-3] [PMID: 32061313]
[8]
Al-Hazmi, A. Challenges presented by MERS corona virus, and SARS corona virus to global health. Saudi J. Biol. Sci., 2016, 23(4), 507-511.
[http://dx.doi.org/10.1016/j.sjbs.2016.02.019] [PMID: 27298584]
[9]
Al-Osail, A.M.; Al-Wazzah, M.J. The history and epidemiology of Middle East respiratory syndrome corona virus. Multidiscip. Respir. Med., 2017, 1-6.
[10]
Habibzadeh, P.; Stoneman, E.K. The novel coronavirus: a bird’s eye view. Int. J. Occup. Environ. Med., 2020, 11(2), 65-71.
[http://dx.doi.org/10.15171/ijoem.2020.1921] [PMID: 32020915]
[11]
Paraskevis, D.; Kostaki, E.G.; Magiorkinis, G.; Panayiotakopoulos, G.; Sourvinos, G.; Tsiodras, S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect. Genet. Evol., 2020, 79, 104212.
[http://dx.doi.org/10.1016/j.meegid.2020.104212] [PMID: 32004758]
[12]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[13]
Zheng, Y.-Y.; Ma, Y.-T.; Zhang, J-Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol., 2020, 17(5), 259-260.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[14]
Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (covid-19): a review. JAMA, 2020, 324(8), 782-793.
[http://dx.doi.org/10.1001/jama.2020.12839] [PMID: 32648899]
[15]
Zhong, J.; Tang, J.; Ye, C.; Dong, L. The immunology of COVID-19: is immune modulation an option for treatment? Lancet Rheumatol., 2020, 2(7), e428-e436.
[http://dx.doi.org/10.1016/S2665-9913(20)30120-X] [PMID: 32835246]
[16]
Singhal, T. A review of coronavirus disease-2019 (COVID-19)., 2020, 1-6.
[17]
Xu, H.; Yan, C.; Fu, Q.; Xiao, K.; Yu, Y.; Han, D.; Wang, W.; Cheng, J. Possible environmental effects on the spread of COVID-19 in China. Sci. Total Environ., 2020, 731, 139211.
[http://dx.doi.org/10.1016/j.scitotenv.2020.139211] [PMID: 32402910]
[18]
Kumar, D. Corona virus: a review of covid-19. EJMO, 2020, 4(1), 8-25.
[19]
Sironi, M.; Cagliani, R.; Forni, D.; Clerici, M. Evolutionary insights into host-pathogen interactions from mammalian sequence data. Nat. Rev. Genet., 2015, 16(4), 224-236.
[http://dx.doi.org/10.1038/nrg3905] [PMID: 25783448]
[20]
Chen, R.; Fu, J.; Hu, J.; Li, C.; Zhao, Y.; Qu, H.; Wen, X.; Cao, S.; Wen, Y.; Wu, R.; Zhao, Q.; Yan, Q.; Huang, Y.; Ma, X.; Han, X.; Huang, X. Journal pre-proof. Virus Res., 2019, 197834.
[PMID: 31816342]
[21]
Rabaan, A.A.; Bazzi, A.M.; Al-Ahmed, S.H.; Al-Tawfiq, J.A. Molecular aspects of MERS-CoV. Front. Med., 2017, 11(3), 365-377.
[http://dx.doi.org/10.1007/s11684-017-0521-z] [PMID: 28500431]
[22]
Hui, D.S.C.; Zumla, A. Severe acute respiratory syndrome. Infect. Dis. Clin. North Am., 2019, 33, 869-889.
[http://dx.doi.org/10.1016/j.idc.2019.07.001] [PMID: 31668196]
[23]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[24]
Phan, T. Infection, genetics and evolution. Infect. Genet. Evol., 2020, 79, 104211.
[http://dx.doi.org/10.1016/j.meegid.2020.104211] [PMID: 32007627]
[25]
Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; Seilmaier, M.; Drosten, C.; Vollmar, P.; Zwirglmaier, K.; Zange, S.; Wölfel, R.; Hoelscher, M. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med., 2020, 382(10), 970-971.
[http://dx.doi.org/10.1056/NEJMc2001468] [PMID: 32003551]
[26]
Paital, B. Nurture to nature via COVID-19, a self-regenerating environmental strategy of environment in global context. Sci. Total Environ., 2020, 729, 139088.
[http://dx.doi.org/10.1016/j.scitotenv.2020.139088] [PMID: 32388136]
[27]
Zhang, R.; Li, Y.; Zhang, A.L.; Wang, Y.; Molina, M.J. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl. Acad. Sci. USA, 2020, 117(26), 14857-14863.
[http://dx.doi.org/10.1073/pnas.2009637117] [PMID: 32527856]
[28]
ez-Santos, Y.M.B.; John, S.E.S.; Mesecar, A.D. Antiviral research. Antiviral Res., 2015, 115, 21-38.
[29]
Hurley, J.H.; Schulman, B.A. Atomistic autophagy: the structures of cellular self-digestion. Cell, 2014, 157(2), 300-311.
[http://dx.doi.org/10.1016/j.cell.2014.01.070] [PMID: 24725401]
[30]
Cao, Y.; Li, L.; Feng, Z.; Wan, S.; Huang, P.; Sun, X.; Wen, F.; Huang, X.; Ning, G.; Wang, W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov., 2020, 6, 11.
[http://dx.doi.org/10.1038/s41421-020-0147-1] [PMID: 32133153]
[31]
Ross, D.T.; Scherf, U.; Eisen, M.B.; Perou, C.M.; Rees, C.; Spellman, P.; Iyer, V.; Jeffrey, S.S.; Van de Rijn, M.; Waltham, M.; Pergamenschikov, A.; Lee, J.C.; Lashkari, D.; Shalon, D.; Myers, T.G.; Weinstein, J.N.; Botstein, D.; Brown, P.O. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet., 2000, 24(3), 227-235.
[http://dx.doi.org/10.1038/73432] [PMID: 10700174]
[32]
Poppe, M.; Wittig, S.; Jurida, L.; Bartkuhn, M.; Wilhelm, J.; Müller, H.; Beuerlein, K.; Karl, N.; Bhuju, S.; Ziebuhr, J.; Schmitz, M.L.; Kracht, M. The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog., 2017, 13(3), e1006286.
[http://dx.doi.org/10.1371/journal.ppat.1006286] [PMID: 28355270]
[33]
Kamal, M.A.; Warsi, M.K.; Alnajeebi, A.; Ali, H.A.; Helmi, N.; Izhari, M.A.; Mustafa, S.; Mobashir, M. Gene expression profiling and clinical relevance to understand the role ofhypoxia and immune signaling genes and pathways in breast cancer. J Intern. Med. Sci. Art, 2020, 1-9.
[34]
Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; Yamanishi, Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res., 2008, 36(Database issue), D480-D484.
[PMID: 18077471]
[35]
Kanehisa, M.; Goto, S.; Furumichi, M.; Tanabe, M.; Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res., 2010, 38(Database issue), D355-D360.
[http://dx.doi.org/10.1093/nar/gkp896] [PMID: 19880382]
[36]
Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res., 2012, 40(Database issue), D109-D114.
[http://dx.doi.org/10.1093/nar/gkr988] [PMID: 22080510]
[37]
Alexeyenko, A.; Sonnhammer, E.L.L. Global networks of functional coupling in eukaryotes from comprehensive data integration. Genome Res., 2009, 19(6), 1107-1116.
[http://dx.doi.org/10.1101/gr.087528.108] [PMID: 19246318]
[38]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[39]
Marra, M.A.; Jones, S.J.M.; Astell, C.R.; Holt, R.A.; Brooks-Wilson, A.; Butterfield, Y.S.N.; Khattra, J.; Asano, J.K.; Barber, S.A.; Chan, S.Y.; Cloutier, A.; Coughlin, S.M.; Freeman, D.; Girn, N.; Griffith, O.L.; Leach, S.R.; Mayo, M.; McDonald, H.; Montgomery, S.B.; Pandoh, P.K.; Petrescu, A.S.; Robertson, A.G.; Schein, J.E.; Siddiqui, A.; Smailus, D.E.; Stott, J.M.; Yang, G.S.; Plummer, F.; Andonov, A.; Artsob, H.; Bastien, N.; Bernard, K.; Booth, T.F.; Bowness, D.; Czub, M.; Drebot, M.; Fernando, L.; Flick, R.; Garbutt, M.; Gray, M.; Grolla, A.; Jones, S.; Feldmann, H.; Meyers, A.; Kabani, A.; Li, Y.; Normand, S.; Stroher, U.; Tipples, G.A.; Tyler, S.; Vogrig, R.; Ward, D.; Watson, B.; Brunham, R.C.; Krajden, M.; Petric, M.; Skowronski, D.M.; Upton, C.; Roper, R.L. The Genome sequence of the SARS-associated coronavirus. Science, 2003, 300(5624), 1399-1404.
[http://dx.doi.org/10.1126/science.1085953] [PMID: 12730501]
[40]
Gutierrez-Arcelus, M.; Rich, S.S.; Raychaudhuri, S. Autoimmune diseases - connecting risk alleles with molecular traits of the immune system. Nat. Rev. Genet., 2016, 17(3), 160-174.
[http://dx.doi.org/10.1038/nrg.2015.33] [PMID: 26907721]
[41]
Guzman, M.G.; Gubler, D.J.; Izquierdo, A.; Martínez, E.; Halstead, S.B. Dengue infection. Nat. Rev. Dis. Primers, 2016, 2, 16055.
[http://dx.doi.org/10.1038/nrdp.2016.55] [PMID: 27534439]
[42]
DeDiego, M.L.; Nieto-Torres, J.L.; Jimenez-Guardeño, J.M.; Regla-Nava, J.A.; Castaño-Rodriguez, C.; Fernandez-Delgado, R.; Usera, F.; Enjuanes, L. Article in press. Virus Res., 2014, 1-14.
[43]
Ribet, D.; Cossart, P. Pathogen-mediated posttranslational modifications: A re-emerging field. Cell, 2010, 143(5), 694-702.
[http://dx.doi.org/10.1016/j.cell.2010.11.019] [PMID: 21111231]
[44]
Ali, S.; Buluwela, L.; Coombes, R.C. Antiestrogens and their therapeutic applications in breast cancer and other diseases. Annu. Rev. Med., 2011, 62, 217-232.
[http://dx.doi.org/10.1146/annurev-med-052209-100305] [PMID: 21054173]
[45]
Hergovich, A.; Hemmings, B.A. Mammalian NDR/LATS protein kinases in hippo tumor suppressor signaling. Biofactors, 2009, 35(4), 338-345.
[http://dx.doi.org/10.1002/biof.47] [PMID: 19484742]
[46]
Ota, M.; Sasaki, H. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development, 2008, 135(24), 4059-4069.
[http://dx.doi.org/10.1242/dev.027151] [PMID: 19004856]
[47]
Guo, C.; Tommasi, S.; Liu, L.; Yee, J-K.; Dammann, R.; Pfeifer, G.P. RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr. Biol., 2007, 17(8), 700-705.
[http://dx.doi.org/10.1016/j.cub.2007.02.055] [PMID: 17379520]
[48]
Li, C.; Cai, W.; Zhou, C.; Yin, H.; Zhang, Z.; Loor, J.J.; Sun, D.; Zhang, Q.; Liu, J.; Zhang, S. RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population. Sci. Rep., 2016, 6, 26813.
[http://dx.doi.org/10.1038/srep26813] [PMID: 27254118]
[49]
Saxena, P.; Charpin-El Hamri, G.; Folcher, M.; Zulewski, H.; Fussenegger, M. Synthetic gene network restoring endogenous pituitary-thyroid feedback control in experimental Graves’ disease. Proc. Natl. Acad. Sci. USA, 2016, 113(5), 1244-1249.
[http://dx.doi.org/10.1073/pnas.1514383113] [PMID: 26787873]
[50]
Kretzmer, H.; Bernhart, S.H.; Wang, W.; Haake, A.; Weniger, M.A.; Bergmann, A.K.; Betts, M.J.; Carrillo-de-Santa-Pau, E.; Doose, G.; Gutwein, J.; Richter, J.; Hovestadt, V.; Huang, B.; Rico, D.; Jühling, F.; Kolarova, J.; Lu, Q.; Otto, C.; Wagener, R.; Arnolds, J.; Burkhardt, B.; Claviez, A.; Drexler, H.G.; Eberth, S.; Eils, R.; Flicek, P.; Haas, S.; Humme, M.; Karsch, D.; Kerstens, H.H.D.; Klapper, W.; Kreuz, M.; Lawerenz, C.; Lenzek, D.; Loeffler, M.; López, C.; MacLeod, R.A.F.; Martens, J.H.A.; Kulis, M.; Martín-Subero, J.I.; Möller, P.; Nage, I.; Picelli, S.; Vater, I.; Rohde, M.; Rosenstiel, P.; Rosolowski, M.; Russell, R.B.; Schilhabel, M.; Schlesner, M.; Stadler, P.F.; Szczepanowski, M.; Trümper, L.; Stunnenberg, H.G.; Küppers, R.; Ammerpohl, O.; Lichter, P.; Siebert, R.; Hoffmann, S.; Radlwimmer, B. DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nat. Genet., 2015, 47(11), 1316-1325.
[http://dx.doi.org/10.1038/ng.3413] [PMID: 26437030]
[51]
Suzuki, H.; Aoki, K.; Chiba, K.; Sato, Y.; Shiozawa, Y.; Shiraishi, Y.; Shimamura, T.; Niida, A.; Motomura, K.; Ohka, F.; Yamamoto, T.; Tanahashi, K.; Ranjit, M.; Wakabayashi, T.; Yoshizato, T.; Kataoka, K.; Yoshida, K.; Nagata, Y.; Sato-Otsubo, A.; Tanaka, H.; Sanada, M.; Kondo, Y.; Nakamura, H.; Mizoguchi, M.; Abe, T.; Muragaki, Y.; Watanabe, R.; Ito, I.; Miyano, S.; Natsume, A.; Ogawa, S. Mutational landscape and clonal architecture in grade II and III gliomas. Nat. Genet., 2015, 47(5), 458-468.
[http://dx.doi.org/10.1038/ng.3273] [PMID: 25848751]
[52]
Greene, C.S.; Krishnan, A.; Wong, A.K.; Ricciotti, E.; Zelaya, R.A.; Himmelstein, D.S.; Zhang, R.; Hartmann, B.M.; Zaslavsky, E.; Sealfon, S.C.; Chasman, D.I.; FitzGerald, G.A.; Dolinski, K.; Grosser, T.; Troyanskaya, O.G. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet., 2015, 47(6), 569-576.
[http://dx.doi.org/10.1038/ng.3259] [PMID: 25915600]
[53]
Charlton, J.; Williams, R.D.; Weeks, M.; Sebire, N.J.; Popov, S.; Vujanic, G.; Mifsud, W.; Alcaide-German, M.; Butcher, L.M.; Beck, S.; Pritchard-Jones, K. Methylome analysis identifies a Wilms tumor epigenetic biomarker detectable in blood. Genome Biol., 2014, 15(8), 434.
[http://dx.doi.org/10.1186/s13059-014-0434-y] [PMID: 25134821]
[54]
Deming, M.E.; Michael, N.L.; Robb, M.; Cohen, M.S.; Neuzil, K.M. Accelerating development of SARS-CoV-2 vaccines - the role for controlled human infection models. N. Engl. J. Med., 2020, 383(10), e63.
[http://dx.doi.org/10.1056/NEJMp2020076] [PMID: 32610006]
[55]
Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; McDermott, A.; Flach, B.; Doria-Rose, N.A.; Corbett, K.S.; Morabito, K.M.; O’Dell, S.; Schmidt, S.D.; Swanson, P.A., II; Padilla, M.; Mascola, J.R.; Neuzil, K.M.; Bennett, H.; Sun, W.; Peters, E.; Makowski, M.; Albert, J.; Cross, K.; Buchanan, W.; Pikaart-Tautges, R.; Ledgerwood, J.E.; Graham, B.S.; Beigel, J.H. An mRNA vaccine against SARS-CoV-2 - preliminary report. N. Engl. J. Med., 2020.
[56]
Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu-Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; Nagata, B.M.; Andersen, H.; Martinez, D.R.; Noe, A.T.; Douek, N.; Donaldson, M.M.; Nji, N.N.; Alvarado, G.S.; Edwards, D.K.; Flebbe, D.R.; Lamb, E.; Doria-Rose, N.A.; Lin, B.C.; Louder, M.K.; O’Dell, S.; Schmidt, S.D.; Phung, E.; Chang, L.A.; Yap, C.; Todd, J.-P.M.; Pessaint, L.; Van Ry, A.; Browne, S.; Greenhouse, J.; Putman-Taylor, T.; Strasbaugh, A.; Campbell, T.-A.; Cook, A.; Dodson, A.; Steingrebe, K.; Shi, W.; Zhang, Y.; Abiona, O.M.; Wang, L.; Pegu, A.; Yang, E.S.; Leung, K.; Zhou, T.; Teng, I.-T.; Widge, A.; Gordon, I.; Novik, L.; Gillespie, R.A.; Loomis, R.J.; Moliva, J.I.; Stewart-Jones, G.; Himansu, S.; Kong, W.-P.; Nason, M.C.; Morabito, K.M.; Ruckwardt, T.J.; Ledgerwood, J.E.; Gaudinski, M.R.; Kwong, P.D.; Mascola, J.R.; Carfi, A.; Lewis, M.G.; Baric, R.S.; McDermott, A.; Moore, I.N.; Sullivan, N.J.; Roederer, M.; Seder, R.A.; Graham, B.S. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med., 2020, NEJMoa2024671.
[http://dx.doi.org/10.1056/NEJMoa2024671]
[57]
Rafiq, D.; Batool, A.; Bazaz, M.A. Three months of COVID-19: A systematic review and meta-analysis. Rev. Med. Virol., 2020, 30(4), e2113.
[http://dx.doi.org/10.1002/rmv.2113] [PMID: 32420674]
[58]
The Recovery Collaborative Group. Dexamethasone in hospitalized patients with covid-19 — preliminary report. N. Engl. J. Med., 2020.
[59]
Boulware, D.R.; Pullen, M.F.; Bangdiwala, A.S.; Pastick, K.A.; Lofgren, S.M.; Okafor, E.C.; Skipper, C.P.; Nascene, A.A.; Nicol, M.R.; Abassi, M.; Engen, N.W.; Cheng, M.P.; LaBar, D.; Lother, S.A.; MacKenzie, L.J.; Drobot, G.; Marten, N.; Zarychanski, R.; Kelly, L.E.; Schwartz, I.S.; McDonald, E.G.; Rajasingham, R.; Lee, T.C.; Hullsiek, K.H. A randomized trial of hydroxychloroquine as postexposure prophylaxis for covid-19. N. Engl. J. Med., 2020, 383(6), 517-525.
[http://dx.doi.org/10.1056/NEJMoa2016638] [PMID: 32492293]
[60]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[61]
Mancia, G.; Rea, F.; Ludergnani, M.; Apolone, G.; Corrao, G. Renin-angiotensin-aldosterone system blockers and the risk of covid-19. N. Engl. J. Med., 2020, 382(25), 2431-2440.
[http://dx.doi.org/10.1056/NEJMoa2006923] [PMID: 32356627]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy