Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Development of Natural Bioactive Alkaloids: Anticancer Perspective

Author(s): Ashish Patel*, Ravi Vanecha, Jay Patel, Divy Patel, Umang Shah and Tushar Bambharoliya

Volume 22, Issue 2, 2022

Published on: 12 July, 2021

Page: [200 - 212] Pages: 13

DOI: 10.2174/1389557521666210712111331

Price: $65

Abstract

Abstract: Cancer is a frightful disease that still poses a 'nightmare' worldwide, causing millions of casualties annually imposing one of the human race's greatest health-care challenges that entail a pragmatic treatment strategy. Plants are repositories for new chemical entities and have a promising cancer research path, supplying 60% of the anticancer agents currently used. However, plants and plant-derived products revolutionize the field, as they are quick, cleaner, eco-friendly, low-cost, effective, and less toxic than conventional treatment methods.

Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery and development. However, some alkaloids derived from natural herbs display anti-proliferation and antimetastatic activity on different forms of cancer both in vitro and in vivo. Alkaloids have also been widely formulated as anticancer medications, such as camptothecin and vinblastine. Based on the information in the literature, this review focuses on the naturally-derived bioactive alkaloids with prospective anticancer properties. Still, more research and clinical trials are required before final recommendations can be made on specific alkaloids.

Keywords: Natural alkaloids, anticancer agents, vinblastine, camptothecin, natural herbs, plant products.

Graphical Abstract
[1]
He, L.; Gu, J.; Lim, L.Y.; Yuan, Z.X.; Mo, J. Nanomedicine-mediatedtherapies to target breast cancer stem cells. Front. Pharmacol., 2016, 7, 313-326.
[http://dx.doi.org/10.3389/fphar.2016.00313] [PMID: 27679576]
[2]
Qin, W.; Huang, G.; Chen, Z.; Zhang, Y. Nanomaterials in targetingcancer stem cells for cancer therapy. Front. Pharmacol., 2017, 8, 1-15.
[http://dx.doi.org/10.3389/fphar.2017.00001] [PMID: 28149278]
[3]
Zhang, L.Q.; Lv, R.W.; Qu, X.D.; Chen, X.J.; Lu, H.S.; Wang, Y. Aloesin suppresses cell growth and metastasis in ovarian cancerSKOV3 cells through the inhibition of the MAPK signaling pathway. Anal. Cell. Pathol. (Amst.), 2017, 2017, 1-6.
[5]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[6]
Horn, L.; Pao, W.; Lovly, C.M.; Johnson, D.H. Neoplasms of the lung 18th ed.; Harrisons principles of internal medicine: New York,; , 2012.
[7]
Zhou, Z.; Tang, M.; Liu, Y.; Zhang, Z.; Lu, R.; Lu, J. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line. Anticancer Drugs, 2017, 28(4), 446-456.
[http://dx.doi.org/10.1097/CAD.0000000000000479] [PMID: 28125432]
[8]
Thakore, P.; Mani, R.; Kavitha, S. A brief review of plants having anti-cancer property. Int J Pharm Res Dev, 2012, 3, 129-136.
[9]
Cragg, G.M.; Newman, D.J.; Yang, S.S. Natural product extracts of plant and marine origin having antileukemia potential. The NCI experience. J. Nat. Prod., 2006, 69(3), 488-498.
[http://dx.doi.org/10.1021/np0581216] [PMID: 16562862]
[10]
Khan, H. Medicinal plants in light of history: Recognized therapeutic modality. J. Evid. Based Complementary Altern. Med., 2014, 19(3), 216-219.
[http://dx.doi.org/10.1177/2156587214533346] [PMID: 24789912]
[11]
Aung, T.N.; Qu, Z.; Kortschak, R.D.; Adelson, D.L. Understanding the effectiveness of natural compound mixtures in cancer throughtheir molecular mode of action. Int. J. Mol. Sci., 2017, 18(3), 656-676.
[http://dx.doi.org/10.3390/ijms18030656] [PMID: 28304343]
[12]
Tariq, A.; Sadia, S.; Pan, K.; Ullah, I.; Mussarat, S.; Sun, F.; Abiodun, O.O.; Batbaatar, A.; Li, Z.; Song, D.; Xiong, Q.; Ullah, R.; Khan, S.; Basnet, B.B.; Kumar, B.; Islam, R.; Adnan, M. A systematic review on ethnomedicines of anti-cancer plants. Phytother. Res., 2017, 31(2), 202-264.
[http://dx.doi.org/10.1002/ptr.5751] [PMID: 28093828]
[13]
Wang, Z.T.; Liang, G.Y. Shanghai. Z.Y.H.X. Sci. Tech. (Paris), 2009, 31, 1987-1991.
[14]
Li, W.; Shao, Y.; Hu, L.; Zhang, X.; Chen, Y.; Tong, L.; Li, C.; Shen, X.; Ding, J. BM6, a new semi-synthetic vinca alkaloid, exhibits its potent in vivo anti-tumor activities via its high binding affinity for tubulin and improved pharmacokinetic profiles. Cancer Biol. Ther., 2007, 6(5), 787-794.
[http://dx.doi.org/10.4161/cbt.6.5.4006] [PMID: 17387272]
[15]
Huang, M.; Gao, H.; Chen, Y.; Zhu, H.; Cai, Y.; Zhang, X.; Miao, Z.; Jiang, H.; Zhang, J.; Shen, H.; Lin, L.; Lu, W.; Ding, J. Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clin. Cancer Res., 2007, 13(4), 1298-1307.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1277] [PMID: 17287296]
[16]
Fischer, E.; Jourdan, F. Ueber Die Hydrazine DerBrenztraubensäure. Ber. Dtsch. Chem. Ges., 1883, 16, 2241-2245.
[http://dx.doi.org/10.1002/cber.188301602141]
[17]
Yuan, L-J. Biooxidation of Indole and Characteristics of the Responsible Enzymes. Afr. J. Biotechnol., 2011, 10, 19855-19863.
[18]
Jeyachandran, R.; Mohan, D.K. Alkaloids as anticancer agentsReview Article.Ann.Phytomedi., 2012, 1, 43-48.,
[19]
Khazir, J.; Mir, B.A.; Pilcher, L.; Riley, D.L. Role of Plants in Anticancer Drug Discovery. Phytochem. Lett., 2014, 7, 173-181.
[http://dx.doi.org/10.1016/j.phytol.2013.11.010]
[20]
Singh, S.; Jarial, R.; Kanwar, S.S. Therapeutic effect of herbal medicines on obesity: herbal pancreatic lipase inhibitors. Wudpecker J Med Plants, 2013, 2, 53-65.
[21]
El-sayed, M.T.; Hamdy, N.A.; Osman, D.A.; Ahmed, K.M. Indoles as Anticancer Agents. Adv. Mod. Oncol. Res., 2015, 1, 20-36.
[http://dx.doi.org/10.18282/amor.v1.i1.12]
[22]
Historical Review of Vinca Alkaloids Acta Radiol., 1969, 9, 7-12..
[23]
Nobili, S.; Lippi, D.; Witort, E.; Donnini, M.; Bausi, L.; Mini, E.; Capaccioli, S. Natural compounds for cancer treatment and prevention. Pharmacol. Res., 2009, 59(6), 365-378.
[http://dx.doi.org/10.1016/j.phrs.2009.01.017] [PMID: 19429468]
[24]
Dall’Acqua, S. Natural products as antimitotic agents. Curr. Top. Med. Chem., 2014, 14(20), 2272-2285.
[http://dx.doi.org/10.2174/1568026614666141130095311] [PMID: 25434355]
[25]
Almagro, L.; Fernández-Pérez, F.; Pedreño, M.A. Indole alkaloids from Catharanthus roseus: Bioproduction and their effect on human health. Molecules, 2015, 20(2), 2973-3000.
[http://dx.doi.org/10.3390/molecules20022973] [PMID: 25685907]
[26]
Lucas, D.M.; Still, P.C.; Pérez, L.B.; Grever, M.R.; Kinghorn, A.D. Potential of plant-derived natural products in the treatment of leukemia and lymphoma. Curr. Drug Targets, 2010, 11(7), 812-822.
[http://dx.doi.org/10.2174/138945010791320809] [PMID: 20370646]
[27]
Mitchison, T.J. The proliferation rate paradox in antimitotic chemotherapy. Mol. Biol. Cell, 2012, 23(1), 1-6.
[http://dx.doi.org/10.1091/mbc.e10-04-0335] [PMID: 22210845]
[28]
Liu, Y.M.; Chen, H.L.; Lee, H.Y.; Liou, J.P. Tubulin inhibitors: a patent review. Expert Opin. Ther. Pat., 2014, 24(1), 69-88.
[http://dx.doi.org/10.1517/13543776.2014.859247] [PMID: 24313741]
[29]
Lobert, S.; Fahy, J.; Hill, B.T.; Duflos, A.; Etievant, C.; Correia, J.J. Vinca alkaloid-induced tubulin spiral formation correlates with cytotoxicity in the leukemic L1210 cell line. Biochemistry, 2000, 39(39), 12053-12062.
[http://dx.doi.org/10.1021/bi001038r] [PMID: 11009620]
[30]
Moudi, M.; Go, R.; Yien, C.Y.; Nazre, M. Vinca alkaloids. Int. J. Prev. Med., 2013, 4(11), 1231-1235.
[PMID: 24404355]
[31]
Silvestri, R. New prospects for vinblastine analogues as anticancer agents. J. Med. Chem., 2013, 56(3), 625-627.
[http://dx.doi.org/10.1021/jm400002j] [PMID: 23316748]
[32]
Maswadeh, H.; Demetzos, C.; Daliani, I.; Kyrikou, I.; Mavromoustakos, T.; Tsortos, A.; Nounesis, G. A molecular basis explanation of the dynamic and thermal effects of vinblastine sulfate upon dipalmitoylphosphatidylcholine bilayer membranes. Biochim. Biophys. Acta, 2002, 1567(1-2), 49-55.
[http://dx.doi.org/10.1016/S0005-2736(02)00564-3] [PMID: 12488037]
[33]
Kyrikou, I.; Daliani, I.; Mavromoustakos, T.; Maswadeh, H.; Demetzos, C.; Hatziantoniou, S.; Giatrellis, S.; Nounesis, G. The modulation of thermal properties of vinblastine by cholesterol in membrane bilayers. Biochim. Biophys. Acta, 2004, 1661(1), 1-8.
[http://dx.doi.org/10.1016/j.bbamem.2003.11.021] [PMID: 14967469]
[34]
Dandamudi, S.; Campbell, R.B. The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials, 2007, 28(31), 4673-4683.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.024] [PMID: 17688940]
[35]
Dyke, R.W.; Nelson, R.L.; Brade, W.P. Vindesine. A short review of preclinical and first clinical data. Cancer Chemother. Pharmacol., 1979, 2(4), 229-232.
[http://dx.doi.org/10.1007/BF00257185] [PMID: 455579]
[36]
Wei, W.; Jia, Y.; Hui, C. Radiotherapy plus procarbazine, lomustine, and vincristine versus radiotherapy alone for glioma: A meta-analysis of randomized controlled trials. Int. J. Clin. Exp. Med., 2017, 10, 6810-6818.
[37]
Wall, M.E.; Wani, M.C. History and Future Prospects of Camptothecin and Taxol.The Alkaloids: Chemistry and Biology; Geoffrey A., Cordell, Ed.; Elsevier Science: Amsterdam, 1998, Vol. 50, pp. 509-536.
[38]
Soepenberg, O.; Sparreboom, A.; Verweij, J. Clinical studies of camptothecin and derivatives. Alkaloids Chem. Biol., 2003, 60, 1-50.
[http://dx.doi.org/10.1016/S0099-9598(03)60001-5] [PMID: 14593855]
[39]
Hertzberg, R.P.; Caranfa, M.J.; Hecht, S.M. On the mechanism of topoisomerase I inhibition by camptothecin: Evidence for binding to an enzyme-DNA complex. Biochemistry, 1989, 28(11), 4629-4638.
[http://dx.doi.org/10.1021/bi00437a018] [PMID: 2548584]
[40]
Beretta, G.L.; Perego, P.; Zunino, F. Targeting topoisomerase I: molecular mechanisms and cellular determinants of response to topoisomerase I inhibitors. Expert Opin. Ther. Targets, 2008, 12(10), 1243-1256.
[http://dx.doi.org/10.1517/14728222.12.10.1243] [PMID: 18781823]
[41]
Creemers, G.J.; Bolis, G.; Gore, M.; Scarfone, G.; Lacave, A.J.; Guastalla, J.P.; Despax, R.; Favalli, G.; Kreinberg, R.; Van Belle, S.; Hudson, I.; Verweij, J.; Ten Bokkel Huinink, W.W. Topotecan, an active drug in the second-line treatment of epithelial ovarian cancer: Results of a large European phase II study. J. Clin. Oncol., 1996, 14(12), 3056-3061.
[http://dx.doi.org/10.1200/JCO.1996.14.12.3056] [PMID: 8955650]
[42]
Bertino, J.R. Irinotecan for colorectal cancer. Semin. Oncol., 1997, 24, S18-S23.
[43]
Nishikawa, K.; Fujitani, K.; Inagaki, H.; Akamaru, Y.; Tokunaga, S.; Takagi, M.; Tamura, S.; Sugimoto, N.; Shigematsu, T.; Yoshikawa, T.; Ishiguro, T.; Nakamura, M.; Morita, S.; Miyashita, Y.; Tsuburaya, A.; Sakamoto, J.; Tsujinaka, T. Randomised phase III trial of second-line irinotecan plus cisplatin versus irinotecan alone in patients with advanced gastric cancer refractory to S-1 monotherapy: TRICS trial. Eur. J. Cancer, 2015, 51(7), 808-816.
[http://dx.doi.org/10.1016/j.ejca.2015.02.009] [PMID: 25797356]
[44]
Robati, M.; Holtz, D.; Dunton, C.J. A review of topotecan in combination chemotherapy for advanced cervical cancer. Ther. Clin. Risk Manag., 2008, 4(1), 213-218.
[PMID: 18728710]
[45]
Wagner, L.M. Fifteen years of irinotecan therapy for pediatric sarcoma: where to next? Clin. Sarcoma Res., 2015, 5, 20.
[http://dx.doi.org/10.1186/s13569-015-0035-x] [PMID: 26322224]
[46]
Gunasekera, S.P.; Cordell, G.; Farnsworth, N.R. Anticancer Indole Alkaloids of ErvatamiaHeyneana. Phytochemistry, 1980, 19, 1213-1218.
[http://dx.doi.org/10.1016/0031-9422(80)83086-X]
[47]
Chen, J.; Zhao, H.; Wang, X.; Lee, F.S.; Yang, H.; Zheng, L. Analysis of major alkaloids in Rhizoma coptidis by capillary electrophoresis-electrospray-time of flight mass spectrometry with different background electrolytes. Electrophoresis, 2008, 29(10), 2135-2147.
[http://dx.doi.org/10.1002/elps.200700797] [PMID: 18425753]
[48]
Sun, Y.; Xun, K.; Wang, Y.; Chen, X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs, 2009, 20(9), 757-769.
[http://dx.doi.org/10.1097/CAD.0b013e328330d95b] [PMID: 19704371]
[49]
Diogo, C.V.; Machado, N.G.; Barbosa, I.A.; Serafim, T.L.; Burgeiro, A.; Oliveira, P.J. Berberine as a promising safe anti-cancer agent - is there a role for mitochondria? Curr. Drug Targets, 2011, 12(6), 850-859.
[http://dx.doi.org/10.2174/138945011795528930] [PMID: 21269266]
[50]
Tan, W.; Lu, J.; Huang, M.; Li, Y.; Chen, M.; Wu, G.; Gong, J.; Zhong, Z.; Xu, Z.; Dang, Y.; Guo, J.; Chen, X.; Wang, Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin. Med., 2011, 6(1), 27-42.
[http://dx.doi.org/10.1186/1749-8546-6-27] [PMID: 21777476]
[51]
Eom, K.S.; Kim, H.J.; So, H.S.; Park, R.; Kim, T.Y. Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biol. Pharm. Bull., 2010, 33(10), 1644-1649.
[http://dx.doi.org/10.1248/bpb.33.1644] [PMID: 20930370]
[52]
Burgeiro, A.; Gajate, C.; Dakir, H.; Villa-Pulgarín, J.A.; Oliveira, P.J.; Mollinedo, F. Involvement of mitochondrial and B-RAF/ERK signaling pathways in berberine-induced apoptosis in human melanoma cells. Anticancer Drugs, 2011, 22(6), 507-518.
[http://dx.doi.org/10.1097/CAD.0b013e32834438f6] [PMID: 21527846]
[53]
Wang, N.; Feng, Y.; Zhu, M.; Tsang, C.M.; Man, K.; Tong, Y.; Tsao, S.W. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. J. Cell. Biochem., 2010, 111(6), 1426-1436.
[http://dx.doi.org/10.1002/jcb.22869] [PMID: 20830746]
[54]
Fukuda, K.; Hibiya, Y.; Mutoh, M.; Koshiji, M.; Akao, S.; Fujiwara, H. Inhibition by berberine of cyclooxygenase-2 transcriptional activity in human colon cancer cells. J. Ethnopharmacol., 1999, 66(2), 227-233.
[http://dx.doi.org/10.1016/S0378-8741(98)00162-7] [PMID: 10433483]
[55]
Puthdee, N.; Seubwai, W.; Vaeteewoottacharn, K.; Boonmars, T.; Cha’on, U.; Phoomak, C.; Wongkham, S. Berberine induces cell cycle arrest in cholangiocarcinoma cell lines via inhibition of NF-κB and STAT3 pathways. Biol. Pharm. Bull., 2017, 40(6), 751-757.
[http://dx.doi.org/10.1248/bpb.b16-00428] [PMID: 28566619]
[56]
Choi, M.S.; Yuk, D.Y.; Oh, J.H.; Jung, H.Y.; Han, S.B.; Moon, D.C.; Hong, J.T. Berberine inhibits human neuroblastoma cell growth through induction of p53-dependent apoptosis. Anticancer Res., 2008, 28(6A), 3777-3784.
[PMID: 19189664]
[57]
Tak, J.; Sabarwal, A.; Shyanti, R.K.; Singh, R.P. Berberine enhances posttranslational protein stability of p21/cip1 in breast cancer cells via down-regulation of Akt. Mol. Cell. Biochem., 2019, 458(1-2), 49-59.
[http://dx.doi.org/10.1007/s11010-019-03529-4] [PMID: 30911957]
[58]
Ma, C.; Tang, K.; Liu, Q.; Zhu, R.; Cao, Z. Calmodulin as a potential target by which berberine induces cell cycle arrest in human hepatoma Bel7402 cells. Chem. Biol. Drug Des., 2013, 81(6), 775-783.
[http://dx.doi.org/10.1111/cbdd.12124] [PMID: 23421648]
[59]
Park, K.S.; Kim, J.B.; Bae, J.; Park, S.Y.; Jee, H.G.; Lee, K.E.; Youn, Y.K. Berberine inhibited the growth of thyroid cancer cell lines 8505C and TPC1. Yonsei Med. J., 2012, 53(2), 346-351.
[http://dx.doi.org/10.3349/ymj.2012.53.2.346] [PMID: 22318822]
[60]
Park, K.S.; Kim, J.B.; Lee, S.J.; Bae, J. Berberine-induced growth inhibition of epithelial ovarian carcinoma cell lines. J. Obstet. Gynaecol. Res., 2012, 38(3), 535-540.
[http://dx.doi.org/10.1111/j.1447-0756.2011.01743.x] [PMID: 22381105]
[61]
Agnarelli, A.; Natali, M.; Garcia-Gil, M.; Pesi, R.; Tozzi, M.G.; Ippolito, C.; Bernardini, N.; Vignali, R.; Batistoni, R.; Bianucci, A.M.; Marracci, S. Cell-specific pattern of berberine pleiotropic effects on different human cell lines. Sci. Rep., 2018, 8(1), 10599.
[http://dx.doi.org/10.1038/s41598-018-28952-3] [PMID: 30006630]
[62]
Katiyar, S.K.; Meeran, S.M.; Katiyar, N.; Akhtar, S. p53 Cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo. Mol. Carcinog., 2009, 48(1), 24-37.
[http://dx.doi.org/10.1002/mc.20453] [PMID: 18459128]
[63]
Lin, C.C.; Yang, J.S.; Chen, J.T.; Fan, S.; Yu, F.S.; Yang, J.L.; Lu, C.C.; Kao, M.C.; Huang, A.C.; Lu, H.F.; Chung, J.G. Berberine induces apoptosis in human HSC-3 oral cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway. Anticancer Res., 2007, 27(5A), 3371-3378.
[PMID: 17970083]
[64]
Gong, C.; Hu, X.; Xu, Y.; Yang, J.; Zong, L.; Wang, C.; Zhu, J.; Li, Z.; Lu, D. Berberine inhibits proliferation and migration of colorectal cancer cells by downregulation of GRP78. Anticancer Drugs, 2020, 31(2), 141-149.
[http://dx.doi.org/10.1097/CAD.0000000000000835] [PMID: 31743135]
[65]
Lin, J.P.; Yang, J.S.; Chang, N.W.; Chiu, T.H.; Su, C.C.; Lu, K.W.; Ho, Y.T.; Yeh, C.C. Mei-Dueyang; Lin, H.J.; Chung, J.G. GADD153 mediates berberine-induced apoptosis in human cervical cancer Ca ski cells. Anticancer Res., 2007, 27(5A), 3379-3386.
[PMID: 17970084]
[66]
Hsu, W.H.; Hsieh, Y.S.; Kuo, H.C.; Teng, C.Y.; Huang, H.I.; Wang, C.J.; Yang, S.F.; Liou, Y.S.; Kuo, W.H. Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and FasL. Arch. Toxicol., 2007, 81(10), 719-728.
[http://dx.doi.org/10.1007/s00204-006-0169-y] [PMID: 17673978]
[67]
Liu, J.; Zhu, Z.; Liu, Y.; Wei, L.; Li, B.; Mao, F.; Zhang, J.; Wang, Y.; Liu, Y. MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of berberine in p53-null leukemic cells. Life Sci., 2020, 242117228
[http://dx.doi.org/10.1016/j.lfs.2019.117228] [PMID: 31881227]
[68]
Monavari, S.H.; Shahrabadi, M.S.; Keyvani, H. BokharaeiSalim, F. Evaluation of in vitro antiviral activity of helidoniummajus L. against herpes simplex virus type-1. Afr. J. Microbiol. Res., 2012, 6, 4360-4364.
[69]
Ciric, A.; Vinterhalter, B.; Savikin-Fodulovic, K.; Sokovic, M.; Vinterhalter, D. Chemical analysis and antimicrobial activity of methanol extracts of celandine (Chelidoniummajus L.) plants growing in nature and cultured in vitro. Arch. Biol. Sci., 2008, 60, 7-8.
[http://dx.doi.org/10.2298/ABS0801169C]
[70]
Barnes, J.; Anderson, L.; Philipson, D. Herbal Medicines: A Guide for Healthcare, 1st ed; Pharmaceutical Press: London, 2007.
[71]
Colombo, M.L.; Bosisio, E. Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacol. Res., 1996, 33(2), 127-134.
[http://dx.doi.org/10.1006/phrs.1996.0019] [PMID: 8870028]
[72]
Kemény-Beke, A.; Aradi, J.; Damjanovich, J.; Beck, Z.; Facskó, A.; Berta, A.; Bodnár, A. Apoptotic response of uveal melanoma cells upon treatment with chelidonine, sanguinarine and chelerythrine. Cancer Lett., 2006, 237(1), 67-75.
[http://dx.doi.org/10.1016/j.canlet.2005.05.037] [PMID: 16019128]
[73]
Ahsan, H.; Reagan-Shaw, S.; Breur, J.; Ahmad, N. Sanguinarine induces apoptosis of human pancreatic carcinoma AsPC-1 and BxPC-3 cells via modulations in Bcl-2 family proteins. Cancer Lett., 2007, 249(2), 198-208.
[http://dx.doi.org/10.1016/j.canlet.2006.08.018] [PMID: 17005319]
[74]
De Stefano, I.; Raspaglio, G.; Zannoni, G.F.; Travaglia, D.; Prisco, M.G.; Mosca, M.; Ferlini, C.; Scambia, G.; Gallo, D. Antiproliferative and antiangiogenic effects of the benzophenanthridine alkaloid sanguinarine in melanoma. Biochem. Pharmacol., 2009, 78(11), 1374-1381.
[http://dx.doi.org/10.1016/j.bcp.2009.07.011] [PMID: 19643088]
[75]
Jang, B.C.; Park, J.G.; Song, D.K.; Baek, W.K.; Yoo, S.K.; Jung, K.H.; Park, G.Y.; Lee, T.Y.; Suh, S.I. Sanguinarine induces apoptosis in A549 human lung cancer cells primarily via cellular glutathione depletion. Toxicol. In Vitro, 2009, 23(2), 281-287.
[http://dx.doi.org/10.1016/j.tiv.2008.12.013] [PMID: 19135517]
[76]
Ding, Z.; Tang, S.C.; Weerasinghe, P.; Yang, X.; Pater, A.; Liepins, A. The alkaloid sanguinarine is effective against multidrug resistance in human cervical cells via bimodal cell death. Biochem. Pharmacol., 2002, 63(8), 1415-1421.
[http://dx.doi.org/10.1016/S0006-2952(02)00902-4] [PMID: 11996882]
[77]
Chang, M.C.; Chan, C.P.; Wang, Y.J.; Lee, P.H.; Chen, L.I.; Tsai, Y.L.; Lin, B.R.; Wang, Y.L.; Jeng, J.H. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization. Toxicol. Appl. Pharmacol., 2007, 218(2), 143-151.
[http://dx.doi.org/10.1016/j.taap.2006.10.025] [PMID: 17196629]
[78]
Kaminskyy, V.; Kulachkovskyy, O.; Stoika, R. A decisive role of mitochondria in defining rate and intensity of apoptosis induction by different alkaloids. Toxicol. Lett., 2008, 177(3), 168-181.
[http://dx.doi.org/10.1016/j.toxlet.2008.01.009] [PMID: 18325696]
[79]
Vrba, J.; Dolezel, P.; Vicar, J.; Ulrichová, J. Cytotoxic activity of sanguinarine and dihydrosanguinarine in human promyelocytic leukemia HL-60 cells. Toxicol. In Vitro, 2009, 23(4), 580-588.
[http://dx.doi.org/10.1016/j.tiv.2009.01.016] [PMID: 19346183]
[80]
Lee, J.S.; Jung, W.K.; Jeong, M.H.; Yoon, T.R.; Kim, H.K. Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway. Int. J. Toxicol., 2012, 31(1), 70-77.
[http://dx.doi.org/10.1177/1091581811423845] [PMID: 22215411]
[81]
Philchenkov, A.; Kaminskyy, V.; Zavelevich, M.; Stoika, R. Apoptogenic activity of two benzophenanthridine alkaloids from Chelidonium majus L. does not correlate with their DNA damaging effects. Toxicol. In Vitro, 2008, 22(2), 287-295.
[http://dx.doi.org/10.1016/j.tiv.2007.08.023] [PMID: 18023322]
[82]
Maria, L.; Xavier, C.M.; Souza, A.; Rabelo, D.; Batista, C.L.; Batista, R.L.; Costa, E.V.; Campos, F.R.; Barison, A.; Valdez, R.H.; Nakamura, T.; Nakamura, C.V. Acanthoic acid and other constituents from the stem of Annona amazonica (Annonaceae). J. Braz. Chem. Soc., 2009, 20, 1095-1102.
[83]
Hsieh, T.J.; Liu, T.Z.; Chern, C.L.; Tsao, D.A.; Lu, F.J.; Syu, Y.H.; Hsieh, P.Y.; Hu, H.S.; Chang, T.T.; Chen, C.H. Liriodenine inhibits the proliferation of human hepatoma cell lines by blocking cell cycle progression and nitric oxide-mediated activation of p53 expression. Food Chem. Toxicol., 2005, 43(7), 1117-1126.
[http://dx.doi.org/10.1016/j.fct.2005.03.002] [PMID: 15833387]
[84]
Chen, C.Y.; Chen, S.Y.; Chen, C.H.; Tsao, D.A.; Lu, F.J.; Syu, Y.H.; Hsieh, P.Y.; Hu, H.S.; Chang, T.T.; Chen, C.H. Liriodenine induces G1/S cell cycle arrest in human colon cancer cells via nitric oxide-and p53-mediated pathway. Process Biochem., 2012, 47, 1460-1468.
[http://dx.doi.org/10.1016/j.procbio.2012.05.018]
[85]
Chang, H.C.; Chang, F.R.; Wu, Y.C.; Lai, Y.H. Anti-cancer effect of liriodenine on human lung cancer cells. Kaohsiung J. Med. Sci., 2004, 20(8), 365-371.
[http://dx.doi.org/10.1016/S1607-551X(09)70172-X] [PMID: 15473647]
[86]
Li, Z.H.; Gao, J.; Hu, P.H.; Xiong, J.P. Anticancer effects of liriodenine on the cell growth and apoptosis of human breast cancer MCF-7 cells through the upregulation of p53 expression. Oncol. Lett., 2017, 14(2), 1979-1984.
[http://dx.doi.org/10.3892/ol.2017.6418] [PMID: 28781641]
[87]
Nordin, N.; Majid, N.A.; Hashim, N.M.; Rahman, M.A.; Hassan, Z.; Ali, H.M. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression. Drug Des. Devel. Ther., 2015, 9, 1437-1448.
[PMID: 25792804]
[88]
Govindachari, T.; Lakshmikantham, M.V.; Nagarajan, K.; Pai, B.R. Chemical Examination of TylophoraAshthmatica-II. Tetrahedron, 1958, 4, 311-324.
[http://dx.doi.org/10.1016/0040-4020(58)80052-6]
[89]
Ali, M.; Butani, K.K. Alkaloids from Tylophora indica. Phytochemistry, 1989, 28, 3513-3517.
[http://dx.doi.org/10.1016/0031-9422(89)80376-0]
[90]
Joa, H.; Blažević, T.; Grojer, C.; Zeller, I.; Heiss, E.H.; Atanasov, A.G.; Feldler, I.; Gruzdaitis, P.; Czaloun, C.; Proksch, P.; Messner, B.; Bernhard, D.; Dirsch, V.M. Tylophorine reduces protein biosynthesis and rapidly decreases cyclin D1, inhibiting vascular smooth muscle cell proliferation in vitro and in organ culture. Phytomedicine, 2019, 60, 152938-152948.
[http://dx.doi.org/10.1016/j.phymed.2019.152938] [PMID: 31078367]
[91]
Pratama, N.P.; Wulandari, S.; Nugroho, A.E.; Fakhrudin, N.; Astuti, P. Sudarsono, Sudarsono. Tylophorine abrogates G2/M arrest induced by doxorubicine and promotes increased apoptosis in T47D breast cancer cells. Asian Pac. J. Cancer Prev., 2018, 19(11), 3065-3069.
[http://dx.doi.org/10.31557/APJCP.2018.19.11.3065] [PMID: 30485942]
[92]
Saraswati, S.; Kanaujia, P.K.; Kumar, S.; Kumar, R.; Alhaider, A.A. Tylophorine, a phenanthraindolizidine alkaloid isolated from Tylophora indica exerts antiangiogenic and antitumor activity by targeting vascular endothelial growth factor receptor 2-mediated angiogenesis. Mol. Cancer, 2013, 12, 82.
[http://dx.doi.org/10.1186/1476-4598-12-82] [PMID: 23895055]
[93]
Li, Z.; Zhong, J.; Huang, R. Isolation, total synthesis and biological activity of phenanthroindolizidine and phenanthroquinolizidine alkaloids. Synthesis, 2001, 16, 2365-2378.
[94]
Ganguly, T.; Khar, A. Induction of apoptosis in a human erythroleukemic cell line K562 by tylophora alkaloids involves release of cytochrome c and activation of caspase 3. Phytomedicine, 2002, 9(4), 288-295.
[http://dx.doi.org/10.1078/0944-7113-00146] [PMID: 12120809]
[95]
Donaldson, G.R.; Atkinson, M.R.; Murray, A.W. Inhibition of protein synthesis in Ehrlich ascites-tumour cells by the phenanthrene alkaloids tylophorine, tylocrebrine and cryptopleurine. Biochem. Biophys. Res. Commun., 1968, 31(1), 104-109.
[http://dx.doi.org/10.1016/0006-291X(68)90037-5] [PMID: 4869942]
[96]
Rao, K.V.; Wilson, R.A.; Cummings, B. Alkaloids of tylophora. 3. New alkaloids of Tylophora indica (Burm) Merrill and Tylophora dalzellii Hook. f. J. Pharm. Sci., 1971, 60(11), 1725-1726.
[http://dx.doi.org/10.1002/jps.2600601133] [PMID: 5133930]
[97]
Mulchandani, N.B.; Venkatachalam, S.R. Alkaloids of Pergdaria pallid. Phytochemistry, 1976, 15, 1561-1563.
[http://dx.doi.org/10.1016/S0031-9422(00)88937-2]
[98]
Rao, K.N.; Venkatachalam, S.R. Inhibition of dihydrofolate reductase and cell growth activity by the phenanthroindolizidine alkaloids pergularinine and tylophorinidine: the in vitro cytotoxicity of these plant alkaloids and their potential as antimicrobial and anticancer agents. Toxicol. In Vitro, 2000, 14(1), 53-59.
[http://dx.doi.org/10.1016/S0887-2333(99)00092-2] [PMID: 10699361]
[99]
Min, H.Y.; Chung, H.J.; Kim, E.H.; Kim, S.; Park, E.J.; Lee, S.K. Inhibition of cell growth and potentiation of tumor necrosis factor-α (TNF-α)-induced apoptosis by a phenanthroindolizidine alkaloid antofine in human colon cancer cells. Biochem. Pharmacol., 2010, 80(9), 1356-1364.
[http://dx.doi.org/10.1016/j.bcp.2010.07.026] [PMID: 20674553]
[100]
Yong, W.; Herndon, J.W. Total synthesis of (+)-antofine and (-)-cryptopleurine. Eur. J. Org. Chem., 2013, 15, 3112-3122.
[http://dx.doi.org/10.1002/ejoc.201300200]
[101]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc., 1971, 93(9), 2325-2327.
[http://dx.doi.org/10.1021/ja00738a045] [PMID: 5553076]
[102]
Schiff, P.B.; Horwitz, S.B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA, 1980, 77(3), 1561-1565.
[http://dx.doi.org/10.1073/pnas.77.3.1561] [PMID: 6103535]
[103]
Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5698), 665-667.
[http://dx.doi.org/10.1038/277665a0] [PMID: 423966]
[104]
Oberlies, N.H.; Kroll, D.J. Camptothecin and taxol: historic achievements in natural products research. J. Nat. Prod., 2004, 67(2), 129-135.
[http://dx.doi.org/10.1021/np030498t] [PMID: 14987046]
[105]
Croteau, R.; Ketchum, R.E.B.; Long, R.M.; Kaspera, R.; Wildung, M.R. Taxol biosynthesis and molecular genetics. Phytochem. Rev., 2006, 5(1), 75-97.
[http://dx.doi.org/10.1007/s11101-005-3748-2] [PMID: 20622989]
[106]
Xie, S.; Zhou, J. Harnessing Plant Biodiversity for the Discovery of Novel Anticancer Drugs Targeting Microtubules. Front. Plant Sci., 2017, 8, 720-726.
[http://dx.doi.org/10.3389/fpls.2017.00720] [PMID: 28523014]
[107]
Guastalla, J.P., III; Diéras, V. The taxanes: toxicity and quality of life considerations in advanced ovarian cancer. Br. J. Cancer, 2003, 89(Suppl. 3), S16-S22.
[http://dx.doi.org/10.1038/sj.bjc.6601496] [PMID: 14661042]
[108]
Lichota, A.; Gwozdzinski, K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int. J. Mol. Sci., 2018, 19(11), 3533-3571.
[http://dx.doi.org/10.3390/ijms19113533] [PMID: 30423952]
[109]
Mody, M.D.; Gill, H.S.; Saba, N.F. The Evolving and Future Role of Taxanes in Squamous Cell Carcinomas of the Head and Neck: A Review. JAMA Otolaryngol. Head Neck Surg., 2016, 142(9), 898-905.
[http://dx.doi.org/10.1001/jamaoto.2016.1238] [PMID: 27389786]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy