Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Research Article

Relationship between Gentamicin Administration and Ductal Patency in Very Low Birth Weight Infants

Author(s): Ufuk Cakir* and Cuneyt Tayman

Volume 17, Issue 2, 2022

Published on: 03 June, 2021

Page: [149 - 155] Pages: 7

DOI: 10.2174/1574884716666210603110412

Price: $65

Abstract

Background: Patent Ductus Arteriosus (PDA) is associated with adverse clinical outcomes in very low birth weight (<1500g) infants.

Objective: In our study, it was aimed to investigate the effect of gentamicin treatment, which is frequently used for early-onset sepsis on ductal patency.

Methods: We performed a single-center retrospective review of charts of preterm infants <32 weeks gestation with birth weight <1500 grams born between June 1, 2015 and December 31, 2019 at the neonatal intensive care unit. All infants underwent an echocardiogram (ECHO) at 72 hours. To determine the effect of gentamicin treatment on hemodynamically significant PDA (hsPDA), we compared the frequency and duration of gentamicin administration between infants with hsPDA and without hsPDA.

Results: During the study period, 792 patients were evaluated. Gentamicin was given to more infants with hsPDA than to those without hsPDA (89.2% vs. 64.6%, p<0.001), and the duration of therapy was longer in those infants with hsPDA (7 days vs. 9 days, p<0.001). The area under the curve for duration of gentamicin was 0.772 (%95 CI: 0.742-0.804, P=0.0001), sensitivity: 59 (%95 CI: 53-65), specificity: 82 (%95 CI: 78-88), with a cut-off day for duration of gentamicin >7 days.

Conclusion: In our study, it was found that ductal contraction decreased and hsPDA rate increased as the rate and duration of gentamicin increased.

Keywords: Gentamicin, hemodynamically significant patent ductus arteriosus, premature, very low birth weight, neonatal intensive care unit, ductus arteriosus.

Graphical Abstract
[1]
Deshpande P, Baczynski M, McNamara PJ, Jain A. Patent ductus arteriosus: The physiology of transition. Semin Fetal Neonatal Med 2018; 23(4): 225-31.
[http://dx.doi.org/10.1016/j.siny.2018.05.001] [PMID: 29779927]
[2]
Benitz WE. Patent ductus arteriosus in preterm infants. Pediatrics 2016; 137(1): 1.
[http://dx.doi.org/10.1542/peds.2015-3730] [PMID: 26672023]
[3]
Pavageau L, Brion LP, Rosenfeld CR, et al. Decrease in the frequency of treatment for patent ductus arteriosus after implementation of consensus guidelines: A 15-year experience. J Perinatol 2019; 39(11): 1569-76.
[http://dx.doi.org/10.1038/s41372-019-0432-8] [PMID: 31337852]
[4]
Marconi E, Bettiol A, Ambrosio G, et al. Efficacy and safety of pharmacological treatments for patent ductus arteriosus closure: A systematic review and network meta-analysis of clinical trials and observational studies. Pharmacol Res 2019; 148: 104418.
[http://dx.doi.org/10.1016/j.phrs.2019.104418] [PMID: 31479749]
[5]
Koch J, Hensley G, Roy L, Brown S, Ramaciotti C, Rosenfeld CR. Prevalence of spontaneous closure of the ductus arteriosus in neonates at a birth weight of 1000 grams or less. Pediatrics 2006; 117(4): 1113-21.
[http://dx.doi.org/10.1542/peds.2005-1528] [PMID: 16585305]
[6]
Nemerofsky SL, Parravicini E, Bateman D, Kleinman C, Polin RA, Lorenz JM. The ductus arteriosus rarely requires treatment in infants > 1000 grams. Am J Perinatol 2008; 25(10): 661-6.
[http://dx.doi.org/10.1055/s-0028-1090594] [PMID: 18850514]
[7]
Clyman RI, Liebowitz M, Kaempf J, et al. PDA-TOLERATE Trial: An exploratory randomized controlled trial of treatment of moderate-to-large patent ductus arteriosus at 1 week of age. J Pediatr 2019; 205: 41-48.e6.
[http://dx.doi.org/10.1016/j.jpeds.2018.09.012] [PMID: 30340932]
[8]
Hundscheid T, van den Broek M, van der Lee R, de Boode WP. Understanding the pathobiology in patent ductus arteriosus in prematurity-beyond prostaglandins and oxygen. Pediatr Res 2019; 86(1): 28-38.
[http://dx.doi.org/10.1038/s41390-019-0387-7] [PMID: 30965358]
[9]
Cakir U, Tayman C. A Mystery of patent ductus arteriosus and serum osmolality in preterm infants. Am J Perinatol 2019; 36(6): 641-6.
[http://dx.doi.org/10.1055/s-0038-1673397] [PMID: 30292174]
[10]
Cakir U, Tayman C, Buyuktiryaki M, Unsal H, Ozer Bekmez B. Do calcium and potassium levels influence ductal patency in preterm infants? Am J Perinatol 2020; 37(11): 1123-9.
[http://dx.doi.org/10.1055/s-0039-1692389] [PMID: 31167236]
[11]
Kahvecioglu D, Erdeve O, Akduman H, et al. Influence of platelet count, platelet mass index, and platelet function on the spontaneous closure of ductus arteriosus in the prematurity. Pediatr Neonatol 2018; 59(1): 53-7.
[http://dx.doi.org/10.1016/j.pedneo.2017.01.006] [PMID: 28739214]
[12]
Özer Bekmez B, Tayman C, Büyüktiryaki M, Çetinkaya AK, Çakır U, Derme T. A promising, novel index in the diagnosis and follow-up of patent ductus arteriosus: Red cell distribution width-to-platelet ratio. J Clin Lab Anal 2018; 32(9): e22616.
[http://dx.doi.org/10.1002/jcla.22616] [PMID: 29978492]
[13]
Vucovich MM, Cotton RB, Shelton EL, et al. Aminoglycoside-mediated relaxation of the ductus arteriosus in sepsis-associated PDA. Am J Physiol Heart Circ Physiol 2014; 307(5): H732-40.
[http://dx.doi.org/10.1152/ajpheart.00838.2013] [PMID: 24993047]
[14]
Fuchs A, Zimmermann L, Bickle Graz M, et al. Gentamicin exposure and sensorineural hearing loss in preterm infants. PLoS One 2016; 11(7): e0158806.
[http://dx.doi.org/10.1371/journal.pone.0158806] [PMID: 27390846]
[15]
Constance JE, Reith D, Ward RM, et al. Risk of nonsteroidal anti-inflammatory drug-associated renal dysfunction among neonates diagnosed with patent ductus arteriosus and treated with gentamicin. J Perinatol 2017; 37(10): 1093-102.
[http://dx.doi.org/10.1038/jp.2017.80] [PMID: 28594394]
[16]
Gagliardi L. Possible indomethacin-aminoglycoside interaction in preterm infants. J Pediatr 1985; 107(6): 991-2.
[http://dx.doi.org/10.1016/S0022-3476(85)80220-1] [PMID: 4067765]
[17]
Gergawy M, Vollrath B, Cook D. The mechanism by which aminoglycoside antibiotics cause vasodilation of canine cerebral arteries. Br J Pharmacol 1998; 125(6): 1150-7.
[http://dx.doi.org/10.1038/sj.bjp.0702180] [PMID: 9863641]
[18]
Richter J, Zhou J, Pavlovic D, et al. Vancomycin and to lesser extent tobramycin have vasomodulatory effects in experimental endotoxemia in the rat. Clin Hemorheol Microcirc 2010; 46(1): 37-49.
[http://dx.doi.org/10.3233/CH-2010-1331] [PMID: 20852361]
[19]
Wickman G, Nessim MA, Cook DA, Vollrath B. The polycationic aminoglycosides modulate the vasoconstrictive effects of endothelin: Relevance to cerebral vasospasm. Br J Pharmacol 2001; 133(1): 5-12.
[http://dx.doi.org/10.1038/sj.bjp.0704025] [PMID: 11325788]
[20]
Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. Early-onset neonatal sepsis. Clin Microbiol Rev 2014; 27(1): 21-47.
[http://dx.doi.org/10.1128/CMR.00031-13] [PMID: 24396135]
[21]
Dargaville PA, Gerber A, Johansson S, et al. Incidence and outcome of CPAP failure in preterm infants. Pediatrics 2016; 138(1): e20153985.
[http://dx.doi.org/10.1542/peds.2015-3985] [PMID: 27365307]
[22]
Allan WC, Volpe JJ. Periventricular-intraventricular hemorrhage. Pediatr Clin North Am 1986; 33(1): 47-63.
[http://dx.doi.org/10.1016/S0031-3955(16)34969-0] [PMID: 3513102]
[23]
Bell MJ, Ternberg JL, Feigin RD, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg 1978; 187(1): 1-7.
[http://dx.doi.org/10.1097/00000658-197801000-00001] [PMID: 413500]
[24]
Walsh MC, Wilson-Costello D, Zadell A, Newman N, Fanaroff A. Safety, reliability, and validity of a physiologic definition of bronchopulmonary dysplasia. J Perinatol 2003; 23(6): 451-6.
[http://dx.doi.org/10.1038/sj.jp.7210963] [PMID: 13679930]
[25]
The international classification of retinopathy of prematurity revisited. Arch Ophthalmol 2005; 123(7): 991-9.
[http://dx.doi.org/10.1001/archopht.123.7.991] [PMID: 16009843]
[26]
Sung SI. Controversy in the diagnosis and treatment of hemodynamically significant patent ductus arteriosus in preterm infants. Korean J Pediatr 2019; 62(11): 410-1.
[http://dx.doi.org/10.3345/kjp.2019.00570] [PMID: 31319651]
[27]
Descotes J, Evreux JC. Cardiac depressant effects of some recent aminoglycoside antibiotics. J Antimicrob Chemother 1981; 7(2): 197-200.
[http://dx.doi.org/10.1093/jac/7.2.197] [PMID: 7216939]
[28]
Gotanda K, Yanagisawa T, Satoh K, Taira N. Are the cardiovascular effects of gentamicin similar to those of calcium antagonists? Jpn J Pharmacol 1988; 47(3): 217-27.
[http://dx.doi.org/10.1016/S0021-5198(19)43205-8] [PMID: 3221528]
[29]
Humes HD, Sastrasinh M, Weinberg JM. Calcium is a competitive inhibitor of gentamicin-renal membrane binding interactions and dietary calcium supplementation protects against gentamicin nephrotoxicity. J Clin Invest 1984; 73(1): 134-47.
[http://dx.doi.org/10.1172/JCI111184] [PMID: 6690474]
[30]
Belus A, White E. Effects of antibiotics on the contractility and Ca2+ transients of rat cardiac myocytes. Eur J Pharmacol 2001; 412(2): 121-6.
[http://dx.doi.org/10.1016/S0014-2999(01)00717-8] [PMID: 11165223]
[31]
Jensen-Smith HC, Hallworth R, Nichols MG. Gentamicin rapidly inhibits mitochondrial metabolism in high-frequency cochlear outer hair cells. PLoS One 2012; 7(6): e38471.
[http://dx.doi.org/10.1371/journal.pone.0038471] [PMID: 22715386]
[32]
de Rosayro M, Healy TE. Tobramycin and neuromuscular transmission in the rat isolated phrenic nerve-diaphragm preparation. Br J Anaesth 1978; 50(3): 251-4.
[http://dx.doi.org/10.1093/bja/50.3.251] [PMID: 205231]
[33]
Paradelis AG, Triantaphyllidis CJ, Mironidou M, Crassaris LG, Karachalios DN, Giala MM. Interaction of aminoglycoside antibiotics and calcium channel blockers at the neuromuscular junctions. Methods Find Exp Clin Pharmacol 1988; 10(11): 687-90.
[PMID: 3221740]
[34]
Aronson S, Gennser G, Owman C, Sjöberg NO. Innervation and contractile response of the human ductus arteriosus. Eur J Pharmacol 1970; 11(2): 178-86.
[http://dx.doi.org/10.1016/0014-2999(70)90047-6] [PMID: 4393584]
[35]
Cassels DE, Moore RY. Sympathetic innervation of the ductus arteriosus in relation to patency. Chest 1973; 63(5): 727-31.
[http://dx.doi.org/10.1378/chest.63.5.727] [PMID: 4703626]
[36]
Watterberg KL, Kelly HW, Johnson JD, Aldrich M, Angelus P. Effect of patent ductus arteriosus on gentamicin pharmacokinetics in very low birth weight (less than 1,500 g) babies. Dev Pharmacol Ther 1987; 10(2): 107-17.
[http://dx.doi.org/10.1159/000457735] [PMID: 3608741]
[37]
Groeneveld AB. Vascular pharmacology of acute lung injury and acute respiratory distress syndrome. Vascul Pharmacol 2002; 39(4-5): 247-56.
[http://dx.doi.org/10.1016/S1537-1891(03)00013-2] [PMID: 12747964]
[38]
Levy B, Collin S, Sennoun N, et al. Vascular hyporesponsiveness to vasopressors in septic shock: From bench to bedside. Intensive Care Med 2010; 36(12): 2019-29.
[http://dx.doi.org/10.1007/s00134-010-2045-8] [PMID: 20862451]
[39]
Vila E, Salaices M. Cytokines and vascular reactivity in resistance arteries. Am J Physiol Heart Circ Physiol 2005; 288(3): H1016-21.
[http://dx.doi.org/10.1152/ajpheart.00779.2004] [PMID: 15706038]
[40]
Coceani F, Ackerley C, Seidlitz E, Kelsey L. Function of cyclo-oxygenase-1 and cyclo-oxygenase-2 in the ductus arteriosus from foetal lamb: Differential development and change by oxygen and endotoxin. Br J Pharmacol 2001; 132(1): 241-51.
[http://dx.doi.org/10.1038/sj.bjp.0703779] [PMID: 11156583]
[41]
Waleh N, Seidner S, McCurnin D, et al. The role of monocyte-derived cells and inflammation in baboon ductus arteriosus remodeling. Pediatr Res 2005; 57(2): 254-62.
[http://dx.doi.org/10.1203/01.PDR.0000148278.64777.EF] [PMID: 15611359]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy