Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Methods of Random Mutagenesis of Aspergillus Strain for Increasing Kojic Acid Production

Author(s): Herman Suryadi*, Marina Ika Irianti and Tri Hastuti Septiarini

Volume 23, Issue 4, 2022

Published on: 15 June, 2021

Page: [486 - 494] Pages: 9

DOI: 10.2174/1389201022666210615125004

Price: $65

Abstract

Abstract: Kojic acid is an organic acid that is commonly used in the pharmaceutical and cosmetic industries. This acid compound is a secondary metabolite produced by various microorganisms, one of which is Aspergillus oryzae. Typically, improving the strain can enhance kojic acid production. A mutation is one of the tools to perform strain improvement because the change in kojic acidproducing genes effectively increases kojic acid yield. A random mutagenesis is a classic approach for inducing and producing mutants with random mutations. The mutagenesis can be generated by the individual physical and chemical mutagen, combined physical and chemical mutagens, or initiate by protoplast preparation. Aspergillus strains that are exposed to physical mutagens (e.g., UV) or chemical mutagens (e.g., N-methyl-N-nitro-N-nitrosoguanidine (NTG)) showed their abilities in increasing kojic acid production. Several new mutation methods, such as Ion Beam Implantation and Atmospheric and room temperature plasma (ARTP), also showed good responses in enhancing the production of biological products such as kojic acid. This review compared different random mutagenesis methods of Aspergillus strain with various mutagen types to provide better insight for researchers in choosing the most suitable method to increase kojic acid production.

Keywords: Kojic acid, Aspergillus oryzae, random mutagenesis, chemical mutagen, physical mutagen , protoplast preparation.

Graphical Abstract
[1]
Ammar, H.A.M.; Ezzat, S. M.; Houseny, A. M. Improved production of kojic acid by mutagenesis of A. flavus HAk1 and A. oryzae HAk2 and their potential antioxidant activity. 3 Biotech, 2017, 7(5), 276.
[2]
Saeedi, M.; Eslamifar, M.; Khezri, K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed. Pharmacother., 2019, 110, 582-593.
[http://dx.doi.org/10.1016/j.biopha.2018.12.006] [PMID: 30537675]
[3]
Rosfarizan, M.; Mohamed, M.S.; Suhaili, N.; Salleh, M.M.; Ariff, A.B. Kojic acid: Applications and development of fermentation process for production. Biotechnol. Mol. Biol. Rev., 2010, 5(2), 24-37.
[4]
Suryadi, H.; Radji, M.; Dianingtyas, J.; Hidayah, A.P. Improvement of kojic acid production by a mutant strain of A. flavus N40C10. Proceedings of International Conference on Mathematics and Natural Sciences (ICMNS), 2006, pp. 116-120.
[5]
Frisvad, J.C.; Møller, L.L.H.; Larsen, T.O.; Kumar, R.; Arnau, J. Safety of the fungal workhorses of industrial biotechnology: Update on the mycotoxin and secondary metabolite potential of A. niger, A. oryzae, and Trichoderma reesei. Appl. Microbiol. Biotechnol., 2018, 102(22), 9481-9515.
[http://dx.doi.org/10.1007/s00253-018-9354-1] [PMID: 30293194]
[6]
Machida, M.; Yamada, O.; Gomi, K. Genomics of Aspergillus oryzae: Learning from the history of Koji mold and exploration of its future. DNA Res., 2008, 15(4), 173-183.
[http://dx.doi.org/10.1093/dnares/dsn020] [PMID: 18820080]
[7]
Abe, K.; Gomi, K.; Hasegawa, F.; Machida, M. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia, 2006, 162(3), 143-153.
[http://dx.doi.org/10.1007/s11046-006-0049-2] [PMID: 16944282]
[8]
He, B.; Tu, Y.; Jiang, C.; Zhang, Z.; Li, Y.; Zeng, B.B. Functional genomics of A. oryzae: Strategies and progress. Microorganisms, 2019, 7(4), 103.
[http://dx.doi.org/10.3390/microorganisms7040103] [PMID: 30974907]
[9]
Nizamuddin, S.; Sridevi, A.; Narasimha, G. Production of β-galactosidase by A. oryzae in solid-state fermentation. Afr. J. Biotechnol., 2008, 7(8), 1096-1100.
[10]
Hunter, A.J.; Morris, T.A.; Jin, B.; Saint, C.P.; Kelly, J.M. Deletion of creB in Aspergillus oryzae increases secreted hydrolytic enzyme activity. Appl. Environ. Microbiol., 2013, 79(18), 5480-5487.
[http://dx.doi.org/10.1128/AEM.01406-13] [PMID: 23835170]
[11]
Feng, W.; Liang, J.; Wang, B.; Chen, J. Improvement of kojic acid production in Aspergillus oryzae AR-47 mutant strain by combined mutagenesis. Bioprocess Biosyst. Eng., 2019, 42(5), 753-761.
[http://dx.doi.org/10.1007/s00449-019-02079-9] [PMID: 30805716]
[12]
Futamura, T.; Okabe, M.; Tamura, T.; Toda, K.; Matsunobu, T.; Park, Y.S. Improvement of production of Kojic acid by a mutant strain Aspergillus oryzae, MK107-39. J. Biosci. Bioeng., 2001, 91(3), 272-276.
[http://dx.doi.org/10.1016/S1389-1723(01)80133-X] [PMID: 16232988]
[13]
Prabu, R.; Rosfarizan, M.; Shah, U.K.M.; Ariff, A.B. Improvement of A. flavus Link S44-1 using random mutational method for kojic acid production. Minerva Biotecnol., 2011, 23(4), 83-89.
[14]
Aleem, B.; Rashid, M.H.; Zeb, N.; Saqib, A.; Ihsan, A.; Iqbal, M.; Ali, H. Random mutagenesis of super Koji (Aspergillus oryzae): Improvement in production and thermal stability of α-amylases for maltose syrup production. BMC Microbiol., 2018, 18(1), 200.
[http://dx.doi.org/10.1186/s12866-018-1345-y] [PMID: 30486793]
[15]
Bose, J.L. Chemical and UV Mutagenesis. Methods Mol. Biol., 2016, 1373, 111-115.
[http://dx.doi.org/10.1007/7651_2014_190] [PMID: 25646611]
[16]
Obruca, S.; Snajdar, O.; Svoboda, Z.; Marova, I. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World J. Microbiol. Biotechnol., 2013, 29(12), 2417-2428.
[http://dx.doi.org/10.1007/s11274-013-1410-5] [PMID: 23801326]
[17]
Tillich, U.M.; Lehmann, S.; Schulze, K.; Dühring, U.; Frohme, M. The optimal mutagen dosage to induce point-mutations in Synechocystis sp. PCC6803 and its application to promote temperature tolerance. PLoS One, 2012, 7(11) e49467
[http://dx.doi.org/10.1371/journal.pone.0049467] [PMID: 23185339]
[18]
Griffiths, A.J.F.; Gelbart, W.M.; Miller, J.H. The molecular basis of mutation.Modern Genetic analysis; WH Freeman: NY, 1999.
[19]
Yan, S.; Tang, H.; Wang, S.; Xu, L.; Liu, H.; Guo, Y.; Yao, J. Improvement of kojic acid production in Aspergillus oryzae B008 mutant strain and its uses in fermentation of concentrated corn stalk hydrolysate. Bioprocess Biosyst. Eng., 2014, 37(6), 1095-1103.
[http://dx.doi.org/10.1007/s00449-013-1081-5] [PMID: 24170020]
[20]
Kodym, A.; Afza, R. Physical and chemical mutagenesis. Methods Mol. Biol., 2003, 236, 189-204.
[PMID: 14501066]
[21]
Nevalainen, K.M.H. Strain improvement in filamentous fungi-an overview. Appl. Mycol. Biotechnol., 2001, 1, 289-304.
[http://dx.doi.org/10.1016/S1874-5334(01)80013-7]
[22]
El-aziz, A.B.A. Improvement of kojic acid production by a mutant strain of A. flavus. J. Nat. Sci. Res, 2013, 3(4), 31-41.
[23]
Bhagavan, N.V. DNA replication, repair, and mutagenesis. Medical Biochemistry, 4th; Elsevier. 2002.
[http://dx.doi.org/10.1016/B978-012095440-7/50026-3]
[24]
Lemke, P.A.; Nash, C.H. Fungal viruses. Bacteriol. Rev., 1974, 38(1), 29-56.
[http://dx.doi.org/10.1128/BR.38.1.29-56.1974] [PMID: 4133029]
[25]
Venken, K.J.T.; Bellen, H.J. Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. Methods, 2014, 68(1), 15-28.
[http://dx.doi.org/10.1016/j.ymeth.2014.02.025] [PMID: 24583113]
[26]
Fitzgerald, D.M.; Rosenberg, S.M. What is mutation? A chapter in the series: How microbes “jeopardize” the modern synthesis. PLoS Genet., 2019, 15(4) e1007995
[http://dx.doi.org/10.1371/journal.pgen.1007995] [PMID: 30933985]
[27]
Bushman, F.D. Retroviral insertional mutagenesis in humans: Evidence for four genetic mechanisms promoting expansion of cell clones. Mol. Ther., 2020, 28(2), 352-356.
[http://dx.doi.org/10.1016/j.ymthe.2019.12.009] [PMID: 31951833]
[28]
Clark, D.P.; Pazdernik, N.J. Mutations and Repair. In: Molecular Biology; 2nd; Academic cell. , 2013.
[29]
Martinez-Fernandez, L.; Banyasz, A.; Esposito, L.; Markovitsi, D.; Improta, R. UV-induced damage to DNA: Effect of cytosine methylation on pyrimidine dimerization. Signal Transduct. Target. Ther., 2017, 2, 17021.
[http://dx.doi.org/10.1038/sigtrans.2017.21] [PMID: 29263920]
[30]
Miller, J.H. Mutagenic specificity of ultraviolet light. J. Mol. Biol., 1985, 182(1), 45-65.
[http://dx.doi.org/10.1016/0022-2836(85)90026-9] [PMID: 3923204]
[31]
Kostyleva, E.V.; Sereda, A.S.; Velikoretskaya, I.A. Development of schemes of induced mutagenesis for improving the productivity of Aspergillus strains producing amylolytic enzymes. Microbiol., 2017, 86, 493-502.
[http://dx.doi.org/10.1134/S0026261717040087]
[32]
Ottenheim, C.; Nawrath, M.; Wu, J.C. Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): The latest development. Bioresour. Bioprocess., 2018, 5, 12.
[http://dx.doi.org/10.1186/s40643-018-0200-1]
[33]
Jain, S.M.; Ochatt, S.J.; Kulkarni, V.M.; Predieri, S. In vitro culture for mutant development. Acta Hortic., 2010, (865), 59-68.
[http://dx.doi.org/10.17660/ActaHortic.2010.865.6]
[34]
Bingham, E.T. Mutation breeding: Theory and practical applications.Crop Sci; Cambridge University Press: New York, 1999.
[35]
Xie, G. Compound mutation breeding of Kojic acid producing strain; Shipin Yu Fajiao Keji, 2013.
[36]
Akhtar, N. Effect of physical and chemical mutagens on morphological behavior of tomato (solanum lycopersicum) cv. ‘rio grande’ under heat stress conditions. Plant Breed. Seed Sci., 2018, 70(1)
[http://dx.doi.org/10.1515/plass-2015-0014]
[37]
Ohnishi, J.; Mizoguchi, H.; Takeno, S.; Ikeda, M. Characterization of mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain. Mutat. Res., 2008, 649(1-2), 239-244.
[http://dx.doi.org/10.1016/j.mrgentox.2007.10.003] [PMID: 18037338]
[38]
Leonard, C.A.; Brown, S.D.; Hayman, J.R. Random mutagenesis of the A. oryzae genome results in fungal antibacterial activity. Int. J. Microbiol., 2013, 2013 901697
[http://dx.doi.org/10.1155/2013/901697] [PMID: 23983696]
[39]
Gu, S.B.; Li, S.C.; Feng, H.Y.; Wu, Y.; Yu, Z.L. A novel approach to microbial breeding--low-energy ion implantation. Appl. Microbiol. Biotechnol., 2008, 78(2), 201-209.
[http://dx.doi.org/10.1007/s00253-007-1312-2] [PMID: 18183390]
[40]
Feng, H.; Yu, Z.; Chu, P.K. Ion Implantation of organisms. Mater. Sci. Eng. Rep., 2006, 54(3-4), 49-120.
[http://dx.doi.org/10.1016/j.mser.2006.11.001]
[41]
Wu, M.; Li, S.C.; Yao, J.M.; Pan, R.R.; Yu, Z.L. Mutant of a xylanase-producing strain of A. niger in solid state fermentation by low energy ion implantation. World J. Microbiol. Biotechnol., 2005, 21, 1045-1049.
[http://dx.doi.org/10.1007/s11274-004-7870-x]
[42]
Toyoshima, Y.; Takahashi, A.; Tanaka, H.; Watanabe, J.; Mogi, Y.; Yamazaki, T.; Hamada, R.; Iwashita, K.; Satoh, K.; Narumi, I. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae. Mutat. Res., 2012, 740(1-2), 43-49.
[http://dx.doi.org/10.1016/j.mrfmmm.2012.12.005] [PMID: 23280012]
[43]
Lu, Y. Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room tem-perature plasma (ARTP). Biochem. Eng. J., 2011, 55(1), 17-22.
[44]
Wang, L.; Zhao, H.; He, D.; Wu, Y.; Jin, L.; Li, G.; Su, N.; Li, H.; Xing, X.H. Insights into the molecular-level effects of atmospheric and room-temperature plasma on mononucleotides and single-stranded homo- and hetero-oligonucleotides. Sci. Rep., 2020, 10(1), 14298.
[http://dx.doi.org/10.1038/s41598-020-71152-1] [PMID: 32868795]
[45]
Zhong, H.; Zhan, Y.; Li, X.; Peng, L.; Feng, F.; Li, D. A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. Afr. J. Microbiol. Res., 2012, 6(13), 3154-3158.
[46]
Suryadi, H.; Yoshida, N.; Yamada-Onodera, K.; Katsuragi, T.; Tani, Y. Characterization of a flavinogenic mutant of methanol yeast Candida boidinii and its extracellular secretion of riboflavin. J. Biosci. Bioeng., 2000, 90(1), 52-56.
[http://dx.doi.org/10.1016/S1389-1723(00)80033-X] [PMID: 16232817]
[47]
Morlan, J.; Baker, J.; Sinicropi, D. Mutation detection by real-time PCR: A simple, robust and highly selective method. PLoS One, 2009, 4(2) e4584
[http://dx.doi.org/10.1371/journal.pone.0004584] [PMID: 19240792]
[48]
Arya, M.; Shergill, I.S.; Williamson, M.; Gommersall, L.; Arya, N.; Patel, H.R.H. Basic principles of real-time quantitative PCR. Expert Rev. Mol. Diagn., 2005, 5(2), 209-219.
[http://dx.doi.org/10.1586/14737159.5.2.209] [PMID: 15833050]
[49]
Marui, J.; Yamane, N.; Ohashi-Kunihiro, S.; Ando, T.; Terabayashi, Y.; Sano, M.; Ohashi, S.; Ohshima, E.; Tachibana, K.; Higa, Y.; Nishimura, M.; Koike, H.; Machida, M. Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II)(2)Cys(6) transcriptional activator and induced by kojic acid at the transcriptional level. J. Biosci. Bioeng., 2011, 112(1), 40-43.
[http://dx.doi.org/10.1016/j.jbiosc.2011.03.010] [PMID: 21514215]
[50]
Bok, J.W.; Keller, N.P. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell, 2004, 3(2), 527-535.
[http://dx.doi.org/10.1128/EC.3.2.527-535.2004] [PMID: 15075281]
[51]
Sano, M. Aspergillus oryzae nrtA affects kojic acid production. Biosci. Biotechnol. Biochem., 2016, 80(9), 1776-1780.
[http://dx.doi.org/10.1080/09168451.2016.1176517] [PMID: 27108780]
[52]
Ammar, H.A.M.; Srour, A.Y.; Ezzat, S.M.; Hoseny, A.M. Identification and characterization of genes involved in kojic acid biosynthesis in A. flavus. Ann. Microbiol., 2017, 67, 691-702.
[http://dx.doi.org/10.1007/s13213-017-1297-]
[53]
Tachioka, M.; Sugimoto, N.; Nakamura, A.; Sunagawa, N.; Ishida, T.; Uchiyama, T.; Igarashi, K.; Samejima, M. Development of simple random mutagenesis protocol for the protein expression system in Pichia pastoris. Biotechnol. Biofuels, 2016, 9, 199.
[http://dx.doi.org/10.1186/s13068-016-0613-z] [PMID: 27660653]
[54]
Ari, Ş.; Arikan, M. Next-generation sequencing: advantages, disadvantages, and future.Plant Omics: Trends and applications; Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-31703-8_5]
[55]
Di Resta, C.; Galbiati, S.; Carrera, P.; Ferrari, M. Next-generation sequencing approach for the diagnosis of human diseases: open challenges and new opportunities. EJIFCC, 2018, 29(1), 4-14.
[PMID: 29765282]
[56]
Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed., 2013, 98(6), 236-238.
[http://dx.doi.org/10.1136/archdischild-2013-304340] [PMID: 23986538]
[57]
Raza, K.; Ahmad, S. Principle, analysis, application and challenges of next-generation sequencing: A review. arXiv Prepr., 2016.
[58]
Shakibaie, M. Statistical optimizat ion of kojic acid production by a UV-induced mutant strain of A. terreus. Brazlian J. Microbiol., 2018, 49(40), 865-871.
[59]
Adrio, J.L.; Demain, A.L. Genetic improvement of processes yielding microbial products. FEMS Microbiol. Rev., 2006, 30(2), 187-214.
[http://dx.doi.org/10.1111/j.1574-6976.2005.00009.x] [PMID: 16472304]
[60]
Giani, A.M.; Gallo, G.R.; Gianfranceschi, L.; Formenti, G. Long walk to genomics: History and current approaches to genome sequencing and assembly. Comput. Struct. Biotechnol. J., 2019, 18, 9-19.
[http://dx.doi.org/10.1016/j.csbj.2019.11.002] [PMID: 31890139]
[61]
Wan, H.M.; Chen, C.C.; Chang, T.S.; Giridhar, R.N.; Wu, W.T. Combining induced mutation and protoplasting for strain improvement of Aspergillus oryzae for kojic acid production. Biotechnol. Lett., 2004, 26(14), 1163-1166.
[http://dx.doi.org/10.1023/B:BILE.0000035490.49252.38] [PMID: 15266124]
[62]
Griffiths, A.J.F.; Miller, J.H.; Suzuki, D.T.; Lewontin, R.C. An Introduction to Genetic Analysis, 7th ed; , 2000.
[63]
Mba, C.; Afza, R.; Bado, S.; Jain, S.M. Induced mutagenesis in plants using physical and chemical agents.Plant cell culture: Essential methods; John Wiley and Sons: UK, 2010.
[http://dx.doi.org/10.1002/9780470686522.ch7]
[64]
Montelone, B.A.; Malone, R.E. Analysis of the rad3-101 and rad3-102 mutations of Saccharomyces cerevisiae: Implications for struc-ture/function of Rad3 protein. Yeast, 1994, 10(1), 13-27.
[http://dx.doi.org/10.1002/yea.320100103] [PMID: 8203147]
[65]
McCallum, C.M.; Comai, L.; Greene, E.A.; Henikoff, S. Targeted screening for induced mutations. Nat. Biotechnol., 2000, 18(4), 455-457.
[http://dx.doi.org/10.1038/74542] [PMID: 10748531]
[66]
Kumar, A.K.; Parikh, B.S.; Singh, S.P.; Shah, D. Use of combined UV and chemical mutagenesis treatment of A. terreus D34 for hyper-production of cellulose-degrading enzymes and enzymatic hydrolysis of mild-alkali pretreated rice straw. Bioresour. Bioprocess., 2015, 35.
[http://dx.doi.org/10.1186/s40643-015-0062-8]
[67]
Khattab, A.A.; Bazaraa, W.A. Screening, mutagenesis and protoplast fusion of Aspergillus niger for the enhancement of extracellular glucose oxidase production. J. Ind. Microbiol. Biotechnol., 2005, 32(7), 289-294.
[http://dx.doi.org/10.1007/s10295-005-0249-7] [PMID: 15952011]
[68]
Yoshimi, A.; Miyazawa, K.; Abe, K. Cell wall structure and biogenesis in Aspergillus species. Biosci. Biotechnol. Biochem., 2016, 80(9), 1700-1711.
[http://dx.doi.org/10.1080/09168451.2016.1177446] [PMID: 27140698]
[69]
Salazar, O.; Asenjo, J.A. Enzymatic lysis of microbial cells. Biotechnol. Lett., 2007, 29(7), 985-994.
[http://dx.doi.org/10.1007/s10529-007-9345-2] [PMID: 17464453]
[70]
Maeda, I.; Shimohigashi, Y.; Kihara, H.; Ohno, M. Purification and characterization of a cellulase from the giant snail Achatina fulica. Biosci. Biotechnol. Biochem., 1996, 60(1), 122-124.
[http://dx.doi.org/10.1271/bbb.60.122] [PMID: 8824833]
[71]
Van Weel, P.B. The comparative physiology of digestion in molluscs. Integr. Comp. Biol., 1961, 1(2), 245-252.
[72]
Ezeronye, O.U.; Okerentugba, P.O. Optimum conditions for yeast protoplast release and regeneration in Saccharomyces cerevisiae and Candida tropicalis using gut enzymes of the giant African snail Achatina achatina. Lett. Appl. Microbiol., 2001, 32(3), 190-193.
[http://dx.doi.org/10.1046/j.1472-765x.2001.00885.x] [PMID: 11264751]
[73]
Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen., 2017, 58(5), 235-263.
[http://dx.doi.org/10.1002/em.22087] [PMID: 28485537]
[74]
De Bont, R.; van Larebeke, N. Endogenous DNA damage in humans: A review of quantitative data. Mutagenesis, 2004, 19(3), 169-185.
[http://dx.doi.org/10.1093/mutage/geh025] [PMID: 15123782]
[75]
Dizdaroglu, M.; Rao, G.; Halliwell, B.; Gajewski, E. Damage to the DNA bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions. Arch. Biochem. Biophys., 1991, 285(2), 317-324.
[http://dx.doi.org/10.1016/0003-9861(91)90366-Q] [PMID: 1654771]
[76]
Imlay, J.A.; Chin, S.M.; Linn, S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 1988, 240(4852), 640-642.
[http://dx.doi.org/10.1126/science.2834821] [PMID: 2834821]
[77]
Ye, N.; Holmquist, G.P.; O’Connor, T.R. Heterogeneous repair of N-methylpurines at the nucleotide level in normal human cells. J. Mol. Biol., 1998, 284(2), 269-285.
[http://dx.doi.org/10.1006/jmbi.1998.2138] [PMID: 9813117]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy