Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Pre-Clinical Activity of Amino-Alcohol Dimeric Naphthoquinones as Potential Therapeutics for Acute Myeloid Leukemia

Author(s): Dana Ferraris, Rena Lapidus, Phuc Truong, Dominique Bollino, Brandon Carter-Cooper, Michelle Lee, Elizabeth Chang, Maria LaRossa-Garcia, Smaraki Dash, Ronald Gartenhaus, Eun Yong Choi, Olivia Kipe, Vi Lam, Kristopher Mason, Riley Palmer, Elijah Williams, Nicholas Ambulos, Farin Kamangar, Yuji Zhang, Bandish Kapadia, Yin Jing and Ashkan Emadi*

Volume 22, Issue 2, 2022

Published on: 02 June, 2021

Page: [239 - 253] Pages: 15

DOI: 10.2174/1871520621666210602131558

Price: $65

Abstract

Background: The clinical outcomes of patients with Acute Myeloid Leukemia (AML) remain unsatisfactory. Therefore the development of more efficacious and better-tolerated therapy for AML is critical. We have previously reported anti-leukemic activity of synthetic halohydroxyl dimeric naphthoquinones (BiQ) and aziridinyl BiQ.

Objective: This study aimed to improve the potency and bioavailability of BiQ compounds and investigate antileukemic activity of the lead compound in vitro and a human AML xenograft mouse model.

Methods: We designed, synthesized, and performed structure-activity relationships of several rationally designed BiQ analogues with amino alcohol functional groups on the naphthoquinone core rings. The compounds were screened for anti-leukemic activity and the mechanism as well as in vivo tolerability and efficacy of our lead compound was investigated.

Results: We report that a dimeric naphthoquinone (designated BaltBiQ) demonstrated potent nanomolar anti-leukemic activity in AML cell lines. BaltBiQ treatment resulted in the generation of reactive oxygen species, induction of DNA damage, and inhibition of indoleamine dioxygenase 1. Although BaltBiQ was tolerated well in vivo, it did not significantly improve survival as a single agent, but in combination with the specific Bcl-2 inhibitor, Venetoclax, tumor growth was significantly inhibited compared to untreated mice.

Conclusion: We synthesized a novel amino alcohol dimeric naphthoquinone, investigated its main mechanisms of action, reported its in vitro anti-AML cytotoxic activity, and showed its in vivo promising activity combined with a clinically available Bcl-2 inhibitor in a patient-derived xenograft model of AML.

Keywords: Acute myeloid leukemia, anti-cancer agents, naphthoquinone, biquinone, ROS, IDO.

Graphical Abstract
[1]
Wei, A.H.; Tiong, I.S. Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML. Blood, 2017, 130(23), 2469-2474.
[http://dx.doi.org/10.1182/blood-2017-08-784066] [PMID: 29051180]
[2]
Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; Levine, R.L.; Lo-Coco, F.; Naoe, T.; Niederwieser, D.; Ossenkoppele, G.J.; Sanz, M.; Sierra, J.; Tallman, M.S.; Tien, H.F.; Wei, A.H.; Löwenberg, B.; Bloomfield, C.D. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood, 2017, 129(4), 424-447.
[http://dx.doi.org/10.1182/blood-2016-08-733196] [PMID: 27895058]
[3]
Xu, K.H.; Lu, D.P. Plumbagin induces ROS-mediated apoptosis in human promyelocytic leukemia cells in vivo. Leuk. Res., 2010, 34(5), 658-665.
[http://dx.doi.org/10.1016/j.leukres.2009.08.017] [PMID: 19748668]
[4]
Shankar Babu, M.; Mahanta, S.; Lakhter, A.J.; Hato, T.; Paul, S.; Naidu, S.R. Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS One, 2018, 13(2)e0191419
[http://dx.doi.org/10.1371/journal.pone.0191419] [PMID: 29394289]
[5]
Xiang, M.; Kim, H.; Ho, V.T.; Walker, S.R.; Bar-Natan, M.; Anahtar, M.; Liu, S.; Toniolo, P.A.; Kroll, Y.; Jones, N.; Giaccone, Z.T.; Heppler, L.N.; Ye, D.Q.; Marineau, J.J.; Shaw, D.; Bradner, J.E.; Blonquist, T.; Neuberg, D.; Hetz, C.; Stone, R.M.; Soiffer, R.J.; Frank, D.A. Gene expression-based discovery of atovaquone as a STAT3 inhibitor and anticancer agent. Blood, 2016, 128(14), 1845-1853.
[http://dx.doi.org/10.1182/blood-2015-07-660506] [PMID: 27531676]
[6]
Pei, S.; Minhajuddin, M.; Callahan, K.P.; Balys, M.; Ashton, J.M.; Neering, S.J.; Lagadinou, E.D.; Corbett, C.; Ye, H.; Liesveld, J.L.; O’Dwyer, K.M.; Li, Z.; Shi, L.; Greninger, P.; Settleman, J.; Benes, C.; Hagen, F.K.; Munger, J.; Crooks, P.A.; Becker, M.W.; Jordan, C.T. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J. Biol. Chem., 2013, 288(47), 33542-33558.
[http://dx.doi.org/10.1074/jbc.M113.511170] [PMID: 24089526]
[7]
Frantz, S. Drug discovery: playing dirty. Nature, 2005, 437(7061), 942-943.
[http://dx.doi.org/10.1038/437942a] [PMID: 16222266]
[8]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[9]
Powis, G. Free radical formation by antitumor quinones. Free Radic. Biol. Med., 1989, 6(1), 63-101.
[http://dx.doi.org/10.1016/0891-5849(89)90162-7] [PMID: 2492250]
[10]
Wellington, K.W. Understanding cancer and the anticancer activities of naphthoquinones – a review. Royal Soc. Chem. (RSC). Adv., 2015, 5, 20309-20338.
[11]
Pereyra, C.E.; Dantas, R.F.; Ferreira, S.B.; Gomes, L.P.; Silva-Jr, F.P. The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int., 2019, 19, 207.
[http://dx.doi.org/10.1186/s12935-019-0925-8] [PMID: 31388334]
[12]
Emadi, A.; Le, A.; Harwood, C.J.; Stagliano, K.W.; Kamangar, F.; Ross, A.E.; Cooper, C.R.; Dang, C.V.; Karp, J.E.; Vuica-Ross, M. Metabolic and electrochemical mechanisms of dimeric naphthoquinones cytotoxicity in breast cancer cells. Bioorg. Med. Chem., 2011, 19(23), 7057-7062.
[http://dx.doi.org/10.1016/j.bmc.2011.10.005] [PMID: 22036210]
[13]
Ross, A.E.; Emadi, A.; Marchionni, L.; Hurley, P.J.; Simons, B.W.; Schaeffer, E.M.; Vuica-Ross, M. Dimeric naphthoquinones, a novel class of compounds with prostate cancer cytotoxicity. BJU Int., 2011, 108(3), 447-454.
[http://dx.doi.org/10.1111/j.1464-410X.2010.09907.x] [PMID: 21176082]
[14]
Lapidus, R.G.; Carter-Cooper, B.A.; Sadowska, M.; Choi, E.Y.; Wonodi, O.; Muvarak, N.; Natarajan, K.; Pidugu, L.S.; Jaiswal, A.; Toth, E.A.; Rassool, F.V.; Etemadi, A.; Sausville, E.A.; Baer, M.R.; Emadi, A. Hydroxylated dimeric naphthoquinones increase the generation of reactive oxygen species, induce apoptosis of acute myeloid leukemia cells and are not substrates of the multidrug resistance proteins ABCB1 and ABCG2. Pharmaceuticals (Basel), 2016, 9(1), 4.
[http://dx.doi.org/10.3390/ph9010004] [PMID: 26797621]
[15]
Carter-Cooper, B.A.; Fletcher, S.; Ferraris, D.; Choi, E.Y.; Kronfli, D.; Dash, S.; Truong, P.; Sausville, E.A.; Lapidus, R.G.; Emadi, A. Synthesis, characterization and antineoplastic activity of bis-aziridinyl dimeric naphthoquinone - A novel class of compounds with potent activity against acute myeloid leukemia cells. Bioorg. Med. Chem. Lett., 2017, 27(1), 6-10.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.045] [PMID: 27890379]
[16]
Emadi, A.; Harwood, J.S.; Kohanim, S.; Stagliano, K.W. Regiocontrolled synthesis of the trimeric quinone framework of conocurvone. Org. Lett., 2002, 4(4), 521-524.
[http://dx.doi.org/10.1021/ol010272m] [PMID: 11843581]
[17]
Stagliano, K.W.; Emadi, A.; Lu, Z.; Malinakova, H.C.; Twenter, B.; Yu, M.; Holland, L.E.; Rom, A.M.; Harwood, J.S.; Amin, R.; Johnson, A.A.; Pommier, Y. Regiocontrolled synthesis and HIV inhibitory activity of unsymmetrical binaphthoquinone and trimeric naphthoquinone derivatives of conocurvone. Bioorg. Med. Chem., 2006, 14(16), 5651-5665.
[http://dx.doi.org/10.1016/j.bmc.2006.04.034] [PMID: 16737818]
[18]
Zhou, L.; Yang, L.; Tilton, S.; Wang, J. Development of a high throughput equilibrium solubility assay using miniaturized shake-flask method in early drug discovery. J. Pharm. Sci., 2007, 96(11), 3052-3071.
[http://dx.doi.org/10.1002/jps.20913] [PMID: 17722003]
[19]
Adige, S.; Lapidus, R.G.; Carter-Cooper, B.A.; Duffy, A.; Patzke, C.; Law, J.Y.; Baer, M.R.; Ambulos, N.P.; Zou, Y.; Bentzen, S.M.; Emadi, A. Equipotent doses of daunorubicin and idarubicin for AML: a meta-analysis of clinical trials versus in vitro estimation. Cancer Chemother. Pharmacol., 2019, 83(6), 1105-1112.
[http://dx.doi.org/10.1007/s00280-019-03825-2] [PMID: 30968179]
[20]
Emadi, A.; Ross, A.E.; Cowan, K.M.; Fortenberry, Y.M.; Vuica-Ross, M. A chemical genetic screen for modulators of asymmetrical 2,2′-dimeric naphthoquinones cytotoxicity in yeast. PLoS One, 2010, 5(5)e10846
[http://dx.doi.org/10.1371/journal.pone.0010846] [PMID: 20520766]
[21]
Eberlein, U.; Peper, M.; Fernández, M.; Lassmann, M.; Scherthan, H. Calibration of the γ-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes. PLoS One, 2015, 10(4)e0123174
[http://dx.doi.org/10.1371/journal.pone.0123174] [PMID: 25853575]
[22]
Gieseler, F.; Bauer, E.; Nuessler, V.; Clark, M.; Valsamas, S. Molecular effects of topoisomerase II inhibitors in AML cell lines: correlation of apoptosis with topoisomerase II activity but not with DNA damage. Leukemia, 1999, 13(11), 1859-1863.
[http://dx.doi.org/10.1038/sj.leu.2401570] [PMID: 10557063]
[23]
Liu, M.; Wang, X.; Wang, L.; Ma, X.; Gong, Z.; Zhang, S.; Li, Y. Targeting the IDO1 pathway in cancer: from bench to bedside. J. Hematol. Oncol., 2018, 11(1), 100.
[http://dx.doi.org/10.1186/s13045-018-0644-y] [PMID: 30068361]
[24]
Zhao, H.; Sun, P.; Guo, W.; Wang, Y.; Zhang, A.; Meng, L.; Ding, C. Discovery of Indoleamine 2,3-Dioxygenase 1 (IDO-1) Inhibitors Based on Ortho-Naphthaquinone-Containing Natural Product. Molecules, 2019, 24(6), 1059.
[http://dx.doi.org/10.3390/molecules24061059] [PMID: 30889860]
[25]
McKinnon, C.M.; Mellor, H. The tumor suppressor RhoBTB1 controls Golgi integrity and breast cancer cell invasion through METTL7B. BMC Cancer, 2017, 17(1), 145.
[http://dx.doi.org/10.1186/s12885-017-3138-3] [PMID: 28219369]
[26]
The Human Protein Atlas. METTL7A, 2020. Available from: https://www.proteinatlas.org/ENSG00000185432-METTL7A/pathology/renal+cancer
[27]
Aroua, N. in vivo response to cytarabine chemotherapy uncovers the role of the oxidative and energetic metabolism in the chemoresistance of human primary AML stem cells. Blood, 2015, 126, 4269. [ASH annual meeting abstracts].
[http://dx.doi.org/10.1182/blood.V126.23.4269.4269]
[28]
Venetoclax, F.D.A. FDA. Venetoclax (Venclexta). Food and Drug Administration, 2018. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208573s208013lbl.pdf
[29]
Pollyea, D.A.; Amaya, M.; Strati, P.; Konopleva, M.Y. Venetoclax for AML: changing the treatment paradigm. Blood Adv., 2019, 3(24), 4326-4335.
[http://dx.doi.org/10.1182/bloodadvances.2019000937] [PMID: 31869416]
[30]
Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; Huang, D.C.; Hymowitz, S.G.; Jin, S.; Khaw, S.L.; Kovar, P.J.; Lam, L.T.; Lee, J.; Maecker, H.L.; Marsh, K.C.; Mason, K.D.; Mitten, M.J.; Nimmer, P.M.; Oleksijew, A.; Park, C.H.; Park, C.M.; Phillips, D.C.; Roberts, A.W.; Sampath, D.; Seymour, J.F.; Smith, M.L.; Sullivan, G.M.; Tahir, S.K.; Tse, C.; Wendt, M.D.; Xiao, Y.; Xue, J.C.; Zhang, H.; Humerickhouse, R.A.; Rosenberg, S.H.; Elmore, S.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med., 2013, 19(2), 202-208.
[http://dx.doi.org/10.1038/nm.3048] [PMID: 23291630]
[31]
Gilteritinib, F.D.A. FDA. Gilteritinib (Xospata). Food and Drug Administration 2019. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211349s211001lbl.pdf
[32]
Ma, J.; Zhao, S.; Qiao, X.; Knight, T.; Edwards, H.; Polin, L.; Kushner, J.; Dzinic, S.H.; White, K.; Wang, G.; Zhao, L.; Lin, H.; Wang, Y.; Taub, J.W.; Ge, Y. Inhibition of Bcl-2 synergistically enhances the antileukemic activity of midostaurin and gilteritinib in preclinical models of FLT3-mutated acute myeloid leukemia. Clin. Cancer Res., 2019, 25(22), 6815-6826.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0832] [PMID: 31320594]
[33]
Chau, Y.P.; Shiah, S.G.; Don, M.J.; Kuo, M.L. Involvement of hydrogen peroxide in topoisomerase inhibitor beta-lapachone-induced apoptosis and differentiation in human leukemia cells. Free Radic. Biol. Med., 1998, 24(4), 660-670.
[http://dx.doi.org/10.1016/S0891-5849(97)00337-7] [PMID: 9559879]
[34]
Pidugu, L.S.; Mbimba, J.C.; Ahmad, M.; Pozharski, E.; Sausville, E.A.; Emadi, A.; Toth, E.A. A direct interaction between NQO1 and a chemotherapeutic dimeric naphthoquinone. BMC Struct. Biol., 2016, 16, 1.
[http://dx.doi.org/10.1186/s12900-016-0052-x] [PMID: 26822308]
[35]
Manickam, M.; Boggu, P.R.; Pillaiyar, T.; Nam, Y.J.; Abdullah, M.; Lee, S.J.; Kang, J.S.; Jung, S.H. Design, synthesis and anticancer activity of 2-amidomethoxy-1,4-naphthoquinones and its conjugates with Biotin/polyamine. Bioorg. Med. Chem. Lett., 2021, 31127685
[http://dx.doi.org/10.1016/j.bmcl.2020.127685] [PMID: 33197549]
[36]
Coulidiati, T.H.; Dantas, B.B.; Faheina-Martins, G.V.; de Morais Gomes, E.R.; Gonçalves, J.C.R.; de Araújo, D.A.M. Proapoptotic Effects of triazol-1,4-Naphthoquinones Involve Intracellular ROS Production and MAPK/ERK Pathway in Human Leukemia Cells. Anticancer. Agents Med. Chem., 2020, 20(17), 2089-2098.
[http://dx.doi.org/10.2174/1871520620666200721124221] [PMID: 32698747]
[37]
Stevens, A.M.; Xiang, M.; Heppler, L.N.; Tošić, I.; Jiang, K.; Munoz, J.O.; Gaikwad, A.S.; Horton, T.M.; Long, X.; Narayanan, P.; Seashore, E.L.; Terrell, M.C.; Rashid, R.; Krueger, M.J.; Mangubat-Medina, A.E.; Ball, Z.T.; Sumazin, P.; Walker, S.R.; Hamada, Y.; Oyadomari, S.; Redell, M.S.; Frank, D.A. Atovaquone is active against AML by upregulating the integrated stress pathway and suppressing oxidative phosphorylation. Blood Adv., 2019, 3(24), 4215-4227.
[http://dx.doi.org/10.1182/bloodadvances.2019000499] [PMID: 31856268]
[38]
Munn, D.H.; Zhou, M.; Attwood, J.T.; Bondarev, I.; Conway, S.J.; Marshall, B.; Brown, C.; Mellor, A.L. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, 1998, 281(5380), 1191-1193.
[http://dx.doi.org/10.1126/science.281.5380.1191] [PMID: 9712583]
[39]
Munn, D.H.; Shafizadeh, E.; Attwood, J.T.; Bondarev, I.; Pashine, A.; Mellor, A.L. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med., 1999, 189(9), 1363-1372.
[http://dx.doi.org/10.1084/jem.189.9.1363] [PMID: 10224276]
[40]
Mezrich, J.D.; Fechner, J.H.; Zhang, X.; Johnson, B.P.; Burlingham, W.J.; Bradfield, C.A. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol., 2010, 185(6), 3190-3198.
[http://dx.doi.org/10.4049/jimmunol.0903670] [PMID: 20720200]
[41]
Munn, D.H. Indoleamine 2,3-dioxygenase, Tregs and cancer. Curr. Med. Chem., 2011, 18(15), 2240-2246.
[http://dx.doi.org/10.2174/092986711795656045] [PMID: 21517755]
[42]
Curti, A.; Aluigi, M.; Pandolfi, S.; Ferri, E.; Isidori, A.; Salvestrini, V.; Durelli, I.; Horenstein, A.L.; Fiore, F.; Massaia, M.; Piccioli, M.; Pileri, S.A.; Zavatto, E.; D’Addio, A.; Baccarani, M.; Lemoli, R.M. Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia, 2007, 21(2), 353-355.
[http://dx.doi.org/10.1038/sj.leu.2404485] [PMID: 17170728]
[43]
El Kholy, N.M.; Sallam, M.M.; Ahmed, M.B.; Sallam, R.M.; Asfour, I.A.; Hammouda, J.A.; Habib, H.Z.; Abu-Zahra, F. Expression of indoleamine 2,3-dioxygenase in acute myeloid leukemia and the effect of its inhibition on cultured leukemia blast cells. Med. Oncol., 2011, 28(1), 270-278.
[http://dx.doi.org/10.1007/s12032-010-9459-6] [PMID: 20300979]
[44]
Chamuleau, M.E.; van de Loosdrecht, A.A.; Hess, C.J.; Janssen, J.J.; Zevenbergen, A.; Delwel, R.; Valk, P.J.; Löwenberg, B.; Ossenkoppele, G.J. High INDO (indoleamine 2,3-dioxygenase) mRNA level in blasts of acute myeloid leukemic patients predicts poor clinical outcome. Haematologica, 2008, 93(12), 1894-1898.
[http://dx.doi.org/10.3324/haematol.13112] [PMID: 19050070]
[45]
Prendergast, G.C.; Malachowski, W.P.; DuHadaway, J.B.; Muller, A.J. Discovery of IDO1 inhibitors: From bench to bedside. Cancer Res., 2017, 77(24), 6795-6811.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2285] [PMID: 29247038]
[46]
Emadi, A. Indoximod combined with standard induction chemotherapy is well tolerated and induces a high rate of complete remission with MRDnegativity in patients with newly diagnosed AML: Results from a phase 1 trial. Blood (ASH Annual Meeting Abstracts), 2018, 132
[47]
Flick, H.E.; Lalonde, J.M.; Malachowski, W.P.; Muller, A.J. The tumor-selective cytotoxic agent β-lapachone is a potent inhibitor of IDO1. Int. J. Tryptophan Res., 2013, 6, 35-45.
[http://dx.doi.org/10.4137/IJTR.S12094] [PMID: 24023520]
[48]
Zeng, Q.; Qiu, F.; Chen, Y.; Liu, C.; Liu, H.; Liang, C.L.; Zhang, Q.; Dai, Z. Shikonin prolongs allograft survival via induction of CD4+FoxP3+ regulatory T cells. Front. Immunol., 2019, 10, 652.
[http://dx.doi.org/10.3389/fimmu.2019.00652] [PMID: 30988670]
[49]
Schroecksnadel, S.; Gostner, J.; Jenny, M.; Kurz, K.; Schennach, H.; Weiss, G.; Fuchs, D. Immunomodulatory effects in vitro of vitamin K antagonist acenocoumarol. Thromb. Res., 2013, 131(6), e264-e269.
[http://dx.doi.org/10.1016/j.thromres.2013.02.012] [PMID: 23481478]
[50]
Kumar, S.; Malachowski, W.P.; DuHadaway, J.B.; LaLonde, J.M.; Carroll, P.J.; Jaller, D.; Metz, R.; Prendergast, G.C.; Muller, A.J. Indoleamine 2,3-dioxygenase is the anticancer target for a novel series of potent naphthoquinone-based inhibitors. J. Med. Chem., 2008, 51(6), 1706-1718.
[http://dx.doi.org/10.1021/jm7014155] [PMID: 18318466]
[51]
Ohnishi, T.; Hirata, F.; Hayaish, O. Indoleamine 2,3-dioxygenase. Potassium superoxide as substrate. J. Biol. Chem., 1977, 252(13), 4643-4647.
[http://dx.doi.org/10.1016/S0021-9258(17)40209-2] [PMID: 194887]
[52]
Poljak, A.; Grant, R.; Austin, C.J.; Jamie, J.F.; Willows, R.D.; Takikawa, O.; Littlejohn, T.K.; Truscott, R.J.; Walker, M.J.; Sachdev, P.; Smythe, G.A. Inhibition of indoleamine 2,3 dioxygenase activity by H2O2. Arch. Biochem. Biophys., 2006, 450(1), 9-19.
[http://dx.doi.org/10.1016/j.abb.2006.03.003] [PMID: 16624246]
[53]
Banerjee, T.; Duhadaway, J.B.; Gaspari, P.; Sutanto-Ward, E.; Munn, D.H.; Mellor, A.L.; Malachowski, W.P.; Prendergast, G.C.; Muller, A.J. A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. Oncogene, 2008, 27(20), 2851-2857.
[http://dx.doi.org/10.1038/sj.onc.1210939] [PMID: 18026137]
[54]
Nguyen, L.X.T.; Troadec, E.; Kalvala, A.; Kumar, B.; Hoang, D.H.; Viola, D.; Zhang, B.; Nguyen, D.Q.; Aldoss, I.; Ghoda, L.; Budde, E.; Pichiorri, F.; Rosen, S.; Forman, S.J.; Marcucci, G.; Pullarkat, V. The Bcl-2 inhibitor venetoclax inhibits Nrf2 antioxidant pathway activation induced by hypomethylating agents in AML. J. Cell. Physiol., 2019, 234(8), 14040-14049.
[http://dx.doi.org/10.1002/jcp.28091] [PMID: 30623427]
[55]
Goleva, T.N.; Lyamzaev, K.G.; Rogov, A.G.; Khailova, L.S.; Epremyan, K.K.; Shumakovich, G.P.; Domnina, L.V.; Ivanova, O.Y.; Marmiy, N.V.; Zinevich, T.V.; Esipov, D.S.; Zvyagilskaya, R.A.; Skulachev, V.P.; Chernyak, B.V. Mitochondria-targeted 1,4-naphthoquinone (SkQN) is a powerful prooxidant and cytotoxic agent. Biochim. Biophys. Acta Bioenerg., 2020, 1861(8)148210
[http://dx.doi.org/10.1016/j.bbabio.2020.148210] [PMID: 32305410]
[56]
Zhang, X.; Cui, J.H.; Meng, Q.Q.; Li, S.S.; Zhou, W.; Xiao, S. Advance in anti-tumor mechanisms of shikonin, alkannin and their derivatives. Mini Rev. Med. Chem., 2018, 18(2), 164-172.
[http://dx.doi.org/10.2174/1389557517666170228114809] [PMID: 28245783]
[57]
Lee, M.H.; Lapidus, R.G.; Ferraris, D.; Emadi, A. Analysis of the mechanisms of action of naphthoquinone-based anti-acute myeloid leukemia chemotherapeutics. Molecules, 2019, 24(17), 3121.
[http://dx.doi.org/10.3390/molecules24173121] [PMID: 31466259]
[58]
Simamura, E.; Hirai, K.; Shimada, H.; Koyama, J.; Niwa, Y.; Shimizu, S. Furanonaphthoquinones cause apoptosis of cancer cells by inducing the production of reactive oxygen species by the mitochondrial voltage-dependent anion channel. Cancer Biol. Ther., 2006, 5(11), 1523-1529.
[http://dx.doi.org/10.4161/cbt.5.11.3302] [PMID: 17012850]
[59]
Wang, H.; Luo, Y.H.; Shen, G.N.; Piao, X.J.; Xu, W.T.; Zhang, Y.; Wang, J.R.; Feng, Y.C.; Li, J.Q.; Zhang, Y.; Zhang, T.; Wang, S.N.; Xue, H.; Wang, H.X.; Wang, C.Y.; Jin, C.H. Two novel 1,4 naphthoquinone derivatives induce human gastric cancer cell apoptosis and cell cycle arrest by regulating reactive oxygen species mediated MAPK/Akt/STAT3 signaling pathways. Mol. Med. Rep., 2019, 20(3), 2571-2582.
[http://dx.doi.org/10.3892/mmr.2019.10500] [PMID: 31322207]
[60]
Hsu, P.C.; Huang, Y.T.; Tsai, M.L.; Wang, Y.J.; Lin, J.K.; Pan, M.H. Induction of apoptosis by shikonin through coordinative modulation of the Bcl-2 family, p27, and p53, release of cytochrome c, and sequential activation of caspases in human colorectal carcinoma cells. J. Agric. Food Chem., 2004, 52(20), 6330-6337.
[http://dx.doi.org/10.1021/jf0495993] [PMID: 15453709]
[61]
Su, C.; Liu, Z.; Wang, Y.; Wang, Y.; Song, E.; Song, Y. The electrophilic character of quinones is essential for the suppression of Bach1. Toxicology, 2017, 387, 17-26.
[http://dx.doi.org/10.1016/j.tox.2017.06.006] [PMID: 28645578]
[62]
Hallak, M.; Thakur, B.K.; Winn, T.; Shpilberg, O.; Bittner, S.; Granot, Y.; Levy, I.; Nathan, I. Induction of death of leukemia cells by TW-74, a novel derivative of chloro-naphthoquinone. Anticancer Res., 2013, 33(1), 183-190.
[PMID: 23267144]
[63]
Li, J.Z.; Ke, Y.; Misra, H.P.; Trush, M.A.; Li, Y.R.; Zhu, H.; Jia, Z. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent. Toxicol. Appl. Pharmacol., 2014, 281(3), 285-293.
[http://dx.doi.org/10.1016/j.taap.2014.10.012] [PMID: 25448047]
[64]
Sriskanthadevan, S.; Jeyaraju, D.V.; Chung, T.E.; Prabha, S.; Xu, W.; Skrtic, M.; Jhas, B.; Hurren, R.; Gronda, M.; Wang, X.; Jitkova, Y.; Sukhai, M.A.; Lin, F.H.; Maclean, N.; Laister, R.; Goard, C.A.; Mullen, P.J.; Xie, S.; Penn, L.Z.; Rogers, I.M.; Dick, J.E.; Minden, M.D.; Schimmer, A.D. AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood, 2015, 125(13), 2120-2130.
[http://dx.doi.org/10.1182/blood-2014-08-594408] [PMID: 25631767]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy