Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Advances in the Discovery of Antiviral Metabolites from Fungi

Author(s): Sunil K. Deshmukh*, Shivankar Agrawal, Manish Kumar Gupta, Rajesh K. Patidar and Nihar Ranjan

Volume 23, Issue 4, 2022

Published on: 15 June, 2021

Page: [495 - 537] Pages: 43

DOI: 10.2174/1389201022666210615120720

Price: $65

Abstract

Abstract: As the world manages the impact of a global pandemic caused by COVID-19, the discovery of new antiviral agents has become way more relevant and urgent. Viruses are submicroscopic infectious agents that replicate inside the living cells of different organisms. These viruses use nucleic acids (both DNA and RNA) for further replication and maturity inside the cells. Some of the viruses responsible for various human and plant diseases belong to the classes of Picornaviridae, Retroviridae, Orthomyxoviridae, Flaviviridae, Pneumoviridae, Virgaviridae, and Hepadnaviridae, and their treatment options are limited or non-existent. The consistent reemergence and resistance development in the viral strains demand the discovery and development of new antiviral drugs possessing better efficacy. Bio-active compounds isolated from fungi can be the source of new compounds with enhanced potency and new mechanisms of action. Fungi are known to produce a diverse lot of secondary metabolites due to their existence in harsh and testing climates which are often inhabitable for many organisms. Because of these unique environments, fungi produce a variety of secondary metabolites of different chemical classes like alkaloids, quinones, furanone, pyrones, benzopyranoids, xanthones, terpenes, steroids, peptides, and many acyclic compounds. Fungal metabolites are known to display a wide range of bioactive attributes, i.e., anticancer, antibacterial, antifungal, and anti-Alzheimer's, along with antiviral properties. In this review article, we report over 300 antiviral compounds from fungal sources during the period of 2009 to 2019. The source of these compounds is marine and endophytic fungi and they are arranged based on their antiviral action against different viral families. These compounds offer promise for their use and development as future antiviral drugs.

Keywords: Marine fungi, endophytic fungi, mushrooms, fungal secondary metabolites, antiviral metabolites, viruses, H1N1, HIV, SARS.

Graphical Abstract
[1]
Hawksworth, D.L. The fungal dimension of biodiversity: magnitude, significance, andconservation. Mycol. Res., 1991, 95, 641-655.
[http://dx.doi.org/10.1016/S0953-7562(09)808101-1]
[2]
Hawksworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr., 2017, 5(4)
[http://dx.doi.org/10.1128/microbiolspec.FUNK-0052-2016] [PMID: 28752818]
[3]
Aly, A.H.; Debbab, A.; Proksch, P. Fifty years of drug discovery from fungi. Fungal Divers., 2011, 50, 3.
[http://dx.doi.org/10.1007/s13225-011-0116-y]
[4]
Deshmukh, S.K.; Verekar, S.A.; Bhave, S.V. Endophytic fungi: a reservoir of antibacterials. Front. Microbiol., 2015, 5, 715.
[http://dx.doi.org/10.3389/fmicb.2014.00715] [PMID: 25620957]
[5]
Wang, L.W.; Wang, J.L.; Chen, J.; Chen, J.J.; Shen, J.W.; Feng, X.X.; Kubicek, C.P.; Lin, F.C.; Zhang, C.L.; Chen, F.Y. A novel derivative of (-) mycousnine produced by the endophytic fungusMycosphaerella nawae, exhibits high and selective immunosuppressive activity on T cells. Front. Microbiol., 2017, 8, 1251.
[http://dx.doi.org/10.3389/fmicb.2017.01251] [PMID: 28725220]
[6]
Deshmukh, S.K.; Gupta, M.K.; Prakash, V.; Saxena, S. Endophytic fungi: a source of potential antifungal compounds. J. Fungi (Basel), 2018, 4(3), 77.
[http://dx.doi.org/10.3390/jof4030077] [PMID: 29941838]
[7]
Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv., 2020.39107462
[http://dx.doi.org/10.1016/j.biotechadv.2019.107462] [PMID: 31669137]
[8]
Mason, S.; Devincenzo, J.P.; Toovey, S.; Wu, J.Z.; Whitley, R.J. Comparison of antiviral resistance across acute and chronic viral infections. Antiviral Res., 2018, 158, 103-112.
[http://dx.doi.org/10.1016/j.antiviral.2018.07.020] [PMID: 30086337]
[9]
Berbee, M.L.; James, T.Y.; Strullu-Derrien, C. Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu. Rev. Microbiol., 2017, 71, 41-60.
[http://dx.doi.org/10.1146/annurev-micro-030117-020324] [PMID: 28525299]
[10]
Blackwell, M. The fungi: 1, 2, 3... 5.1 million species? Am. J. Bot., 2011, 98(3), 426-438.
[http://dx.doi.org/10.3732/ajb.1000298] [PMID: 21613136]
[11]
Johnson, T.W.; Sparrow, F.K. Fungi in oceans and estuaries. Fungi in oceans and estuaries, Weinheim: J. Cramer.New York :; Hafner Pub. Co., 1961.
[http://dx.doi.org/10.1126/science.137.3531.662-a]
[12]
Agrawal, S.; Adholeya, A.; Barrow, C.J.; Deshmukh, S.K. Marine fungi: An untapped bioresource for future cosmeceuticals. Phytochem. Lett., 2018, 23, 15-20.
[http://dx.doi.org/10.1016/j.phytol.2017.11003]
[13]
Amend, A.; Burgaud, G.; Cunliffe, M.; Edgcomb, V.P.; Ettinger, C.L.; Gutiérrez, M.H.; Heitman, J.; Hom, E.F.Y.; Ianiri, G.; Jones, A.C.; Kagami, M.; Picard, K.T.; Quandt, C.A.; Raghukumar, S.; Riquelme, M.; Stajich, J.; Vargas-Muñiz, J.; Walker, A.K.; Yarden, O.; Gladfelter, A.S. Fungi in the marine environment: Open questions and unsolved problems. MBio, 2019, 10(2), e01189-18.
[http://dx.doi.org/10.1128/mBio.01189-18] [PMID: 30837337]
[14]
Gladfelter, A.S.; James, T.Y.; Amend, A.S. Marine fungi. Curr. Biol., 2019, 29(6), R191-R195.
[http://dx.doi.org/10.1016/j.cub.2019.02.009] [PMID: 30889385]
[15]
Chen, S.; Wang, J.; Wang, Z.; Lin, X.; Zhao, B.; Kaliaperumal, K.; Liao, X.; Tu, Z.; Li, J.; Xu, S.; Liu, Y. Structurally diverse secondary metabolites from a deep-sea-derived fungus Penicillium chrysogenum SCSIO 41001 and their biological evaluation. Fitoterapia, 2017, 117, 71-78.
[http://dx.doi.org/10.1016/j.fitote.2017.01.005] [PMID: 28108327]
[16]
Huang, Z.; Nong, X.; Ren, Z.; Wang, J.; Zhang, X.; Qi, S. Anti-HSV-1, antioxidant and antifouling phenolic compounds from the deep-sea-derived fungus Aspergillus versicolor SCSIO 41502. Bioorg. Med. Chem. Lett., 2017, 27(4), 787-791.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.032] [PMID: 28129981]
[17]
Liang, X.; Nong, X.H.; Huang, Z.H.; Qi, S.H. Antifungal and antiviral cyclic peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. J. Agric. Food Chem., 2017, 65(25), 5114-5121.
[http://dx.doi.org/10.1021/acs.jafc.7b01238] [PMID: 28578573]
[18]
Niu, S.; Liu, D.; Shao, Z.; Proksch, P.; Lin, W. Eutypellazines A–M, thiodiketopiperazine-type alkaloids from deep sea derived fungus Eutypella sp. MCCC 3A00281. RSC Advances, 2017, 7(53), 33580-33590.
[http://dx.doi.org/10.1039C7RA05774A]
[19]
Niu, S.; Si, L.; Liu, D.; Zhou, A.; Zhang, Z.; Shao, Z.; Wang, S.; Zhang, L.; Zhou, D.; Lin, W. Spiromastilactones: A new class of influenza virus inhibitors from deep-sea fungus. Eur. J. Med. Chem., 2016, 108, 229-244.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.037] [PMID: 26686929]
[20]
Sun, Y.L.; Wang, J.; Wang, Y.F.; Zhang, X.Y.; Nong, X.H.; Chen, M.Y.; Xu, X.Y.; Qi, S.H. Cytotoxic and antiviral tetramic acid derivatives from the deep-sea-derived fungus Trichobotrys effuse DFFSCS021. Tetrahedron, 2015, 71(49), 9328-9332.
[http://dx.doi.org/10.1016/j.tet.2015.10010]
[21]
Peng, J.; Zhang, X.; Du, L.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Sorbicatechols A and B, antiviral sorbicillinoids from the marine-derived fungus Penicillium chrysogenum PJX-17. J. Nat. Prod., 2014, 77(2), 424-428.
[http://dx.doi.org/10.1021/np400977e] [PMID: 24495078]
[22]
Wu, G.; Sun, X.; Yu, G.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Cladosins A-E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum. J. Nat. Prod., 2014, 77(2), 270-275.
[http://dx.doi.org/10.1021/np400833x] [PMID: 24499327]
[23]
Pang, X.; Lin, X.; Wang, J.; Liang, R.; Tian, Y.; Salendra, L.; Luo, X.; Zhou, X.; Yang, B.; Tu, Z.; Liu, Y. Three new highly oxygenated sterols and one new dihydroisocoumarin from the marine sponge-derived fungus Cladosporium sp. SCSIO41007. Steroids, 2018, 129, 41-46.
[http://dx.doi.org/10.1016/j.steroids.2017.12.001] [PMID: 29223616]
[24]
Pang, X.; Lin, X.; Tian, Y.; Liang, R.; Wang, J.; Yang, B.; Zhou, X.; Kaliyaperumal, K.; Luo, X.; Tu, Z.; Liu, Y. Three new polyketides from the marine sponge-derived fungus Trichoderma sp. SCSIO41004. Nat. Prod. Res., 2018, 32(1), 105-111.
[http://dx.doi.org/10.1080/14786419.2017.1338286] [PMID: 28592143]
[25]
Zhao, Y.; Liu, D.; Proksch, P.; Zhou, D.; Lin, W. Truncateols O-V, further isoprenylated cyclohexanols from the sponge-associated fungus Truncatella angustata with antiviral activities. Phytochemistry, 2018, 155, 61-68.
[http://dx.doi.org/10.1016/j.phytochem.2018.07.017] [PMID: 30077121]
[26]
Wu, Z.H.; Li, Y.; Li, Y.; Ma, M.; Chen, J.L. Salicylic acid derivatives and phenylspirodrimanes from the sponge-associated fungus Hansfordia sinuosae. J. Asian Nat. Prod. Res., 2018, 20(10), 985-991.
[http://dx.doi.org/10.1080/10286020.2017.1367924] [PMID: 28832193]
[27]
He, W.J.; Zhou, X.J.; Qin, X.C.; Mai, Y.X.; Lin, X.P.; Liao, S.R.; Yang, B.; Zhang, T.; Tu, Z.C.; Wang, J.F.; Liu, Y. Quinone/hydroquinone meroterpenoids with antitubercular and cytotoxic activities produced by the sponge-derived fungus Gliomastix sp. ZSDS1-F7. Nat. Prod. Res., 2017, 31(5), 604-609.
[http://dx.doi.org/10.1080/14786419.2016.1207076] [PMID: 27417331]
[28]
Tian, Y.Q.; Lin, X.P.; Wang, Z.; Zhou, X.F.; Qin, X.C.; Kaliyaperumal, K.; Zhang, T.Y.; Tu, Z.C.; Liu, Y. Asteltoxins with antiviral activities from the marine sponge-derived fungus Aspergillus sp.SCSIO XWS02F40. Molecules, 2016, 21(1), 34/1-34/10.
[29]
Ióca, L.P.; Romminger, S.; Santos, M.F.; Bandeira, K.F.; Rodrigues, F.T.; Kossuga, M.H.; Nicacio, K.J.; Ferreira, E.L.; Morais-Urano, R.P.; Passos, M.S.; Kohn, L.K. A strategy for the rapid identification of fungal metabolites and the discovery of the antiviral activity of pyrenocine A and harzianopyridone. Quim. Nova, 2016, 39(6), 720-731.
[http://dx.doi.org/10.5935/0100-4042.20160092]
[30]
Zhao, Y.; Si, L.; Liu, D.; Proksch, P.; Zhou, D.; Lin, W. Truncateols A-N, new isoprenylated cyclohexanols from the sponge-associated fungus Truncatella angustata with anti-H1N1 virus activities. Tetrahedron, 2015, 71(18), 2708-2718.
[http://dx.doi.org/10.1016/j.tet.2015.03.033]
[31]
Kong, F.; Zhao, C.; Hao, J.; Wang, C.; Wang, W.; Huang, X.; Zhu, W. New α-glucosidase inhibitors from a marine sponge-derived fungus, Aspergillus sp. OUCMDZ-1583. RSC Advances, 2015, 5(84), 68852-68863.
[http://dx.doi.org/10.1039/C5RA11185D]
[32]
Qin, C.; Lin, X.; Lu, X.; Wan, J.; Zhou, X.; Liao, S.; Tu, Z.; Xu, S.; Liu, Y. Sesquiterpenoids and xanthones derivatives produced by sponge-derived fungus Stachybotry sp. HH1 ZSDS1F1-2. J. Antibiot. (Tokyo), 2015, 68(2), 121-125.
[http://dx.doi.org/10.1038/ja.2014.97] [PMID: 25118104]
[33]
Li, Y.; Liu, D.; Cen, S.; Proksch, P.; Lin, W. Isoindolinone-type alkaloids from the sponge-derived fungus Stachybotrys chartarum. Tetrahedron, 2014, 70(39), 7010-7015.
[http://dx.doi.org/10.1016/j.tet.2014.07047]
[34]
Wang, J.F.; Lin, X.P.; Qin, C.; Liao, S.R.; Wan, J.T.; Zhang, T.Y.; Liu, J.; Fredimoses, M.; Chen, H.; Yang, B.; Zhou, X.F.; Yang, X.W.; Tu, Z.C.; Liu, Y.H. Antimicrobial and antiviral sesquiterpenoids from sponge-associated fungus, Aspergillus sydowii ZSDS1-F6. J. Antibiot. (Tokyo), 2014, 67(8), 581-583.
[http://dx.doi.org/10.1038/ja.2014.39] [PMID: 24736857]
[35]
Ma, X.; Li, L.; Zhu, T.; Ba, M.; Li, G.; Gu, Q.; Guo, Y.; Li, D. Phenylspirodrimanes with anti-HIV activity from the sponge-derived fungus Stachybotrys chartarum MXH-X73. J. Nat. Prod., 2013, 76(12), 2298-2306.
[http://dx.doi.org/10.1021/np400683h] [PMID: 24308675]
[36]
Peng, J.; Jiao, J.; Li, J.; Wang, W.; Gu, Q.; Zhu, T.; Li, D. Pyronepolyene C-glucosides with NF-κB inhibitory and anti-influenza A viral (H1N1) activities from the sponge-associated fungus Epicoccum sp. JJY40. Bioorg. Med. Chem. Lett., 2012, 22(9), 3188-3190.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.044] [PMID: 22487178]
[37]
Yu, M.L.; Guan, F.F.; Cao, F.; Jia, Y.L.; Wang, C.Y. A new antiviral pregnane from a gorgonian-derived Cladosporium sp. fungus. Nat. Prod. Res., 2018, 32(11), 1260-1266.
[http://dx.doi.org/10.1080/14786419.2017.1342086] [PMID: 28641456]
[38]
Liang, T.M.; Fang, Y.W.; Zheng, J.Y.; Shao, C.L. Secondary metabolites isolated from the gorgonian-derived fungus Aspergillus ruber and their antiviral activity. Chem. Nat. Compd., 2018, 54(3), 559-561.
[http://dx.doi.org/10.1007/s10600-018-2406-z]
[39]
Liao, H.X.; Sun, D.W.; Zheng, C.J.; Wang, C.Y. A new hexahydrobenzopyran derivative from the gorgonian-derived Fungus Eutypella sp. Nat. Prod. Res., 2017, 31(14), 1640-1646.
[http://dx.doi.org/10.1080/14786419.2017.1285301] [PMID: 28278631]
[40]
Ma, X.; Nong, X-H.; Ren, Z.; Wang, J.; Liang, X.; Wang, L.; Qi, S-H. Antiviral peptides from marine gorgonian-derived fungus Aspergillus sp. SCSIO 41501. Tetrahedron Lett., 2017, 58, 1151-1155.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.005]
[41]
Nong, X.H.; Wang, Y.F.; Zhang, X.Y.; Zhou, M.P.; Xu, X.Y.; Qi, S.H. Territrem and butyrolactone derivatives from a marine-derived fungus Aspergillus terreus. Mar. Drugs, 2014, 12(12), 6113-6124.
[http://dx.doi.org/10.3390/md12126113] [PMID: 25522319]
[42]
Chen, M.; Shao, C.L.; Meng, H.; She, Z.G.; Wang, C.Y. Anti-respiratory syncytial virus prenylated dihydroquinolone derivatives from the gorgonian-derived fungus Aspergillus sp. XS-20090B15. J. Nat. Prod., 2014, 77(12), 2720-2724.
[http://dx.doi.org/10.1021/np500650t] [PMID: 25420212]
[43]
He, F.; Bao, J.; Zhang, X.Y.; Tu, Z.C.; Shi, Y.M.; Qi, S.H. Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162. J. Nat. Prod., 2013, 76(6), 1182-1186.
[http://dx.doi.org/10.1021/np300897v] [PMID: 23806112]
[44]
Bao, J.; Xu, X.Y.; Zhang, X.Y.; Qi, S.H. A new macrolide from a marine-derived fungus Aspergillus sp. Nat. Prod. Commun., 2013, 8(8), 1127-1128.
[http://dx.doi.org/10.1177/1934578X1300800825] [PMID: 24079185]
[45]
Li, H.L.; Xu, R.; Li, X.M.; Yang, S.Q.; Meng, L.H.; Wang, B.G. Simpterpenoid A, a meroterpenoid with a highly functionalized cyclohexadiene moiety featuring gem-propane-1,2-dione and methylformate groups, from the mangrove-derived Penicillium simplicissimum MA-332. Org. Lett., 2018, 20(5), 1465-1468.
[http://dx.doi.org/10.1021/acs.orglett.8b00327] [PMID: 29450994]
[46]
Zhang, P.; Li, Y.; Jia, C.; Lang, J.; Niaz, S.I.; Li, J.; Yuan, J.; Yu, J.; Chen, S.; Liu, L. Antiviral and anti-inflammatory meroterpenoids: Stachybonoids A–F from the crinoid-derived fungus Stachybotrys chartarum952. RSC Advances, 2017, 7(79), 49910-49916.
[http://dx.doi.org/10.1039C7RA09859F]
[47]
Zhao, J.L.; Zhang, M.; Liu, J.M.; Tan, Z.; Chen, R.D.; Xie, K.B.; Dai, J.G. Bioactive steroids and sorbicillinoids isolated from the endophytic fungus Trichoderma sp. Xy24. J. Asian Nat. Prod. Res., 2017, 19(10), 1028-1035.
[http://dx.doi.org/10.1080/10286020.2017.1285908] [PMID: 28145126]
[48]
Wang, J.F.; Liang, R.; Liao, S.R.; Yang, B.; Tu, Z.C.; Lin, X.P.; Wang, B.G.; Liu, Y. Vaccinols J-S, ten new salicyloid derivatives from the marine mangrove-derived endophytic fungus Pestalotiopsis vaccinii. Fitoterapia, 2017, 120, 164-170.
[http://dx.doi.org/10.1016/j.fitote.2017.06.013] [PMID: 28625729]
[49]
Yu, G.; Zhou, G.; Zhu, M.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Neosartoryadins A and B, fumiquinazoline alkaloids from a mangrove-derived fungus Neosartorya udagawae HDN13-313. Org. Lett., 2016, 18(2), 244-247.
[http://dx.doi.org/10.1021/acs.orglett.5b02964] [PMID: 26713369]
[50]
Zhang, M.; Li, N.; Chen, R.; Zou, J.; Wang, C.; Dai, J. Two terpenoids and a polyketide from the endophytic fungus Trichoderma sp. Xy24 isolated from mangrove plant Xylocarpus granatum. J. Chin. Pharm. Sci., 2014, 23(6), 421-424.
[http://dx.doi.org/10.5246/jcps.2014.06056]
[51]
Wang, J.; Wei, X.; Lu, X.; Xu, F.; Wan, J.; Lin, X.; Zhou, X.; Liao, S.; Yang, B.; Tu, Z.; Liu, Y. Eight new polyketide metabolites from the fungus Pestalotiopsis vaccinii endogenous with the mangrove plant Kandelia candel (L.). Druce. Tetrahedron, 2014, 70, 9695-9701.
[http://dx.doi.org/10.1016/j.tet.2014.10056]
[52]
Sun, J.F.; Lin, X.; Zhou, X.F.; Wan, J.; Zhang, T.; Yang, B.; Yang, X.W.; Tu, Z.; Liu, Y. Pestalols A-E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum. J. Antibiot. (Tokyo), 2014, 67(6), 451-457.
[http://dx.doi.org/10.1038/ja.2014.24] [PMID: 24690916]
[53]
Peng, J.; Lin, T.; Wang, W.; Xin, Z.; Zhu, T.; Gu, Q.; Li, D. Antiviral alkaloids produced by the mangrove-derived fungus Cladosporium sp. PJX-41. J. Nat. Prod., 2013, 76(6), 1133-1140.
[http://dx.doi.org/10.1021/np400200k] [PMID: 23758051]
[54]
Zhang, G.; Sun, S.; Zhu, T.; Lin, Z.; Gu, J.; Li, D.; Gu, Q. Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry, 2011, 72(11-12), 1436-1442.
[http://dx.doi.org/10.1016/j.phytochem.2011.04.014] [PMID: 21601895]
[55]
Cao, X.; Shi, Y.; Wu, X.; Wang, K.; Huang, S.; Sun, H.; Dickschat, J.S.; Wu, B. Talaromyolides A-D and Talaromytin: Polycyclic Meroterpenoids from the Fungus Talaromyces sp. CX11. Org. Lett., 2019, 21(16), 6539-6542.
[http://dx.doi.org/10.1021/acs.orglett.9b02466] [PMID: 31364857]
[56]
Wang, J.; Chen, F.; Liu, Y.; Liu, Y.; Li, K.; Yang, X.; Liu, S.; Zhou, X.; Yang, J. Spirostaphylotrichin X from a marine-derived fungus as an anti-influenza agent targeting RNA polymerase PB2. J. Nat. Prod., 2018, 81(12), 2722-2730.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00656] [PMID: 30516983]
[57]
Hawas, U.W.; Al-Farawati, R.; Abou El-Kassem, L.T.; Ahmed, E.F. Fungal biotechnology of the Red Sea alga Sarggassum subrepandum with potential of anticancer and anti-hepatitis C virus protease activities. Lett. Org. Chem., 2017, 14(4), 283-290.
[http://dx.doi.org/10.21741570178614666170227132055]
[58]
Hawas, U.W.; Al-Farawati, R. Chemical constituents and antiviral activity from marine endophytic fungi from red sea alga Padina pavonica. J. Chem. Soc. Pak., 2017, 39(3), 478-483.
[59]
Zhou, X.; Fang, W.; Tan, S.; Lin, X.; Xun, T.; Yang, B.; Liu, S.; Liu, Y. Aspernigrins with anti-HIV-1 activities from the marine-derived fungus Aspergillus niger SCSIO Jcsw6F30. Bioorg. Med. Chem. Lett., 2016, 26(2), 361-365.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.005] [PMID: 26711143]
[60]
Fang, W.; Lin, X.; Zhou, X.; Wan, J.; Lu, X.; Yang, B.; Ai, W.; Lin, J.; Zhang, T.; Tu, Z.; Liu, Y. Cytotoxic and antiviral nitrobenzoyl sesquiterpenoids from the marine-derived fungus Aspergillus ochraceus Jcma1F17. MedChemComm, 2014, 5(6), 701-705.
[http://dx.doi.org/10.1039C3MD00371J]
[61]
Hawas, U.W.; El-Halawany, A.M.; Ahmed, E.F. Hepatitis C virus NS3-NS4A protease inhibitors from the endophytic Penicillium chrysogenum isolated from the red alga Liagora viscida. Z. Natforsch. C J. Biosci., 2013, 68(9-10), 355-366.
[http://dx.doi.org/10.1515/znc-2013-9-1003] [PMID: 24459769]
[62]
Huang, L.H.; Xu, M.Y.; Li, H.J.; Li, J.Q.; Chen, Y.X.; Ma, W.Z.; Li, Y.P.; Xu, J.; Yang, D.P.; Lan, W.J. Amino acid-directed strategy for inducing the marine-derived fungus Scedosporiumapiospermum F41–1 to maximize alkaloid diversity. Org. Lett., 2017, 19(18), 4888-4891.
[http://dx.doi.org/10.1021/acs.orglett.7b02238] [PMID: 28837349]
[63]
Wu, D.L.; Li, H.J.; Smith, D.; Jaratsittisin, J.; Xia-Ke-Er, X.F.K.; Ma, W.Z.; Guo, Y.W.; Dong, J.; Shen, J.; Yang, D. P.; Lan, W.J. Polyketides and alkaloids from the marine-derived fungus Dichotomomycescejpii F31-1 and the antiviral activity of scequinadoline A against dengue virus.Mar. Drugs, 2018, 16(7), 229/1-229/10.
[64]
Jia, Y.L.; Guan, F.F.; Ma, J.; Wang, C.Y.; Shao, C.L. Pestalotiolide A, a new antiviral phthalide derivative from a soft coral-derived fungus Pestalotiopsis sp. Nat. Prod. Sci., 2015, 21(4), 227-230.
[http://dx.doi.org/10.20307/nps.2015.21.4227]
[65]
Jia, Y.L.; Wei, M.Y.; Chen, H.Y.; Guan, F.F.; Wang, C.Y.; Shao, C.L. Wei, M.Y.; Chen, H.Y.; Guan, F.F.; Wang, C.Y., Shao, C.L. (+) - and (−) -Pestaloxazine A, a pair of antiviral enantiomeric alkaloid dimers with a symmetric spiro [oxazinane-piperazinedione] skeleton from Pestalotiopsis sp. Org. Lett., 2015, 17(17), 4216-4219.
[http://dx.doi.org/10.1021/acs.orglett.5b01995] [PMID: 26291636]
[66]
Kang, H.H.; Zhang, H.B.; Zhong, M.J.; Ma, L.Y.; Liu, D.S.; Liu, W.Z.; Ren, H. Potential antiviral xanthones from a coastal saline soil fungus Aspergillus iizukae. Mar. Drugs, 2018, 16(11)E449
[http://dx.doi.org/10.3390/md16110449] [PMID: 30445748]
[67]
Jin, Y.; Qin, S.; Gao, H.; Zhu, G.; Wang, W.; Zhu, W.; Wang, Y. An anti-HBV anthraquinone from aciduric fungus Penicillium sp. OUCMDZ-4736 under low pH stress. Extremophiles, 2018, 22(1), 39-45.
[http://dx.doi.org/10.1007/s00792-017-0975-6] [PMID: 29103183]
[68]
Xu, W.F.; Hou, X.M.; Yang, K.L.; Cao, F.; Yang, R.Y.; Wang, C.Y.; Shao, C.L. Nigrodiquinone A, a hydroanthraquinone dimer containing a rare C-9-C-7' Linkage from a zoanthid-derived Nigrospora sp. Fungus. Mar. Drugs, 2016, 14(3), 51/1-51/8..
[http://dx.doi.org/10.3390/md14030051]
[69]
Lin, Y.; Wang, L.; Wang, Y.; Wang, W.; Hao, J.; Zhu, W. Bioactive natural products of Aspergillus sp. OUCMDZ-1914, an aciduric fungus from mangrove soils. Youji Huaxue, 2015, 35(9), 1955-1960.
[http://dx.doi.org/10.6023/cjoc201504007]
[70]
Zhu, T.; Chen, Z.; Liu, P.; Wang, Y.; Xin, Z.; Zhu, W. New rubrolides from the marine-derived fungus Aspergillus terreus OUCMDZ-1925. J. Antibiot. (Tokyo), 2014, 67(4), 315-318.
[http://dx.doi.org/10.1038/ja.2013.135] [PMID: 24326339]
[71]
Gao, H.; Guo, W.; Wang, Q.; Zhang, L.; Zhu, M.; Zhu, T.; Gu, Q.; Wang, W.; Li, D. Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg. Med. Chem. Lett., 2013, 23(6), 1776-1778.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.051] [PMID: 23411074]
[72]
Shen, S.; Li, W.; Wang, J. A novel and other bioactive secondary metabolites from a marine fungus Penicillium oxalicum 0312F1. Nat. Prod. Res., 2013, 27(24), 2286-2291.
[http://dx.doi.org/10.1080/14786419.2013.827190] [PMID: 23962399]
[73]
Fan, Y.; Wang, Y.; Liu, P.; Fu, P.; Zhu, T.; Wang, W.; Zhu, W. Indole-diterpenoids with anti-H1N1 activity from the aciduric fungus Penicillium camemberti OUCMDZ-1492. J. Nat. Prod., 2013, 76(7), 1328-1336.
[http://dx.doi.org/10.1021/np400304q] [PMID: 23886345]
[74]
Wang, J.; Wei, X.; Qin, X.; Tian, X.; Liao, L.; Li, K.; Zhou, X.; Yang, X.; Wang, F.; Zhang, T.; Tu, Z.; Chen, B.; Liu, Y. Antiviral merosesquiterpenoids produced by the antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J. Nat. Prod., 2016, 79(1), 59-65.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00650] [PMID: 26697718]
[75]
Wu, Z.J.; Ouyang, M.A.; Tan, Q.W. New asperxanthone and asperbiphenyl from the marine fungus Aspergillus sp. Pest Manag. Sci., 2009, 65(1), 60-65.
[http://dx.doi.org/10.1002/ps.1645] [PMID: 18823067]
[76]
Wu, Z.J.; Ouyang, M.A.; Su, R.K.; Guo, Y.X. Two new cerebrosides and anthraquinone derivatives from the marine fungus Aspergillus niger. Chin. J. Chem., 2008, 26(4), 759-764.
[http://dx.doi.org/10.1002/cjoc.200890142]
[77]
Tan, Q.W.; Ouyang, M.A.; Shen, S.; Li, W. Bioactive metabolites from a marine-derived strain of the fungus Neosartorya fischeri. Nat. Prod. Res., 2012, 26(15), 1402-1407.
[http://dx.doi.org/10.1080/14786419.2011.592834] [PMID: 21916772]
[78]
Shushni, M.A.; Singh, R.; Mentel, R.; Lindequist, U. Balticolid: a new 12-membered macrolide with antiviral activity from an as-comycetous fungus of marine origin. Mar. Drugs, 2011, 9(5), 844-851.
[http://dx.doi.org/10.3390/md9050844] [PMID: 21673893]
[79]
Shushni, M.A.; Mentel, R.; Lindequist, U.; Jansen, R. Balticols A-F, new naphthalenone derivatives with antiviral activity, from an ascomycetous fungus. Chem. Biodivers., 2009, 6(2), 127-137.
[http://dx.doi.org/10.1002/cbdv.200800150] [PMID: 19235155]
[80]
Zhou, H.; Li, L.; Wang, W.; Che, Q.; Li, D.; Gu, Q.; Zhu, T. Chrodrimanins I and J from the Antarctic moss-derived fungus Penicillium funiculosum GWT2-24. J. Nat. Prod., 2015, 78(6), 1442-1445.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00103] [PMID: 26046820]
[81]
de Bary, A. Morphologie und physiologie der pilze, flechten und myxomyceten: Engelmann., 1866.
[http://dx.doi.org/10.5962/bhl.title.120970]
[82]
Freeman, E. I The seed-fungus of Lolium temulentum, L., the darnel. Philos T R Soc B. Series B,, 1904, 196, 1-27.
[83]
Deshmukh, S.K.; Agrawala, S.; Prakash, V.; Reddy, M.S.; Gupta, M.K. Anti-infectives from mangrove endophytic fungi. S. Afr. J. Bot., 2020, 134, 237-263.
[http://dx.doi.org/10.1016/j.sajb.2020.01.006]
[84]
Huang, W.Y.; Cai, Y.Z.; Xing, J.; Corke, H.; Sun, M. A potential antioxidant resource: endophytic fungi from medicinal plants.Econ. Bot., 2007, 61, 14.
[http://dx.doi.org/10.1663/0013-0001(2007)61[14:APAREF]2.0.CO;2]
[85]
Mishra, P.D.; Verekar, S.A.; Kulkarni-Almeida, A.; Roy, S.K.; Jain, S.; Balakrishnan, A.; Vishwakarma, R.; Deshmukh, S.K. Anti-inflammatory and anti-diabetic naphthaquinones from an endophytic fungus Dendryphion nanum (Nees). S. Hughes. Indian J. Chem., 2013, 52B, 565-556.
[86]
Rajamanikyam, M.; Vadlapudi, V.; Upadhyayula, S.M. Endophytic fungi as novel resources of natural therapeutics. Braz. Arch. Biol. Technol., 2017, 60.
[http://dx.doi.org/10.1590/1678-4324-2017160542]
[87]
Deshmukh, S.K.; Gupta, M.K.; Prakash, V.; Reddy, M.S. Mangrove-associated fungi a novel source of potential anticancer compounds. J. Fungi (Basel), 2018, 4(3), 101.
[http://dx.doi.org/10.3390/jof4030101] [PMID: 30149584]
[88]
Liu, S.S.; Jiang, J.X.; Huang, R.; Wang, Y.T. Jiang, B.G.; Zheng, K.X.; Wu, S.H. A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma sp. Phytochem. Lett., 2019, 29, 75-78.
[http://dx.doi.org/10.1016/j.phytol.2018.11.005]
[89]
Hawas, U.W.; Abou El-Kassem, L.T. Anticancer and antiviral diketopiperazine produced by the red sea endophytic fungus Penicillium chrysogenum. Lett. Org. Chem., 2019, 16(5), 409-414.
[http://dx.doi.org/10.2174/1570178615666181009120422]
[90]
Selim, K.; Elkhateeb, W.; Tawila, A.; El-Beih, A.; Abdel-Rahman, T.; El-Diwany, A.; Ahmed, E. Antiviral and antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation, 2018, 4(3), 49.
[http://dx.doi.org/10.3390/fermentation4030049]
[91]
He, J.W.; Chen, G.D.; Gao, H.; Yang, F.; Li, X.X.; Peng, T.; Guo, L.D.; Yao, X.S. Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp. Fitoterapia, 2012, 83(6), 1087-1091.
[http://dx.doi.org/10.1016/j.fitote.2012.05.002] [PMID: 22613072]
[92]
Duan, Y.Q.; Dang, L.Z.; Jiang, J.X.; Zhang, Y.P.; Xiang, N.J.; Yang, H.M.; Du, G.; Yang, H.Y.; Li, Q.Q. Anti-Tobacco Mosaic Virus isocoumarins from the fermentation products of the endophytic fungus Aspergillus versicolor. Chem. Nat. Compd., 2018, 54(2), 249-252.
[http://dx.doi.org/10.1007/s10600-018-23151-1]
[93]
Peyrat, L.A.; Eparvier, V.; Eydoux, C.; Guillemot, J.C.; Litaudon, M.; Stien, D. Betulinic Acid, the first lupane‐type triterpenoid isolated from both a Phomopsis sp. and its host plant Diospyros carbonaria Benoist. Chem. Biodivers., 2017, 14(1)
[http://dx.doi.org/10.1002/cbdv.201600171] [PMID: 27568476]
[94]
Xie, J.; Wu, Y.Y.; Zhang, T.Y.; Zhang, M.Y.; Zhu, W.W.; Gullen, E.A.; Wang, Z.J.; Cheng, Y.C.; Zhang, Y.X. New and bioactive natural products from an endophyte of Panax notoginseng. RSC Advances, 2017, 7(60), 38100-38109.
[http://dx.doi.org/10.1039C7RA07060H]
[95]
Hu, Q.F.; Xing, H.H.; Wang, Y.D.; Yu, Z.H.; Yan, K.L.; Zhou, K.; Dong, W.; Zhou, M.; Yang, H.Y.; Zhu, D.L.; Du, G. Prenylated isocoumarins from the fermentation products of the endophytic fungus Aspergillus versicolor and their anti-tobacco mosaic virus activities. Chem. Nat. Compd., 2017, 53(3), 436-439.
[http://dx.doi.org/10.1007/s10600-017-20170-0]
[96]
Pang, X.; Zhao, J.Y.; Fang, X.M.; Zhang, T.; Zhang, D.W.; Liu, H.Y.; Su, J.; Cen, S.; Yu, L.Y. Metabolites from the plant endophytic fungus Aspergillus sp. CPCC 400735 and Their Anti-HIV Activities. J. Nat. Prod., 2017, 80(10), 2595-2601.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00878] [PMID: 29016131]
[97]
Liu, J.; Zhang, D.; Zhang, M.; Liu, X.; Chen, R.; Zhao, J.; Li, L.; Wang, N.; Dai, J. Periconiasins I and J, two new cytochalasans from an endophytic fungus Periconia sp. Tetrahedron Lett., 2016, 57(51), 5794-5797.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.038]
[98]
Zhou, M.; Du, G.; Yang, H.Y.; Xia, C.F.; Yang, J.X.; Ye, Y.Q.; Gao, X.M.; Li, X.N.; Hu, Q.F. Antiviral butyrolactones from the endophytic fungus Aspergillus versicolor. Planta Med., 2015, 81(3), 235-240.
[http://dx.doi.org/10.1055/s-0034-1396153] [PMID: 25590371]
[99]
Yuan, L.; Huang, W.; Zhou, K.; Wang, Y.; Dong, W.; Du, G.; Gao, X.; Ma, Y.; Hu, Q. Butyrolactones derivatives from the fermentation products of a plant entophytic fungus Penicillium oxalicum. Nat. Prod. Res., 2015, 29(20), 1914-1919.
[http://dx.doi.org/10.1080/14786419.2015.1013473] [PMID: 25702805]
[100]
Zhang, D.; Tao, X.; Chen, R.; Liu, J.; Li, L.; Fang, X.; Yu, L.; Dai, J. Pericoannosin A, a polyketide synthase–nonribosomal peptide synthetase hybrid metabolite with new carbon skeleton from the endophytic fungus Periconia sp. Org. Lett., 2015, 17(17), 4304-4307.
[http://dx.doi.org/10.1021/acs.orglett.5b02123] [PMID: 26308676]
[101]
Tan, Q.W.; Gao, F.L.; Wang, F.R.; Chen, Q.J. Anti-TMV activity of malformin A1, a cyclic penta-peptide produced by an endophytic fungus Aspergillus tubingensis FJBJ11. Int. J. Mol. Sci., 2015, 16(3), 5750-5761.
[http://dx.doi.org/10.3390/ijms16035750] [PMID: 25775156]
[102]
Ye, Y.Q.; Xia, C.F.; Yang, J.X.; Qin, Y.; Zhou, M.; Gao, X.M.; Du, G.; Yang, H.Y.; Li, X.M.; Hu, Q.F. Isocoumarins from the fermentation products of an endophytic fungus of Aspergillus versicolor. Phytochem. Lett., 2014, 10, 215-218.
[http://dx.doi.org/10.1016/j.phytol.2014.09.016]
[103]
Uzor, P.F.; Odimegwu, D.C.; Ebrahim, W.; Osadebe, P.O.; Nwodo, N.J.; Okoye, F.B.C.; Liu, Z.; Proksch, P. Anti-respiratory syncytial virus compounds from two endophytic fungi isolated from Nigerian medicinal plants. Drug Res. (Stuttg.), 2016, 66(10), 527-531.
[http://dx.doi.org/10.1055/s-0042-111008] [PMID: 27463031]
[104]
Zhou, M.; Lou, J.; Li, Y.K.; Wang, Y.D.; Zhou, K.; Ji, B.K.; Dong, W.; Gao, X.M.; Du, G.; Hu, Q.F. Butyrolactones from the endophytic fungus Aspergillus versicolor and their anti-tobacco mosaic virus activity. J. Braz. Chem. Soc., 2015, 26(3), 545-549.
[105]
Zhang, S.P.; Huang, R.; Li, F.F.; Wei, H.X.; Fang, X.W.; Xie, X.S.; Lin, D.G.; Wu, S.H.; He, J. Antiviral anthraquinones and azaphilones produced by an endophytic fungus Nigrospora sp. from Aconitum carmichaeli. Fitoterapia, 2016, 112, 85-89.
[http://dx.doi.org/10.1016/j.fitote.2016.05.013-2] [PMID: 27233986]
[106]
Dong, W.; Liu, C.; Shen, Q.; Zhang, T.; Wang, Y.; Zhou, K.; Ji, B.; Yang, H.; Du, G.; Hu, Q.; Zhou, M. Dihydroxanthenones from the fermentation product of the endophytic fungus Gliomastixmurorum. Chem. Nat. Compd., 2016, 52(4), 620-623.
[http://dx.doi.org/10.1007/s10600-016-17242]
[107]
Zhou, M.; Zhou, K.; He, P.; Wang, K.M.; Zhu, R.Z.; Wang, Y.D.; Dong, W.; Li, G.P.; Yang, H.Y.; Ye, Y.Q.; Du, G.; Li, X.M.; Hu, Q.F. Antiviral and cytotoxic isocoumarin derivatives from an endophytic fungus Aspergillus oryzae. Planta Med., 2016, 82(5), 414-417.
[http://dx.doi.org/10.1055/s-0035-1558331] [PMID: 26824624]
[108]
Zhou, K.; Wang, Y.; Dong, W.; Ji, B.K.; Ye, Y.; Du, G.; Li, Y.; Gao, X.; Hu, Q.; Yang, H. A new phenyl derivated butyrolactone from fermentation products of endophytic fungus Aspergillus terreus. Asian J. Chem., 2015, 27(10), 3532-3534.
[http://dx.doi.org/10.14233/ajchem.201518642]
[109]
Li, Y.; Zhou, K.; Wang, Y.; Dong, W.; Ji, B.K.; Du, G.; Yang, H.; Hu, Q.; Ye, Y. A new butyrolactone from the fermentation products of endophytic fungus Aspergillus versicolor. Asian J. Chem., 2015, 27(10), 3529-3531.
[http://dx.doi.org/10.14233/ajchem.201518637]
[110]
Li, Q.Q.; Dang, L.Z.; Zhang, Y.P.; Jiang, J.X.; Zhang, C.M.; Xiang, N.J.; Yang, H.Y.; Du, G.; Duan, Y.Q. Isocoumarins from the fermentation products of a plant entophytic fungus Penicillium oxalicum. J. Asian Nat. Prod. Res., 2015, 17(9), 876-881.
[http://dx.doi.org/10.1080/10286020.2015.1039997] [PMID: 26411648]
[111]
Sacramento, C.Q.; Marttorelli, A.; Fintelman-Rodrigues, N.; de Freitas, C.S.; de Melo, G.R.; Rocha, M.E.N.; Kaiser, C.R.; Rodrigues, K.F.; da Costa, G.L.; Alves, C.M.; Santos-Filho, O.; Barbosa, J.P.; Souza, T.M. Aureonitol, a fungi-derived tetrahydrofuran, inhibits influenza replication by targeting its surface glycoprotein hemagglutinin. PLoS One, 2015, 10(10)e0139236
[http://dx.doi.org/10.1371/journal.pone.0139236] [PMID: 26462111]
[112]
Ye, Y.Q.; Xia, C.F.; Yang, J.X.; Yang, Y.C.; Qin, Y.; Gao, X.M.; Du, G.; Li, X.M.; Hu, Q.F. Butyrolactones derivatives from the fermentation products of an endophytic fungus Aspergillus versicolor. Bull. Korean Chem. Soc., 2014, 35(10), 3059-3062.
[http://dx.doi.org/10.5012/bkcs.2014.35.103059]
[113]
Bashyal, B.P.; Wellensiek, B.P.; Ramakrishnan, R.; Faeth, S.H.; Ahmad, N.; Gunatilaka, A.A. Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi. Bioorg. Med. Chem., 2014, 22(21), 6112-6116.
[http://dx.doi.org/10.1016/j.bmc.2014.08.039] [PMID: 25260957]
[114]
Liu, L.; Gao, H.; Chen, X.; Cai, X.; Yang, L.; Guo, L.; Yao, X.; Che, Y. Brasilamides A–D: sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. Eur. J. Org. Chem., 2010, 2010(17), 3302-3306.
[http://dx.doi.org/10.1002/ejoc.201000284]
[115]
Liu, L.; Niu, S.; Lu, X.; Chen, X.; Zhang, H.; Guo, L.; Che, Y. Unique metabolites of Pestalotiopsis fici suggest a biosynthetic hypothesis involving a Diels-Alder reaction and then mechanistic diversification. Chem. Commun. (Camb.), 2010, 46(3), 460-462.
[http://dx.doi.org/10.1039/B918330B] [PMID: 20066325]
[116]
Yu, B.Z.; Zhang, G.H.; Du, Z.Z.; Zheng, Y.T.; Xu, J.C.; Luo, X.D. Phomoeuphorbins A-D, azaphilones from the fungus Phomopsis euphorbiae. Phytochemistry, 2008, 69(13), 2523-2526.
[http://dx.doi.org/10.1016/j.phytochem.2008.07.013] [PMID: 18799173]
[117]
Liu, L.; Tian, R.; Liu, S.; Chen, X.; Guo, L.; Che, Y. Pestaloficiols A-E, bioactive cyclopropane derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg. Med. Chem., 2008, 16(11), 6021-6026.
[http://dx.doi.org/10.1016/j.bmc.2008.04.052] [PMID: 18468908]
[118]
Ding, G.; Jiang, L.; Guo, L.; Chen, X.; Zhang, H.; Che, Y. Pestalazines and pestalamides, bioactive metabolites from the plant pathogenic fungus Pestalotiopsis theae. J. Nat. Prod., 2008, 71(11), 1861-1865.
[http://dx.doi.org/10.1021/np800357g] [PMID: 18855443]
[119]
Bunyapaiboonsri, T.; Yoiprommarat, S.; Khonsanit, A.; Komwijit, S. Phenolic glycosides from the filamentous fungus Acremonium sp. BCC 14080. J. Nat. Prod., 2008, 71(5), 891-894.
[http://dx.doi.org/10.1021/np070689m] [PMID: 18363379]
[120]
Zhao, J.; Liu, J.; Shen, Y.; Tan, Z.; Zhang, M.; Chen, R.; Zhao, J.; Zhang, D.; Yu, L.; Dai, J. Stachybotrysams A–E, prenylated isoindolinone derivatives with anti-HIV activity from the fungus Stachybotrys chartarum. Phytochem. Lett., 2017, 20, 289-294.
[http://dx.doi.org/10.1016/j.phytol.2017.04.03]
[121]
Zhao, J.; Feng, J.; Tan, Z.; Liu, J.; Zhao, J.; Chen, R.; Xie, K.; Zhang, D.; Li, Y.; Yu, L.; Chen, X.; Stachybotrysins, A-G. phenylspirodrimane derivatives from the fungus Stachybotryschartarum. J. Nat. Prod., 2017, 80(6), 1819-1826.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00014] [PMID: 28530828]
[122]
Narmani, A.; Teponno, R.B.; Arzanlou, M.; Surup, F.; Helaly, S.E.; Wittstein, K.; Praditya, D.F.; Babai-Ahari, A.; Steinmann, E.; Stadler, M. Cytotoxic, antimicrobial and antiviral secondary metabolites produced by the plant pathogenic fungus Cytospora sp. CCTU A309. Fitoterapia, 2019, 134, 314-322.
[http://dx.doi.org/10.1016/j.fitote.2019.02.015] [PMID: 30807789]
[123]
Raekiansyah, M.; Mori, M.; Nonaka, K.; Agoh, M.; Shiomi, K.; Matsumoto, A.; Morita, K. Identification of novel antiviral of fungus-derived brefeldin A against dengue viruses. Trop. Med. Health, 2017, 45(1), 32.
[http://dx.doi.org/10.1186/s41182-017-0072-7] [PMID: 29093640]
[124]
Matsunaga, H.; Kamisuki, S.; Kaneko, M.; Yamaguchi, Y.; Takeuchi, T.; Watashi, K.; Sugawara, F. Isolation and structure of vanitaracin A, a novel anti-hepatitis B virus compound from Talaromyces sp. Bioorg. Med. Chem. Lett., 2015, 25(19), 4325-4328.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.067] [PMID: 26271586]
[125]
Kaneko, M.; Watashi, K.; Kamisuki, S.; Matsunaga, H.; Iwamoto, M.; Kawai, F.; Ohashi, H.; Tsukuda, S.; Shimura, S.; Suzuki, R.; Aizaki, H.; Sugiyama, M.; Park, S.Y.; Ito, T.; Ohtani, N.; Sugawara, F.; Tanaka, Y.; Mizokami, M.; Sureau, C.; Wakita, T. A novel tricyclic polyketide, vanitaracin A, specifically inhibits the entry of hepatitis B and D viruses by targeting sodium taurocholate cotransporting polypeptide. J. Virol., 2015, 89(23), 11945-11953.
[http://dx.doi.org/10.1128/JVI.01855-15] [PMID: 26378168]
[126]
Nakajima, S.; Watashi, K.; Kamisuki, S.; Tsukuda, S.; Takemoto, K.; Matsuda, M.; Suzuki, R.; Aizaki, H.; Sugawara, F.; Wakita, T. Specific inhibition of hepatitis C virus entry into host hepatocytes by fungi-derived sulochrin and its derivatives. Biochem. Biophys. Res. Commun., 2013, 440(4), 515-520.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.100] [PMID: 24099774]
[127]
Wang, J.; Guo, X.; Yang, Z.; Tan, R.X.; Chen, X.; Li, E. Fungal metabolite myriocin promotes human herpes simplex virus-2 infection. Life Sci., 2015, 120, 31-38.
[http://dx.doi.org/10.1016/j.lfs.2014.11.004] [PMID: 25447452]
[128]
Wang, H.; Wang, Y.; Wang, W.; Fu, P.; Liu, P.; Zhu, W. Anti-influenza virus polyketides from the acid-tolerant fungus Penicillium purpurogenum JS03-21. J. Nat. Prod., 2011, 74(9), 2014-2018.
[http://dx.doi.org/10.1021/np2004769] [PMID: 21879714]
[129]
Kornsakulkarn, J.; Thongpanchang, C.; Lapanun, S.; Srichomthong, K. Isocoumarin glucosides from the scale insect fungus Torrubiella tenuis BCC 12732. J. Nat. Prod., 2009, 72(7), 1341-1343.
[http://dx.doi.org/10.1021/np900082h] [PMID: 19456117]
[130]
Fang, L.Z.; Liu, J.K. First synthesis of racemic concentricolide, an anti-HIV-1 agent isolated from the fungus Daldiniaconcentrica. Heterocycles, 2009, 78(8), 2107-2113.
[http://dx.doi.org/10.3987/COM-0911704]
[131]
Zhang, Y.; Tian, R.; Liu, S.; Chen, X.; Liu, X.; Che, Y. Alachalasins A–G, new cytochalasins from the fungus Stachybotrys charatum. Bioorg. Med. Chem., 2008, 16(5), 2627-2634.
[http://dx.doi.org/10.1016/j.bmc.2007.11.042] [PMID: 18365343]
[132]
Rathee, S.; Rathee, D.; Rathee, D.; Kumar, V.; Rathee, P. Mushrooms as therapeutic agents. Rev. Bras. Farmacogn., 2012, 22, 459-474.
[http://dx.doi.org/10.1590/S0102695X2011005000195]
[133]
Egli, S. Mycorrhizal mushroom diversity and productivity—an indicator of forest health? Ann. For. Sci., 2011, 68, 81-88.
[http://dx.doi.org/10.1007/s13595-010-00093-3]
[134]
Sandargo, B.; Chepkirui, C.; Cheng, T.; Chaverra-Muñoz, L.; Thongbai, B.; Stadler, M.; Hüttel, S. Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol. Adv., 2019, 37(6)107344
[http://dx.doi.org/10.1016/j.biotechadv.2019.01.011] [PMID: 30738916]
[135]
Miles, P.G.; Chang, S.T. Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact; CRC press, 2004.
[http://dx.doi.org/10.1201/9780203492086]
[136]
Sánchez, C. Bioactives from mushroom and their application.Food bioactives; Springer: Cham, 2017, pp. 23-57.
[http://dx.doi.org/10.1007/978-3-319-516394_2]
[137]
Xu, T.; Beelman, R.B. The bioactive com-pounds in medicinal mushrooms have potential protective effects against neu-rodegenerative diseases. Adv Food Technol Nutr Sci Open J, 2015, 1(2), 62-66.
[http://dx.doi.org/10.17140/AFTNSOJ-1-110]
[138]
Sandargo, B.; Michehl, M.; Praditya, D.; Steinmann, E.; Stadler, M.; Surup, F. Antiviral Meroterpenoid Rhodatin and Sesquiterpenoids Rhodocoranes A-E from the Wrinkled Peach Mushroom, Rhodotus palmatus. Org. Lett., 2019, 21(9), 3286-3289. [b
[http://dx.doi.org/10.1021/acs.orglett.9b01017] [PMID: 31008606]
[139]
Sandargo, B.; Thongbai, B.; Praditya, D.; Steinmann, E.; Stadler, M.; Surup, F. Antiviral 4-hydroxypleurogrisein and antimicrobial pleurotin derivatives from cultures of the nematophagous basidiomycete Hohenbuehelia grisea. Molecules, 2018, 23(10), 2697.
[http://dx.doi.org/10.3390/molecules23102697] [PMID: 30347707]
[140]
Isaka, M.; Chinthanom, P.; Srichomthong, K.; Thummarukcharoen, T. Lanostane triterpenoids from fruiting bodies of the bracket fungus Fomitopsisfeei. Tetrahedron Lett., 2017, 58(18), 1758-1761.
[http://dx.doi.org/10.1016/j.tetlet.2017.03.066]
[141]
Zhu, Q.; Bang, T.H.; Ohnuki, K.; Sawai, T.; Sawai, K.; Shimizu, K. Inhibition of neuraminidase by Ganoderma triterpenoids and implications for neuraminidase inhibitor design. Sci. Rep., 2015, 5, 13194.
[http://dx.doi.org/10.1038/srep13194] [PMID: 26307417]
[142]
Asakawa, Y.; Nagashima, F.; Hashimoto, T.; Toyota, M.; Ludwiczuk, A.; Komala, I.; Ito, T.; Yagi, Y. Pungent and bitter, cytotoxic and antiviral terpenoids from some bryophytes and inedible fungi. Nat. Prod. Commun., 2014, 9(3), 409-417.
[http://dx.doi.org/10.1177/1934578X1400900331] [PMID: 24689227]
[143]
Yeom, J.H.; Lee, I.K.; Ki, D.W.; Lee, M.S.; Seok, S.J.; Yun, B.S. Neuraminidase inhibitors from the culture broth of Phellinus linteus. Mycobiology, 2012, 40(2), 142-144.
[http://dx.doi.org/10.5941/MYCO.2012.40.2.142] [PMID: 22870059]
[144]
Kim, J.Y.; Kim, D.W.; Hwang, B.S.; Woo, E.E.; Lee, Y.J.; Jeong, K.W.; Lee, I.K.; Yun, B.S. Neuraminidase inhibitors from the fruiting body of Phellinus igniarius. Mycobiology, 2016, 44(2), 117-120.
[http://dx.doi.org/10.5941/MYCO.2016.44.2.117] [PMID: 27433123]
[145]
Awadh Ali, N.A.; Mothana, R.A.A.; Lesnau, A.; Pilgrim, H.; Lindequist, U. Antiviral activity of Inonotus hispidus. Fitoterapia, 2003, 74(5), 483-485.
[http://dx.doi.org/10.1016/S0367-326X(03)00119-9] [PMID: 12837367]
[146]
Deshmukh, S.K.; Prakash, V.; Gupta, M. The genus Phellinus: a rich source of diverse bioactive metabolites.Advances in Macrofungi: Diversity, Ecology and Biotechnology; Sridhar, K.R; Deshmukh, S.K., Ed.; CRC Press: USA, 2019, pp. 280-307.
[147]
Chatterjee, R.; Srinivasan, K.S.; Maiti, P.C. Cordyceps sinensis (Berkeley) Saccardo: structure of cordycepic acid. J. Am. Pharm. Assoc., 1957, 746(2), 114-118.
[http://dx.doi.org/10.1002/jps.3030460211]
[148]
Ryu, E.; Son, M.; Lee, M.; Lee, K.; Cho, J.Y.; Cho, S.; Lee, S.K.; Lee, Y.M.; Cho, H.; Sung, G.H.; Kang, H. Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience, 2014, 1(12), 866-881.
[http://dx.doi.org/10.18632/oncoscience.110] [PMID: 25621301]
[149]
van Wezel, G.P.; McDowall, K.J. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat. Prod. Rep., 2011, 28(7), 1311-1333.
[http://dx.doi.org/10.1039/c1np00003a] [PMID: 21611665]
[150]
Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol., 2013, 11(1), 21-32.
[http://dx.doi.org/10.1038/nrmicro2916] [PMID: 23178386]
[151]
Buijs, Y.; Isbrandt, T.; Zhang, S.D.; Larsen, T.O.; Gram, L. The antibiotic andrimid produced by Vibrio coralliilyticus increases expression of biosynthetic gene clusters and antibiotic production in Photobacterium galatheae. Front. Microbiol., 2020.11622055
[http://dx.doi.org/10.3389/fmicb.2020.622055] [PMID: 33424823]
[152]
Metzker, M.L. Sequencing technologies - the next generation. Nat. Rev. Genet., 2010, 11(1), 31-46.
[http://dx.doi.org/10.1038/nrg2626] [PMID: 19997069]
[153]
Rutledge, P.J.; Challis, G.L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol., 2015, 13(8), 509-523.
[http://dx.doi.org/10.1038/nrmicro3496] [PMID: 26119570]
[154]
Medema, M.H.; Blin, K.; Cimermancic, P.; de Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res., 2011, 39(suppl_2), W339-W346.
[155]
Scherlach, K.; Hertweck, C. Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining. Org. Biomol. Chem., 2006, 4(18), 3517-3520.
[http://dx.doi.org/10.1039/B607011F] [PMID: 17036148]
[156]
Scherlach, K.; Schuemann, J.; Dahse, H.M.; Hertweck, C. Aspernidine A and B, prenylated isoindolinone alkaloids from the model fungus Aspergillus nidulans. J. Antibiot. (Tokyo), 2010, 63(7), 375-377.
[http://dx.doi.org/10.1038/ja.2010.46] [PMID: 20661238]
[157]
Gomez-Escribano, J.P.; Song, L.; Fox, D.J.; Yeo, V.; Bibb, M.J.; Challis, G.L. Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem. Sci. (Camb.), 2012, 3(9), 2716-2720.
[http://dx.doi.org/10.1039/c2sc20410]
[158]
Williams, R.B.; Henrikson, J.C.; Hoover, A.R.; Lee, A.E.; Cichewicz, R.H. Epigenetic remodeling of the fungal secondary metabolome. Org. Biomol. Chem., 2008, 6(11), 1895-1897.
[http://dx.doi.org/10.1039/b804701d] [PMID: 18480899]
[159]
Henrikson, J.C.; Hoover, A.R.; Joyner, P.M.; Cichewicz, R.H. A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org. Biomol. Chem., 2009, 7(3), 435-438.
[http://dx.doi.org/10.1039/B819208A] [PMID: 19156306]
[160]
Bergmann, S.; Schümann, J.; Scherlach, K.; Lange, C.; Brakhage, A.A.; Hertweck, C. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat. Chem. Biol., 2007, 3(4), 213-217.
[http://dx.doi.org/10.1038/nchembio869] [PMID: 17369821]
[161]
Chiang, Y.M.; Szewczyk, E.; Davidson, A.D.; Keller, N.; Oakley, B.R.; Wang, C.C. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J. Am. Chem. Soc., 2009, 131(8), 2965-2970.
[http://dx.doi.org/10.1021/ja8088185] [PMID: 19199437]
[162]
Biggins, J.B.; Liu, X.; Feng, Z.; Brady, S.F. Metabolites from the induced expression of cryptic single operons found in the genome of Burkholderia pseudomallei. J. Am. Chem. Soc., 2011, 133(6), 1638-1641.
[http://dx.doi.org/10.1021/ja1087369] [PMID: 21247113]
[163]
Chou, W.K.; Fanizza, I.; Uchiyama, T.; Komatsu, M.; Ikeda, H.; Cane, D.E. Genome mining in Streptomyces avermitilis: cloning and characterization of SAV_76, the synthase for a new sesquiterpene, avermitilol. J. Am. Chem. Soc., 2010, 132(26), 8850-8851.
[http://dx.doi.org/10.1021/ja103087w] [PMID: 20536237]
[164]
Shwab, E.K.; Bok, J.W.; Tribus, M.; Galehr, J.; Graessle, S.; Keller, N.P. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot. Cell, 2007, 6(9), 1656-1664.
[http://dx.doi.org/10.1128/EC.00186-07] [PMID: 17616629]
[165]
Mao, X.M.; Xu, W.; Li, D.; Yin, W.B.; Chooi, Y.H.; Li, Y.Q.; Tang, Y.; Hu, Y. Epigenetic genome mining of an endophytic fungus leads to the pleiotropic biosynthesis of natural products. Angew. Chem. Int. Ed. Engl., 2015, 54(26), 7592-7596.
[http://dx.doi.org/10.1002/anie.201502452] [PMID: 26013262]
[166]
Pettit, R.K. Mixed fermentation for natural product drug discovery. Appl. Microbiol. Biotechnol., 2009, 83(1), 19-25.
[http://dx.doi.org/10.1007/s00253-009-1916-9] [PMID: 19305992]
[167]
Adnani, N.; Vazquez-Rivera, E.; Adibhatla, S.N.; Ellis, G.A.; Braun, D.R.; Bugni, T.S. Investigation of interspecies interactions within marine Micromonosporaceae using an improved co-culture approach. Mar. Drugs, 2015, 13(10), 6082-6098.
[http://dx.doi.org/10.3390/md13106082] [PMID: 26404321]
[168]
Marmann, A.; Aly, A.H.; Lin, W.; Wang, B.; Proksch, P. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar. Drugs, 2014, 12(2), 1043-1065.
[http://dx.doi.org/10.3390/md12021043] [PMID: 24549204]
[169]
Netzker, T.; Fischer, J.; Weber, J.; Mattern, D.J.; König, C.C.; Valiante, V.; Schroeckh, V.; Brakhage, A.A. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front. Microbiol., 2015, 6, 299.
[http://dx.doi.org/10.3389/fmicb.2015.00299] [PMID: 25941517]
[170]
Scherlach, K.; Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem., 2009, 7(9), 1753-1760.
[http://dx.doi.org/10.1039/b821578b] [PMID: 19590766]
[171]
Schroeckh, V.; Nützmann, H.W.; Brakhage, A.A. Fungal-actinomycete interactions - wakening of silent fungal secondary metabolism gene clusters via interorganismic interactions. Natural Products: Discourse. Diversity, and Design,, 2014, 147-158.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy