Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

COVID-19 Candidate Genes and Pathways Potentially Share the Association with Lung Cancer

Author(s): Afnan M. Alnajeebi*, Hend F.H. Alharbi, Walla Alelwani, Nouf A. Babteen, Wafa S. Alansari, Ghalia Shamlan and Areej A. Eskandrani

Volume 25, Issue 14, 2022

Published on: 12 January, 2022

Page: [2463 - 2472] Pages: 10

DOI: 10.2174/1386207324666210712092649

Price: $65

Abstract

COVID-19 is considered as the most challenging in the current situation but lung cancer is also the leading cause of death in the global population. These two malignancies are among the leading human diseases and are highly complex in terms of diagnostic and therapeutic approaches as well as the most frequent and highly complex and heterogeneous in nature. Based on the latest update, it is known that the patients suffering from lung cancer, are considered to be significantly at higher risk of COVID-19 infection in terms of survival and there are a number of evidences which support the hypothesis that these diseases may share the same functions and functional components. Multi-level unwanted alterations such as (epi-)genetic alterations, changes at the transcriptional level, and altered signaling pathways (receptor, cytoplasmic, and nuclear level) are the major sources which promote a number of complex diseases and such heterogeneous level of complexities are considered as the major barrier in the development of therapeutics. With so many challenges, it is critical to understand the relationships and the common shared aberrations between them which is difficult to unravel and understand. A simple approach has been applied for this study where differential gene expression analysis, pathway enrichment, and network level understanding are carried out. Since, gene expression changes and genomic alterations are related to the COVID-19 and lung cancer but their pattern varies significantly. Based on the recent studies, it appears that the patients suffering from lung cancer and and simultaneously infected with COVID-19, then survival chance is lessened. So, we have designed our goal to understand the genes commonly overexpressed and commonly enriched pathways in case of COVID-19 and lung cancer. For this purpose, we have presented the summarized review of the previous works where the pathogenesis of lung cancer and COVID-19 infection have been focused and we have also presented the new finding of our analysis. So, this work not only presents the review work but also the research work. This review and research study leads to the conclusion that growth promoting pathways (EGFR, Ras, and PI3K), growth inhibitory pathways (p53 and STK11), apoptotic pathways (Bcl- 2/Bax/Fas), and DDR pathways and genes are commonly and dominantly altered in both the cases COVID-19 and lung cancer.

Keywords: COVID-19, candidate genes, pathways, lung cancer, linkage of COVID-19 and lung cancer, in-silico approach.

Graphical Abstract
[1]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y-M.; Wang, W.; Song, Z-G.; Hu, Y.; Tao, Z-W.; Tian, J.-H.; Pei, Y-Y.; Yuan, M-L.; Zhang, Y-L.; Dai, F-H.; Liu, Y.; Wang, Q-M.; Zheng, J.-J.; Xu, L.; Holmes, E.C.; Zhang, Y-Z. A New coronavirus associated with human respiratory disease in China. Nature, 2020, 579, 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3]
[2]
Al-Hazmi, A. Challenges presented by MERS corona virus, and SARS corona virus to global health. Saudi J. Biol. Sci., 2016, 23(4), 507-511.
[http://dx.doi.org/10.1016/j.sjbs.2016.02.019] [PMID: 27298584]
[3]
Al-Osail, A.M.; Al-Wazzah, M.J. The history and epidemiology of middle east respiratory syndrome corona virus. Multidiscip. Respir. Med., 2017, 1-6.
[4]
Habibzadeh, P.; Stoneman, E.K. The novel coronavirus: a bird’s eye view. Int. J. Occup. Environ. Med., 2020, 11(2), 65-71.
[http://dx.doi.org/10.15171/ijoem.2020.1921] [PMID: 32020915]
[5]
Paraskevis, D.; Kostaki, E.G.; Magiorkinis, G.; Panayiotakopoulos, G.; Sourvinos, G.; Tsiodras, S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect. Genet. Evol., 2020, 79, 104212.
[http://dx.doi.org/10.1016/j.meegid.2020.104212] [PMID: 32004758]
[6]
The clinical lung cancer genome project (CLCGP) and network genomic medicine. Network genomic medicine (NGM). A genomics-based classification of human lung tumors. Sci. Transl. Med., 2013, 5(209), 209ra153.
[http://dx.doi.org/10.1126/scitranslmed.3006802]
[7]
Codas, M.; Pesch, B.; Adolphs, M.; Madrazo, C.; Matthias, C.; Heinze, E.; Taeger, D.; Behrens, T.; Chaux, A.; Brüning, T. Cancer epidemiology. Cancer Epidemiol., 2016, 40, 1-6.
[http://dx.doi.org/10.1016/j.canep.2015.11.005] [PMID: 26599413]
[8]
Barnes, P.J. Chronic obstructive pulmonary disease (COPD): Biological mechanisms; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007.
[9]
Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol., 2020, 17(9), 543-558.
[http://dx.doi.org/10.1038/s41569-020-0413-9] [PMID: 32690910]
[10]
Zhao, N.; Zhou, Z-L.; Wu, L.; Zhang, X-D.; Han, S-B.; Bao, H-J.; Shu, Y.; Shu, X-G. An update on the status of COVID-19: A comprehensive review. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4597-4606.
[PMID: 32374000]
[11]
Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA, 2020, 324(8), 782-793.
[http://dx.doi.org/10.1001/jama.2020.12839] [PMID: 32648899]
[12]
Ahmed, S.F.; Quadeer, A.A.; McKay, M.R. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 2020, 12(3), 254.
[http://dx.doi.org/10.3390/v12030254] [PMID: 32106567]
[13]
Deming, M.E.; Michael, N.L.; Robb, M.; Cohen, M.S.; Neuzil, K.M. Accelerating development of SARS-CoV-2 vaccines - the role for controlled human infection models. N. Engl. J. Med., 2020, 383(10), e63.
[http://dx.doi.org/10.1056/NEJMp2020076] [PMID: 32610006]
[14]
Zhang, R.; Li, Y.; Zhang, A.L.; Wang, Y.; Molina, M.J. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl. Acad. Sci. USA, 2020, 117(26), 14857-14863.
[http://dx.doi.org/10.1073/pnas.2009637117] [PMID: 32527856]
[15]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[16]
Teuwen, L-A.; Geldhof, V.; Pasut, A.; Carmeliet, P. COVID-19: the Vasculature Unleashed. Nat. Rev. Immunol., 2020, 20(7), 389-391.
[http://dx.doi.org/10.1038/s41577-020-0343-0] [PMID: 32439870]
[17]
Vogelstein, B.; Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med., 2004, 10(8), 789-799.
[http://dx.doi.org/10.1038/nm1087] [PMID: 15286780]
[18]
Network, T.C.G.A.R. Comprehensive molecular profiling of lung adenocarcinoma. Nature, 2014, 511(7511), 543-550.
[http://dx.doi.org/10.1038/nature13385] [PMID: 25079552]
[19]
Llanos, A.; Savignano, M.; Cinat, G. Maintenance treatment with chemotherapy and immunotherapy in non-small cell lung cancer: A case report. Front. Oncol., 2012, 2, 152.
[http://dx.doi.org/10.3389/fonc.2012.00152] [PMID: 23112957]
[20]
Luo, S.Y.; Lam, D.C. Oncogenic driver mutations in lung cancer. Transl. Respir. Med., 2013, 1(1), 6.
[http://dx.doi.org/10.1186/2213-0802-1-6] [PMID: 27234388]
[21]
Reddy, K.L. Feinberg, A.P. Article in Press. Semin. Cancer Biol., 2012, 1-7.
[22]
Feinberg, A.P.; Koldobskiy, M.A.; Göndör, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet., 2016, 17(5), 284-299.
[http://dx.doi.org/10.1038/nrg.2016.13] [PMID: 26972587]
[23]
Muellner, M.K.; Uras, I.Z.; Gapp, B.V.; Kerzendorfer, C.; Smida, M.; Lechtermann, H.; Craig-Mueller, N.; Colinge, J.; Duernberger, G.; Nijman, S.M.B. A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat. Chem. Biol., 2011, 7(11), 787-793.
[http://dx.doi.org/10.1038/nchembio.695] [PMID: 21946274]
[24]
Rampias, T.; Vgenopoulou, P.; Avgeris, M.; Polyzos, A.; Stravodimos, K.; Valavanis, C.; Scorilas, A.; Klinakis, A. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat. Med., 2014, 20(10), 1199-1205.
[http://dx.doi.org/10.1038/nm.3678] [PMID: 25194568]
[25]
Rameseder, J.; Krismer, K.; Dayma, Y.; Ehrenberger, T.; Hwang, M.K.; Airoldi, E.M.; Floyd, S.R.; Yaffe, M.B. A multivariate computational method to analyze high-content RNAi screening data. J. Biomol. Screen., 2015, 20(8), 985-997.
[http://dx.doi.org/10.1177/1087057115583037] [PMID: 25918037]
[26]
Zenz, R.; Eferl, R.; Scheinecker, C.; Redlich, K.; Smolen, J.; Schonthaler, H.B.; Kenner, L.; Tschachler, E.; Wagner, E.F. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res. Ther., 2008, 10(1), 201.
[http://dx.doi.org/10.1186/ar2338] [PMID: 18226189]
[27]
van de Stolpe, A.; den Toonder, J.M. Circulating tumor cells: what is in it for the patient? A vision towards the future. Cancers (Basel), 2014, 6(2), 1195-1207.
[http://dx.doi.org/10.3390/cancers6021195] [PMID: 24879438]
[28]
Barbolosi, D.; Ciccolini, J.; Lacarelle, B.; Barlési, F.; André, N. Computational oncology —mathematical modelling of drugregimens for precision medicine. Nat. Rev. Clin. Oncol., 2015, 1-13.
[PMID: 26598946]
[29]
Raffoul, J.J.; Heydari, A.R.; Hillman, G.G. DNA repair and cancer therapy: Targeting ape1/ref-1 using dietary agents. J. Oncol., 2012, 2012, 370481.
[http://dx.doi.org/10.1155/2012/370481] [PMID: 22997517]
[30]
Yap, T.A.; Workman, P. Exploiting the cancer genome: strategies for the discovery and clinical development of targeted molecular therapeutics. Annu. Rev. Pharmacol. Toxicol., 2012, 52, 549-573.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134532] [PMID: 22235862]
[31]
Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov., 2005, 4(12), 988-1004.
[http://dx.doi.org/10.1038/nrd1902] [PMID: 16341064]
[32]
Brambilla, E.; Gazdar, A. Pathogenesis of lung cancer signalling pathways: Roadmap for therapies. Eur. Respir. J., 2009, 33(6), 1485-1497.
[http://dx.doi.org/10.1183/09031936.00014009] [PMID: 19483050]
[33]
Johnstone, S.E.; Baylin, S.B. Stress and the epigenetic landscape: A link to the pathobiology of human diseases? Nat. Rev. Genet., 2010, 11(11), 806-812.
[http://dx.doi.org/10.1038/nrg2881] [PMID: 20921961]
[34]
Shtivelman, E.; Hensing, T.; Simon, G.R.; Dennis, P.A.; Otterson, G.A.; Bueno, R.; Salgia, R. Molecular pathways and therapeutic targets in lung cancer. Oncotarget, 2014, 5(6), 1392-1433.
[http://dx.doi.org/10.18632/oncotarget.1891] [PMID: 24722523]
[35]
Jin, X.; Liu, X.; Zhang, Z.; Guan, Y.; Xv, R.; Li, J. Identification of key pathways and genes in lung carcinogenesis. Oncol. Lett., 2018, 16(4), 4185-4192.
[http://dx.doi.org/10.3892/ol.2018.9203] [PMID: 30250533]
[36]
Weiss, G.J.; Kingsley, C. Pathway targets to explore in the treatment of non-small cell lung cancer. J. Thorac. Oncol., 2008, 3(11), 1342-1352.
[http://dx.doi.org/10.1097/JTO.0b013e3181898774] [PMID: 18978571]
[37]
Chrysanthakopoulos, N.A.; Dareioti, S.; Molecular Abnormalities, N. Cellular signaling pathways alterations in lung cancer. Med Dent Res., 2018, 1
[http://dx.doi.org/10.15761/MDR.1000105]
[38]
Purdie, S.; Creighton, N.; White, K.M.; Baker, D.; Ewald, D.; Lee, C.K.; Lyon, A.; Man, J.; Michail, D.; Miller, A.A.; Tan, L.; Currow, D.; Young, J.M. Pathways to diagnosis of non-small cell lung cancer: adescriptive cohort study. NPJ Primary Care Respir. Med., 2019, 1-6.
[39]
Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu-Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; Nagata, B.M.; Andersen, H.; Martinez, D.R.; Noe, A.T.; Douek, N.; Donaldson, M.M.; Nji, N.N.; Alvarado, G.S.; Edwards, D.K.; Flebbe, D.R.; Lamb, E.; Doria-Rose, N.A.; Lin, B.C.; Louder, M.K.; O’Dell, S.; Schmidt, S.D.; Phung, E.; Chang, L.A.; Yap, C.; Todd, J.-P.M.; Pessaint, L.; Van Ry, A.; Browne, S.; Greenhouse, J.; Putman-Taylor, T.; Strasbaugh, A.; Campbell, T.-A.; Cook, A.; Dodson, A.; Steingrebe, K.; Shi, W.; Zhang, Y.; Abiona, O.M.; Wang, L.; Pegu, A.; Yang, E.S.; Leung, K.; Zhou, T.; Teng, I.-T.; Widge, A.; Gordon, I.; Novik, L.; Gillespie, R.A.; Loomis, R.J.; Moliva, J.I.; Stewart-Jones, G.; Himansu, S.; Kong, W.-P.; Nason, M.C.; Morabito, K.M.; Ruckwardt, T.J.; Ledgerwood, J.E.; Gaudinski, M.R.; Kwong, P.D.; Mascola, J.R.; Carfi, A.; Lewis, M.G.; Baric, R.S.; McDermott, A.; Moore, I.N.; Sullivan, N.J.; Roederer, M.; Seder, R.A.; Graham, B.S. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. New Engl. J. Med., 2020, 383, 1544-1555.
[http://dx.doi.org/10.1056/NEJMoa2024671]
[40]
Báez-Santos, Y.M.; St John, S.E.; Mesecar, A.D. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Res., 2015, 115, 21-38.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[41]
DeDiego, M.L.; Nieto-Torres, J.L.; Jimenez-Guardeño, J.M.; Regla-Nava, J.A.; Castaño-Rodriguez, C.; Fernandez-Delgado, R.; Usera, F.; Enjuanes, L. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res., 2014, 194, 124-137.
[http://dx.doi.org/10.1016/j.virusres.2014.07.024] [PMID: 25093995]
[42]
Rabaan, A.A.; Bazzi, A.M.; Al-Ahmed, S.H.; Al-Tawfiq, J.A. Molecular aspects of MERS-CoV. Front. Med., 2017, 11(3), 365-377.
[http://dx.doi.org/10.1007/s11684-017-0521-z] [PMID: 28500431]
[43]
Ribet, D.; Cossart, P. Pathogen-mediated posttranslational modifications: A re-emerging field. Cell, 2010, 143(5), 694-702.
[http://dx.doi.org/10.1016/j.cell.2010.11.019] [PMID: 21111231]
[44]
Hui, D.S.C.; Zumla, A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infect. Dis. Clin. North Am., 2019, 33(4), 869-889.
[http://dx.doi.org/10.1016/j.idc.2019.07.001] [PMID: 31668196]
[45]
Ezzat, K.; Pernemalm, M.; Pålsson, S.; Roberts, T.C.; Järver, P.; Dondalska, A.; Bestas, B.; Sobkowiak, M.J.; Levänen, B.; Sköld, M.; Thompson, E.A.; Saher, O.; Kari, O.K.; Lajunen, T.; Sverremark Ekström, E.; Nilsson, C.; Ishchenko, Y.; Malm, T.; Wood, M.J.A.; Power, U.F.; Masich, S.; Lindén, A.; Sandberg, J.K.; Lehtiö, J.; Spetz, A-L.; El Andaloussi, S. The viral protein corona directs viral pathogenesis and amyloid aggregation. Nat. Commun., 2019, 10(1), 2331.
[http://dx.doi.org/10.1038/s41467-019-10192-2] [PMID: 31133680]
[46]
Gosain, R.; Abdou, Y.; Singh, A.; Rana, N.; Puzanov, I.; Ernstoff, M.S. COVID-19 and Cancer: a Comprehensive Review. Curr. Oncol. Rep., 2020, 22(5), 53.
[http://dx.doi.org/10.1007/s11912-020-00934-7] [PMID: 32385672]
[47]
Hirano, T.; Murakami, M. COVID-19: A new virus, but a familiar receptor and cytokine release syndrome. Immunity, 2020, 52(5), 731-733.
[http://dx.doi.org/10.1016/j.immuni.2020.04.003] [PMID: 32325025]
[48]
Greenwood, E.; Swanton, C. Consequences of COVID-19 for cancer care - a CRUK perspective. Nat. Rev. Clin. Oncol., 2020, 1, 565.
[http://dx.doi.org/10.1038/s41571-020-00446-0] [PMID: 33097915]
[49]
Moujaess, E.; Kourie, H.R.; Ghosn, M. Cancer patients and research during COVID-19 pandemic: A systematic review of current evidence. Crit. Rev. Oncol. Hematol., 2020, 150, 102972.
[http://dx.doi.org/10.1016/j.critrevonc.2020.102972] [PMID: 32344317]
[50]
Derosa, L.; Melenotte, C.; Griscelli, F.; Gachot, B.; Marabelle, A.; Kroemer, G.; Zitvogel, L. The immuno-oncological challenge of COVID-19. Nature Cancer, 2020, 1, 946-964.
[http://dx.doi.org/10.1038/s43018-020-00122-3]
[51]
Zhong, J.; Tang, J.; Ye, C.; Dong, L. The immunology of COVID-19: Is immune modulation an option for treatment? Lancet Rheumatol., 2020, 2(7), e428-e436.
[http://dx.doi.org/10.1016/S2665-9913(20)30120-X] [PMID: 32835246]
[52]
Li, F. Antiviral Research. Antiviral Res., 2013, 100, 246-254.
[http://dx.doi.org/10.1016/j.antiviral.2013.08.014] [PMID: 23994189]
[53]
Ramaswamy, S.; Ross, K.N.; Lander, E.S.; Golub, T.R. A molecular signature of metastasis in primary solid tumors. Nat. Genet., 2003, 33(1), 49-54.
[http://dx.doi.org/10.1038/ng1060] [PMID: 12469122]
[54]
Paital, B. Science of the Total Environment. Sci. Total Environ., 2020, 729, 139088.
[http://dx.doi.org/10.1016/j.scitotenv.2020.139088] [PMID: 32388136]
[55]
Alexeyenko, A.; Sonnhammer, E.L.L. Global networks of functional coupling in eukaryotes from comprehensive data integration. Genome Res., 2009, 19(6), 1107-1116.
[http://dx.doi.org/10.1101/gr.087528.108] [PMID: 19246318]
[56]
Krishnamoorthy, P.K.P.; Kamal, M.A.; Warsi, M.K.; Alnajeebi, A.M.; Ali, H.A.; Helmi, N.; Izhari, M.A.; Mustafa, S.; Firoz, A.; Mobashir, M. Informatics in medicine unlocked. Inform. Med. Unlocked., 2020, 20, 100422.
[http://dx.doi.org/10.1016/j.imu.2020.100422]
[57]
Sironi, M.; Cagliani, R.; Forni, D.; Clerici, M. Evolutionary insights into host-pathogen interactions from mammalian sequence data. Nat. Rev. Genet., 2015, 16(4), 224-236.
[http://dx.doi.org/10.1038/nrg3905] [PMID: 25783448]
[58]
Chen, R.; Fu, J.; Hu, J.; Li, C.; Zhao, Y.; Qu, H.; Wen, X.; Cao, S.; Wen, Y.; Wu, R.; Zhao, Q.; Yan, Q.; Huang, Y.; Ma, X.; Han, X.; Huang, X. Identification of the immunodominant neutralizing regions in the spike glycoprotein of porcine deltacoronavirus. Virus Res., 2020, 276, 197834.
[http://dx.doi.org/10.1016/j.virusres.2019.197834] [PMID: 31816342]
[59]
Marra, M.A.; Jones, S.J.M.; Astell, C.R.; Holt, R.A.; Brooks-Wilson, A.; Butterfield, Y.S.N.; Khattra, J.; Asano, J.K.; Barber, S.A.; Chan, S.Y.; Cloutier, A.; Coughlin, S.M.; Freeman, D.; Girn, N.; Griffith, O.L.; Leach, S.R.; Mayo, M.; McDonald, H.; Montgomery, S.B.; Pandoh, P.K.; Petrescu, A.S.; Robertson, A.G.; Schein, J.E.; Siddiqui, A.; Smailus, D.E.; Stott, J.M.; Yang, G.S.; Plummer, F.; Andonov, A.; Artsob, H.; Bastien, N.; Bernard, K.; Booth, T.F.; Bowness, D.; Czub, M.; Drebot, M.; Fernando, L.; Flick, R.; Garbutt, M.; Gray, M.; Grolla, A.; Jones, S.; Feldmann, H.; Meyers, A.; Kabani, A.; Li, Y.; Normand, S.; Stroher, U.; Tipples, G.A.; Tyler, S.; Vogrig, R.; Ward, D.; Watson, B.; Brunham, R.C.; Krajden, M.; Petric, M.; Skowronski, D.M.; Upton, C.; Roper, R.L. The Genome sequence of the SARS-associated coronavirus. Science, 2003, 300(5624), 1399-1404.
[http://dx.doi.org/10.1126/science.1085953] [PMID: 12730501]
[60]
Gill, S. Santos, dos.; O’Gorman, D.B.; Carter, D.E.; Patterson, E.K.; Slessarev, M.; Martin, C.; Daley, M.; Miller, M.R.; Fraser, D.D.; Wrage, M.; Wrage, M. Transcriptional profiling of leukocytes in critically ill COVID19 patients: Implications for interferon response and coagulation. Intensive Care Med. Exp., 2020, 8(1), 75.
[61]
Wrage, M.; Ruosaari, S.; Eijk, P.P.; Kaifi, J.T.; Hollmén, J.; Yekebas, E.F.; Izbicki, J.R.; Brakenhoff, R.H.; Streichert, T.; Riethdorf, S.; Glatzel, M.; Ylstra, B.; Pantel, K.; Wikman, H. Genomic profiles associated with early micrometastasis in lung cancer: Relevance of 4q deletion. Clin. Cancer Res., 2009, 15(5), 1566-1574.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2188] [PMID: 19208797]
[62]
Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; Yamanishi, Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res., 2008, 36(Database issue), D480-D484.
[PMID: 18077471]
[63]
Kanehisa, M.; Goto, S.; Furumichi, M.; Tanabe, M.; Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res., 2010, 38(Database issue), D355-D360.
[http://dx.doi.org/10.1093/nar/gkp896] [PMID: 19880382]
[64]
Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res., 2012, 40(Database issue), D109-D114.
[http://dx.doi.org/10.1093/nar/gkr988] [PMID: 22080510]
[65]
Eldakhakhny, B.M. Sadoun, Al, H.; Choudhry, H.; Mobashir, M. In-silico study of immune system associated genes in case of type-2 diabetes with insulin action and resistance, and/or Obesity. Front. Endocrinol., 2021, 12, 1-10.
[http://dx.doi.org/10.3389/fendo.2021.641888]
[66]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[67]
Kamal, M.A.; Warsi, M.K.; Alnajeebi, A.; Ali, H.A.; Helmi, N.; Izhari, M.A.; Mustafa, S.; Mobashir, M. Gene expression profiling and clinical relevance unravel the role hypoxia and immune signaling genes and pathways in breast cancer: Role of hypoxia and immune signaling genes in breast cancer. JIMSA, 2020, 1(1), 2-10.
[68]
Warsi, M.K.; Kamal, M.A.; Baeshen, M.N.; Izhari, M.A.; Mobashir, A.F.A.M. Comparative study of gene expression profiling unravels functions associated with pathogenesis of dengue infection. Curr. Pharm. Des., 2020, 26(41), 5293-5299.
[http://dx.doi.org/10.2174/1381612826666201106093148] [PMID: 33155901]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy