Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

单核苷酸多态性作为乳腺癌的有效预后标志物

卷 21, 期 9, 2021

发表于: 25 May, 2021

页: [768 - 793] 页: 26

弟呕挨: 10.2174/1568009621666210525151846

价格: $65

Open Access Journals Promotions 2
摘要

背景:乳腺癌(BC)被认为是女性最常见的恶性肿瘤。 环境和遗传因素与 BC 进展有关。 据报道,遗传多态性是 BC 预后和药物反应的重要危险因素。 正文:在本综述中,我们总结了全球所有与 BC 患者的药物反应显着相关的单核苷酸多态性 (SNP)。 我们还根据相关基因功能对报告的 SNP 进行了分类,以阐明 BC 中药物反应的分子生物学。 结论:据报道,大多数 SNP 存在于解毒酶中,这些酶引入了这些基因作为 BC 药物反应过程中的主要遗传风险因素。 这篇综述为为世界上的 BC 患者引入 SNP 预后小组铺平了道路。

关键词: 乳腺癌、预后标志物、化疗耐药性、药物反应、核苷酸多态性、遗传多态性。

[1]
Iacoviello, L. Epidemiology of breast cancer, a paradigm of the” common soil” hypothesis.Seminars in Cancer Biology; Elsevier, 2020.
[http://dx.doi.org/10.1016/j.semcancer.2020.02.010]
[2]
Tajbakhsh, A.; Farjami, Z.; Darroudi, S.; Ayati, S.H.; Vakili, F.; Asghari, M.; Alimardani, M.; Abedini, S.; Kushyar, M.M.; Pasdar, A. Association of rs4784227-CASC16 (LOC643714 locus) and rs4782447-ACSF3 polymorphisms and their association with breast cancer risk among Iranian population. EXCLI J., 2019, 18, 429-438.
[PMID: 31338012]
[3]
Board, P.A.T.E. Breast Cancer Treatment (Adult)(PDQ®).PDQ Cancer Information Summaries; National Cancer Institute: US, 2020. Internet
[4]
Youn, H.J.; Han, W. A review of the epidemiology of breast cancer in Asia: Focus on risk factors. Asian Pac. J. Cancer Prev., 2020, 21(4), 867-880.
[http://dx.doi.org/10.31557/APJCP.2020.21.4.867] [PMID: 32334446]
[5]
Moghbeli, M. Genetic and molecular biology of breast cancer among Iranian patients. J. Transl. Med., 2019, 17(1), 218.
[http://dx.doi.org/10.1186/s12967-019-1968-2] [PMID: 31286981]
[6]
Mavaddat, N.; Michailidou, K.; Dennis, J.; Lush, M.; Fachal, L.; Lee, A.; Tyrer, J.P.; Chen, T.H.; Wang, Q.; Bolla, M.K.; Yang, X.; Adank, M.A.; Ahearn, T.; Aittomäki, K.; Allen, J.; Andrulis, I.L.; Anton-Culver, H.; Antonenkova, N.N.; Arndt, V.; Aronson, K.J.; Auer, P.L.; Auvinen, P.; Barrdahl, M.; Beane Freeman, L.E.; Beckmann, M.W.; Behrens, S.; Benitez, J.; Bermisheva, M.; Bernstein, L.; Blomqvist, C.; Bogdanova, N.V.; Bojesen, S.E.; Bonanni, B.; Børresen-Dale, A.L.; Brauch, H.; Bremer, M.; Brenner, H.; Brentnall, A.; Brock, I.W.; Brooks-Wilson, A.; Brucker, S.Y.; Brüning, T.; Burwinkel, B.; Campa, D.; Carter, B.D.; Castelao, J.E.; Chanock, S.J.; Chlebowski, R.; Christiansen, H.; Clarke, C.L.; Collée, J.M.; Cordina-Duverger, E.; Cornelissen, S.; Couch, F.J.; Cox, A.; Cross, S.S.; Czene, K.; Daly, M.B.; Devilee, P.; Dörk, T.; Dos-Santos-Silva, I.; Dumont, M.; Durcan, L.; Dwek, M.; Eccles, D.M.; Ekici, A.B.; Eliassen, A.H.; Ellberg, C.; Engel, C.; Eriksson, M.; Evans, D.G.; Fasching, P.A.; Figueroa, J.; Fletcher, O.; Flyger, H.; Försti, A.; Fritschi, L.; Gabrielson, M.; Gago- Dominguez, M.; Gapstur, S.M.; García-Sáenz, J.A.; Gaudet, M.M.; Georgoulias, V.; Giles, G.G.; Gilyazova, I.R.; Glendon, G.; Goldberg, M.S.; Goldgar, D.E.; González-Neira, A.; Grenaker Alnæs, G.I.; Grip, M.; Gronwald, J.; Grundy, A.; Guénel, P.; Haeberle, L.; Hahnen, E.; Haiman, C.A.; Håkansson, N.; Hamann, U.; Hankinson, S.E.; Harkness, E.F.; Hart, S.N.; He, W.; Hein, A.; Heyworth, J.; Hillemanns, P.; Hollestelle, A.; Hooning, M.J.; Hoover, R.N.; Hopper, J.L.; Howell, A.; Huang, G.; Humphreys, K.; Hunter, D.J.; Jakimovska, M.; Jakubowska, A.; Janni, W.; John, E.M.; Johnson, N.; Jones, M.E.; Jukkola-Vuorinen, A.; Jung, A.; Kaaks, R.; Kaczmarek, K.; Kataja, V.; Keeman, R.; Kerin, M.J.; Khusnutdinova, E.; Kiiski, J.I.; Knight, J.A.; Ko, Y.D.; Kosma, V.M.; Koutros, S.; Kristensen, V.N.; Krüger, U.; Kühl, T.; Lambrechts, D.; Le Marchand, L.; Lee, E.; Lejbkowicz, F.; Lilyquist, J.; Lindblom, A.; Lindström, S.; Lissowska, J.; Lo, W.Y.; Loibl, S.; Long, J.; Lubiński, J.; Lux, M.P.; MacInnis, R.J.; Maishman, T.; Makalic, E.; Maleva Kostovska, I.; Mannermaa, A.; Manoukian, S.; Margolin, S.; Martens, J.W.M.; Martinez, M.E.; Mavroudis, D.; McLean, C.; Meindl, A.; Menon, U.; Middha, P.; Miller, N.; Moreno, F.; Mulligan, A.M.; Mulot, C.; Muñoz- Garzon, V.M.; Neuhausen, S.L.; Nevanlinna, H.; Neven, P.; Newman, W.G.; Nielsen, S.F.; Nordestgaard, B.G.; Norman, A.; Offit, K.; Olson, J.E.; Olsson, H.; Orr, N.; Pankratz, V.S.; Park-Simon, T.W.; Perez, J.I.A.; Pérez-Barrios, C.; Peterlongo, P.; Peto, J.; Pinchev, M.; Plaseska-Karanfilska, D.; Polley, E.C.; Prentice, R.; Presneau, N.; Prokofyeva, D.; Purrington, K.; Pylkäs, K.; Rack, B.; Radice, P.; Rau-Murthy, R.; Rennert, G.; Rennert, H.S.; Rhenius, V.; Robson, M.; Romero, A.; Ruddy, K.J.; Ruebner, M.; Saloustros, E.; Sandler, D.P.; Sawyer, E.J.; Schmidt, D.F.; Schmutzler, R.K.; Schneeweiss, A.; Schoemaker, M.J.; Schumacher, F.; Schürmann, P.; Schwentner, L.; Scott, C.; Scott, R.J.; Seynaeve, C.; Shah, M.; Sherman, M.E.; Shrubsole, M.J.; Shu, X.O.; Slager, S.; Smeets, A.; Sohn, C.; Soucy, P.; Southey, M.C.; Spinelli, J.J.; Stegmaier, C.; Stone, J.; Swerdlow, A.J.; Tamimi, R.M.; Tapper, W.J.; Taylor, J.A.; Terry, M.B.; Thöne, K.; Tollenaar, R.A.E.M.; Tomlinson, I.; Truong, T.; Tzardi, M.; Ulmer, H.U.; Untch, M.; Vachon, C.M.; van Veen, E.M.; Vijai, J.; Weinberg, C.R.; Wendt, C.; Whittemore, A.S.; Wildiers, H.; Willett, W.; Winqvist, R.; Wolk, A.; Yang, X.R.; Yannoukakos, D.; Zhang, Y.; Zheng, W.; Ziogas, A.; Dunning, A.M.; Thompson, D.J.; Chenevix-Trench, G.; Chang-Claude, J.; Schmidt, M.K.; Hall, P.; Milne, R.L.; Pharoah, P.D.P.; Antoniou, A.C.; Chatterjee, N.; Kraft, P.; García- Closas, M.; Simard, J.; Easton, D.F. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am. J. Hum. Genet., 2019, 104(1), 21-34.
[http://dx.doi.org/10.1016/j.ajhg.2018.11.002] [PMID: 30554720]
[7]
Kapoor, P.M.; Lindström, S.; Behrens, S.; Wang, X.; Michailidou, K.; Bolla, M.K.; Wang, Q.; Dennis, J.; Dunning, A.M.; Pharoah, P.D.P.; Schmidt, M.K.; Kraft, P.; García-Closas, M.; Easton, D.F.; Milne, R.L.; Chang-Claude, J. Assessment of interactions between 205 breast cancer susceptibility loci and 13 established risk factors in relation to breast cancer risk, in the Breast Cancer Association Consortium. Int. J. Epidemiol., 2020, 49(1), 216-232.
[http://dx.doi.org/10.1093/ije/dyz193] [PMID: 31605532]
[8]
Waks, A.G.; Winer, E.P. Breast cancer treatment: a review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[9]
Murray, J.L.; Thompson, P.; Yoo, S.Y.; Do, K.A.; Pande, M.; Zhou, R.; Liu, Y.; Sahin, A.A.; Bondy, M.L.; Brewster, A.M. Prognostic value of single nucleotide polymorphisms of candidate genes associated with inflammation in early stage breast cancer. Breast Cancer Res. Treat., 2013, 138(3), 917-924.
[http://dx.doi.org/10.1007/s10549-013-2445-x] [PMID: 23529385]
[10]
Mehta, S.; Shelling, A.; Muthukaruppan, A.; Lasham, A.; Blenkiron, C.; Laking, G.; Print, C. Predictive and prognostic molecular markers for cancer medicine. Ther. Adv. Med. Oncol., 2010, 2(2), 125-148.
[http://dx.doi.org/10.1177/1758834009360519] [PMID: 21789130]
[11]
Erichsen, H.C.; Chanock, S.J. SNPs in cancer research and treatment. Br. J. Cancer, 2004, 90(4), 747-751.
[http://dx.doi.org/10.1038/sj.bjc.6601574] [PMID: 14970847]
[12]
Onay, V.Ü.; Briollais, L.; Knight, J.A.; Shi, E.; Wang, Y.; Wells, S.; Li, H.; Rajendram, I.; Andrulis, I.L.; Ozcelik, H. SNP-SNP interactions in breast cancer susceptibility. BMC Cancer, 2006, 6(1), 114.
[http://dx.doi.org/10.1186/1471-2407-6-114] [PMID: 16672066]
[13]
Rastgar-Moghadam, A.; Mehramiz, M.; Shahidsales, S.; Entezari, M.; Hassanian, S.M.; Talebian, S.; Nourbakhsh, M.; Ferns, G.A.; Avan, A. Association of a genetic variant in ATP-binding cassette sub-family B member 1 gene with poor prognosis in patients with squamous cell carcinoma of the esophagus. IUBMB Life, 2019, 71(9), 1252-1258.
[http://dx.doi.org/10.1002/iub.2034] [PMID: 30865384]
[14]
Chen, L.; Qi, H.; Zhang, L.; Li, H.; Shao, J.; Chen, H.; Zhong, M.; Shi, X.; Ye, T.; Li, Q. Effects of FGFR gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-docetaxel-based chemotherapy in breast cancer patients. BMC Cancer, 2018, 18(1), 1038.
[http://dx.doi.org/10.1186/s12885-018-4951-z] [PMID: 30359238]
[15]
Thussbas, C.; Nahrig, J.; Streit, S.; Bange, J.; Kriner, M.; Kates, R.; Ulm, K.; Kiechle, M.; Hoefler, H.; Ullrich, A.; Harbeck, N. FGFR4 Arg388 allele is associated with resistance to adjuvant therapy in primary breast cancer. J. Clin. Oncol., 2006, 24(23), 3747-3755.
[http://dx.doi.org/10.1200/JCO.2005.04.8587] [PMID: 16822847]
[16]
Sobral-Leite, M.; Lips, E.H.; Vieira-Monteiro, H.A.; Giacomin, L.C.; Freitas-Alves, D.R.; Cornelissen, S.; Mulder, L.; Wesseling, J.; Schmidt, M.K.; Vianna-Jorge, R. Evaluation of the EGFR polymorphism R497K in two cohorts of neoadjuvantly treated breast cancer patients. PLoS One, 2017, 12(12), e0189750.
[http://dx.doi.org/10.1371/journal.pone.0189750] [PMID: 29267323]
[17]
Toomey, S.; Madden, S.F.; Furney, S.J.; Fan, Y.; McCormack, M.; Stapleton, C.; Cremona, M.; Cavalleri, G.L.; Milewska, M.; Elster, N.; Carr, A.; Fay, J.; Kay, E.W.; Kennedy, S.; Crown, J.; Gallagher, W.M.; Hennessy, B.T.; Eustace, A.J. The impact of ERBB-family germline single nucleotide polymorphisms on survival response to adjuvant trastuzumab treatment in HER2-positive breast cancer. Oncotarget, 2016, 7(46), 75518-75525.
[http://dx.doi.org/10.18632/oncotarget.12782] [PMID: 27776352]
[18]
Coté, D.; Eustace, A.; Toomey, S.; Cremona, M.; Milewska, M.; Furney, S.; Carr, A.; Fay, J.; Kay, E.; Kennedy, S.; Crown, J.; Hennessy, B.; Madden, S. Germline single nucleotide polymorphisms in ERBB3 and BARD1 genes result in a worse relapse free survival response for HER2-positive breast cancer patients treated with adjuvant based docetaxel, carboplatin and trastuzumab (TCH). PLoS One, 2018, 13(8), e0200996.
[http://dx.doi.org/10.1371/journal.pone.0200996] [PMID: 30071039]
[19]
Han, X.; Diao, L.; Xu, Y.; Xue, W.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Fan, T.; Lin, B.; Xie, Y. Association between the HER2 Ile655Val polymorphism and response to trastuzumab in women with operable primary breast cancer. Ann. Oncol., 2014, 25(6), 1158-1164.
[http://dx.doi.org/10.1093/annonc/mdu111] [PMID: 24608202]
[20]
Stanton, S.E.; Ward, M.M.; Christos, P.; Sanford, R.; Lam, C.; Cobham, M.V.; Donovan, D.; Scheff, R.J.; Cigler, T.; Moore, A.; Vahdat, L.T.; Lane, M.E.; Chuang, E. Pro1170 Ala polymorphism in HER2-neu is associated with risk of trastuzumab cardiotoxicity. BMC Cancer, 2015, 15(1), 267.
[http://dx.doi.org/10.1186/s12885-015-1298-6] [PMID: 25885598]
[21]
Li, X.; Zhang, R.; Liu, Z.; Li, S.; Xu, H. The genetic variants in the PTEN/PI3K/AKT pathway predict susceptibility and CE(A)F chemotherapy response to breast cancer and clinical outcomes. Oncotarget, 2017, 8(12), 20252-20265.
[http://dx.doi.org/10.18632/oncotarget.15690] [PMID: 28423632]
[22]
Singla, H.; Kaur, R.P.; Shafi, G.; Vashistha, R.; Banipal, R.P.S.; Kumar, V.; Munshi, A. Genomic alterations associated with HER2+ breast cancer risk and clinical outcome in response to trastuzumab. Mol. Biol. Rep., 2019, 46(1), 823-831.
[http://dx.doi.org/10.1007/s11033-018-4537-5] [PMID: 30535550]
[23]
Vazquez, A.; Kulkarni, D.; Grochola, L.F.; Bond, G.L.; Barnard, N.; Toppmeyer, D.; Levine, A.J.; Hirshfield, K.M. A genetic variant in a PP2A regulatory subunit encoded by the PPP2R2B gene associates with altered breast cancer risk and recurrence. Int. J. Cancer, 2011, 128(10), 2335-2343.
[http://dx.doi.org/10.1002/ijc.25582] [PMID: 20669227]
[24]
Jamshidi, M.; Schmidt, M.K.; Dörk, T.; Garcia-Closas, M.; Heikkinen, T.; Cornelissen, S.; van den Broek, A.J.; Schürmann, P.; Meyer, A.; Park-Simon, T.W.; Figueroa, J.; Sherman, M.; Lissowska, J.; Keong, G.T.; Irwanto, A.; Laakso, M.; Hautaniemi, S.; Aittomäki, K.; Blomqvist, C.; Liu, J.; Nevanlinna, H. Germline variation in TP53 regulatory network genes associates with breast cancer survival and treatment outcome. Int. J. Cancer, 2013, 132(9), 2044-2055.
[http://dx.doi.org/10.1002/ijc.27884] [PMID: 23034890]
[25]
Chaturvedi, P.; Tulsyan, S.; Agarwal, G.; Lal, P.; Agarwal, S.; Mittal, R.D.; Mittal, B. Influence of ABCB1 genetic variants in breast cancer treatment outcomes. Cancer Epidemiol., 2013, 37(5), 754-761.
[http://dx.doi.org/10.1016/j.canep.2013.04.012] [PMID: 23707158]
[26]
Alsaif, A.A.; Hasan, T.N.; Shafi, G.; Syed, N.A.; Alsaif, M.A.; Al-Assaf, A.H.; Alshatwi, A.A. Association of multiple drug resistance-1 gene polymorphism with multiple drug resistance in breast cancer patients from an ethnic Saudi Arabian population. Cancer Epidemiol., 2013, 37(5), 762-766.
[http://dx.doi.org/10.1016/j.canep.2013.04.011] [PMID: 23725642]
[27]
Agarwal, G.; Tulsyan, S.; Lal, P.; Mittal, B. Generalized multifactor dimensionality reduction (GMDR) analysis of drug-metabolizing enzyme-encoding gene polymorphisms may predict treatment outcomes in Indian breast cancer patients. World J. Surg., 2016, 40(7), 1600-1610.
[http://dx.doi.org/10.1007/s00268-015-3263-6] [PMID: 26506825]
[28]
Priyadarshini, R.; Raj, G.M.; Kayal, S.; Ramesh, A.; Shewade, D.G. Influence of ABCB1 C3435T and C1236T gene polymorphisms on tumour response to docetaxel-based neo-adjuvant chemotherapy in locally advanced breast cancer patients of South India. J. Clin. Pharm. Ther., 2019, 44(2), 188-196.
[http://dx.doi.org/10.1111/jcpt.12797] [PMID: 30637776]
[29]
Kafka, A.; Sauer, G.; Jaeger, C.; Grundmann, R.; Kreienberg, R.; Zeillinger, R.; Deissler, H. Polymorphism C3435T of the MDR-1 gene predicts response to preoperative chemotherapy in locally advanced breast cancer. Int. J. Oncol., 2003, 22(5), 1117-1121.
[http://dx.doi.org/10.3892/ijo.22.5.1117] [PMID: 12684679]
[30]
Pascual, T.; Apellániz-Ruiz, M.; Pernaut, C.; Cueto-Felgueroso, C.; Villalba, P.; Álvarez, C.; Manso, L.; Inglada-Pérez, L.; Robledo, M.; Rodríguez-Antona, C.; Ciruelos, E. Polymorphisms associated with everolimus pharmacokinetics, toxicity and survival in metastatic breast cancer. PLoS One, 2017, 12(7), e0180192.
[http://dx.doi.org/10.1371/journal.pone.0180192] [PMID: 28727815]
[31]
Cizmarikova, M.; Wagnerova, M.; Schonova, L.; Habalova, V.; Kohut, A.; Linkova, A.; Sarissky, M.; Mojzis, J.; Mirossay, L.; Mirossay, A. MDR1 (C3435T) polymorphism: relation to the risk of breast cancer and therapeutic outcome. Pharmacogenomics J., 2010, 10(1), 62-69.
[http://dx.doi.org/10.1038/tpj.2009.41] [PMID: 19752884]
[32]
Ji, M.; Tang, J.; Zhao, J.; Xu, B.; Qin, J.; Lu, J. Polymorphisms in genes involved in drug detoxification and clinical outcomes of anthracycline-based neoadjuvant chemotherapy in Chinese Han breast cancer patients. Cancer Biol. Ther., 2012, 13(5), 264-271.
[http://dx.doi.org/10.4161/cbt.18920] [PMID: 22310978]
[33]
Wu, H.; Kang, H.; Liu, Y.; Tong, W.; Liu, D.; Yang, X.; Lian, M.; Yao, W.; Zhao, H.; Huang, D.; Sha, X.; Wang, E.; Wei, M. Roles of ABCB1 gene polymorphisms and haplotype in susceptibility to breast carcinoma risk and clinical outcomes. J. Cancer Res. Clin. Oncol., 2012, 138(9), 1449-1462.
[http://dx.doi.org/10.1007/s00432-012-1209-z] [PMID: 22526155]
[34]
Chang, H.; Rha, S.Y.; Jeung, H.C.; Im, C.K.; Ahn, J.B.; Kwon, W.S.; Yoo, N.C.; Roh, J.K.; Chung, H.C. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann. Oncol., 2009, 20(2), 272-277.
[http://dx.doi.org/10.1093/annonc/mdn624] [PMID: 18836089]
[35]
Green, H.; Stål, O.; Bachmeier, K.; Bäcklund, L.M.; Carlsson, L.; Hansen, J.; Lagerlund, M.; Norberg, B.; Franzén, Å.; Åleskog, A.; Malmström, A. Pegylated liposomal doxorubicin as first-line monotherapy in elderly women with locally advanced or metastatic breast cancer: novel treatment predictive factors identified. Cancer Lett., 2011, 313(2), 145-153.
[http://dx.doi.org/10.1016/j.canlet.2011.07.017] [PMID: 22056077]
[36]
Kim, J-W.; Kim, J.H.; Im, S.A.; Kim, Y.J.; Han, H.S.; Kim, J.S.; Han, S.W.; Jeon, Y.K.; Oh, D.Y.; Han, W.; Kim, T.Y.; Park, I.A.; Noh, D.Y.; Bang, Y.J. ABCB1, FCGR2A, and FCGR3A polymorphisms in patients with HER2-positive metastatic breast cancer who were treated with first-line taxane plus trastuzumab chemotherapy. Oncology, 2012, 83(4), 218-227.
[http://dx.doi.org/10.1159/000341359] [PMID: 22906996]
[37]
Bray, J.; Sludden, J.; Griffin, M.J.; Cole, M.; Verrill, M.; Jamieson, D.; Boddy, A.V. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br. J. Cancer, 2010, 102(6), 1003-1009.
[http://dx.doi.org/10.1038/sj.bjc.6605587] [PMID: 20179710]
[38]
Ghafouri, H.; Ghaderi, B.; Amini, S.; Nikkhoo, B.; Abdi, M.; Hoseini, A. Association of ABCB1 and ABCG2 single nucleotide polymorphisms with clinical findings and response to chemotherapy treatments in Kurdish patients with breast cancer. Tumour Biol., 2016, 37(6), 7901-7906.
[http://dx.doi.org/10.1007/s13277-015-4679-1] [PMID: 26700668]
[39]
Lévy, P.; Gligorov, J.; Antoine, M.; Rezai, K.; Lévy, E.; Selle, F.; Saintigny, P.; Lokiec, F.; Avenin, D.; Beerblock, K.; Lotz, J.P.; Bernaudin, J.F.; Fajac, A. Influence of ABCB1 polymorphisms and docetaxel pharmacokinetics on pathological response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res. Treat., 2013, 139(2), 421-428.
[http://dx.doi.org/10.1007/s10549-013-2545-7] [PMID: 23666532]
[40]
Madrid-Paredes, A.; Cañadas-Garre, M.; Sánchez-Pozo, A.; Segura-Pérez, A.M.; Chamorro-Santos, C.; Vergara-Alcaide, E.; Castillo-Portellano, L.; Calleja-Hernández, M.Á. ABCB1 C3435T gene polymorphism as a potential biomarker of clinical outcomes in HER2-positive breast cancer patients. Pharmacol. Res., 2016, 108, 111-118.
[http://dx.doi.org/10.1016/j.phrs.2016.04.016] [PMID: 27137881]
[41]
Vulsteke, C.; Pfeil, A.M.; Schwenkglenks, M.; Pettengell, R.; Szucs, T.D.; Lambrechts, D.; Peeters, M.; van Dam, P.; Dieudonné, A.S.; Hatse, S.; Neven, P.; Paridaens, R.; Wildiers, H. Impact of genetic variability and treatment-related factors on outcome in early breast cancer patients receiving (neo-) adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide, and docetaxel. Breast Cancer Res. Treat., 2014, 147(3), 557-570.
[http://dx.doi.org/10.1007/s10549-014-3105-5] [PMID: 25168315]
[42]
Tecza, K.; Pamula-Pilat, J.; Lanuszewska, J.; Grzybowska, E. Genetic polymorphisms and response to 5-fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer patients. Oncotarget, 2016, 7(41), 66790-66808.
[http://dx.doi.org/10.18632/oncotarget.11053] [PMID: 27527855]
[43]
Ruiz-Pinto, S.; Martin, M.; Pita, G.; Caronia, D.; de la Torre-Montero, J.C.; Moreno, L.T.; Moreno, F.; García-Sáenz, J.Á.; Benítez, J.; González-Neira, A. Pharmacogenetic variants and response to neoadjuvant single-agent doxorubicin or docetaxel: a study in locally advanced breast cancer patients participating in the NCT00123929 phase 2 randomized trial. Pharmacogenet. Genomics, 2018, 28(11), 245-250.
[http://dx.doi.org/10.1097/FPC.0000000000000354] [PMID: 30334909]
[44]
Rumiato, E.; Brunello, A.; Ahcene-Djaballah, S.; Borgato, L.; Gusella, M.; Menon, D.; Pasini, F.; Amadori, A.; Saggioro, D.; Zagonel, V. Predictive markers in elderly patients with estrogen receptor-positive breast cancer treated with aromatase inhibitors: an array-based pharmacogenetic study. Pharmacogenomics J., 2016, 16(6), 525-529.
[http://dx.doi.org/10.1038/tpj.2015.73] [PMID: 26503812]
[45]
Islam, M.S.; Islam, M.S.; Parvin, S.; Ahmed, M.U.; Bin Sayeed, M.S.; Uddin, M.M.; Hussain, S.M.; Hasnat, A. Effect of GSTP1 and ABCC4 gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-5-fluorouracil-based chemotherapy in Bangladeshi breast cancer patients. Tumour Biol., 2015, 36(7), 5451-5457.
[http://dx.doi.org/10.1007/s13277-015-3211-y] [PMID: 25677905]
[46]
Gagno, S. A new genetic risk score to predict the outcome of locally advanced or metastatic breast cancer patients treated with first-line exemestane: Results from a prospective study. Clinical breast cancer, 2019, (2), 137-145. e4
[http://dx.doi.org/10.1016/j.clbc.2018.11.009]
[47]
Dempsey, J.M.; Kidwell, K.M.; Gersch, C.L.; Pesch, A.M.; Desta, Z.; Storniolo, A.M.; Stearns, V.; Skaar, T.C.; Hayes, D.F.; Henry, N.L.; Rae, J.M.; Hertz, D.L. Effects of SLCO1B1 polymorphisms on plasma estrogen concentrations in women with breast cancer receiving aromatase inhibitors exemestane and letrozole. Pharmacogenomics, 2019, 20(8), 571-580.
[http://dx.doi.org/10.2217/pgs-2019-0020] [PMID: 31190621]
[48]
Wang, J.; Wang, T.; Yin, G.Y.; Yang, L.; Wang, Z.G.; Bu, X.B. Glutathione S-transferase polymorphisms influence chemotherapy response and treatment outcome in breast cancer. Genet. Mol. Res., 2015, 14(3), 11126-11132.
[http://dx.doi.org/10.4238/2015.September.22.6] [PMID: 26400343]
[49]
Bai, Y-L.; Zhou, B.; Jing, X.Y.; Zhang, B.; Huo, X.Q.; Ma, C.; He, J.M. Predictive role of GSTs on the prognosis of breast cancer patients with neoadjuvant chemotherapy. Asian Pac. J. Cancer Prev., 2012, 13(10), 5019-5022.
[http://dx.doi.org/10.7314/APJCP.2012.13.10.5019] [PMID: 23244102]
[50]
Petros, W.P.; Hopkins, P.J.; Spruill, S.; Broadwater, G.; Vredenburgh, J.J.; Colvin, O.M.; Peters, W.P.; Jones, R.B.; Hall, J.; Marks, J.R. Associations between drug metabolism genotype, chemotherapy pharmacokinetics, and overall survival in patients with breast cancer. J. Clin. Oncol., 2005, 23(25), 6117-6125.
[http://dx.doi.org/10.1200/JCO.2005.06.075] [PMID: 16087946]
[51]
Li, S.; Lang, G.T.; Zhang, Y.Z.; Yu, K.D.; Shao, Z.M.; Zhang, Q. Interaction between glutathione S-transferase M1-null/present polymorphism and adjuvant chemotherapy influences the survival of breast cancer. Cancer Med., 2018, 7(9), 4202-4207.
[http://dx.doi.org/10.1002/cam4.1567] [PMID: 30032483]
[52]
Romero, A.; Martín, M.; Oliva, B.; de la Torre, J.; Furio, V.; de la Hoya, M.; García-Sáenz, J.A.; Moreno, A.; Román, J.M.; Diaz-Rubio, E.; Caldés, T. Glutathione S-transferase P1 c.313A > G polymorphism could be useful in the prediction of doxorubicin response in breast cancer patients. Ann. Oncol., 2012, 23(7), 1750-1756.
[http://dx.doi.org/10.1093/annonc/mdr483] [PMID: 22052985]
[53]
Yang, G.; Shu, X.O.; Ruan, Z.X.; Cai, Q.Y.; Jin, F.; Gao, Y.T.; Zheng, W. Genetic polymorphisms in glutathione-S-transferase genes (GSTM1, GSTT1, GSTP1) and survival after chemotherapy for invasive breast carcinoma. Cancer, 2005, 103(1), 52-58.
[http://dx.doi.org/10.1002/cncr.20729] [PMID: 15565566]
[54]
Ge, J.; Tian, A.X.; Wang, Q.S.; Kong, P.Z.; Yu, Y.; Li, X.Q.; Cao, X.C.; Feng, Y.M. The GSTP1 105Val allele increases breast cancer risk and aggressiveness but enhances response to cyclophosphamide chemotherapy in North China. PLoS One, 2013, 8(6), e67589.
[http://dx.doi.org/10.1371/journal.pone.0067589] [PMID: 23826324]
[55]
Zhou, L.; Huang, A.; Zhang, D.; Yao, J.; Zhang, Y.; Li, X. Genetic variability of glutathione S-transferases influences treatment outcome of breast cancer. Tumour Biol., 2015, 36(8), 5925-5929.
[http://dx.doi.org/10.1007/s13277-015-3266-9] [PMID: 25773389]
[56]
Yuan, P.; Yuan, L.; Xu, B.L.; Wang, C.Z.; Yang, H.Z.; Li, Y. Predictive potential role of glutathione S-transferases polymorphisms in response to chemotherapy and breast cancer prognosis. Genet. Mol. Res., 2015, 14(4), 16675-16681.
[http://dx.doi.org/10.4238/2015.December.11.15] [PMID: 26681014]
[57]
Sugishita, M.; Imai, T.; Kikumori, T.; Mitsuma, A.; Shimokata, T.; Shibata, T.; Morita, S.; Inada-Inoue, M.; Sawaki, M.; Hasegawa, Y.; Ando, Y. Pharmacogenetic association between GSTP1 genetic polymorphism and febrile neutropenia in Japanese patients with early breast cancer. Breast Cancer, 2016, 23(2), 195-201.
[http://dx.doi.org/10.1007/s12282-014-0547-x] [PMID: 25008867]
[58]
Tulsyan, S.; Chaturvedi, P.; Agarwal, G.; Lal, P.; Agrawal, S.; Mittal, R.D.; Mittal, B. Pharmacogenetic influence of GST polymorphisms on anthracycline-based chemotherapy responses and toxicity in breast cancer patients: a multi-analytical approach. Mol. Diagn. Ther., 2013, 17(6), 371-379.
[http://dx.doi.org/10.1007/s40291-013-0045-4] [PMID: 23812950]
[59]
Tang, J.H.; Zhao, J.H.; Wu, J.Z.; Lu, J.W.; Pan, L.Q.; Xu, Z.Y. Establishment of a multiplex ligation-dependent SNP genotyping method and its application in the detection of genes related to chemotherapeutic drugs in breast cancer. Zhonghua Zhong Liu Za Zhi, 2009, 31(2), 108-113.
[PMID: 19538885]
[60]
Ludovini, V.; Antognelli, C.; Rulli, A.; Foglietta, J.; Pistola, L.; Eliana, R.; Floriani, I.; Nocentini, G.; Tofanetti, F.R.; Piattoni, S.; Minenza, E.; Talesa, V.N.; Sidoni, A.; Tonato, M.; Crinò, L.; Gori, S. Influence of chemotherapeutic drug-related gene polymorphisms on toxicity and survival of early breast cancer patients receiving adjuvant chemotherapy. BMC Cancer, 2017, 17(1), 502.
[http://dx.doi.org/10.1186/s12885-017-3483-2] [PMID: 28747156]
[61]
Zhang, B.L.; Sun, T.; Zhang, B.N.; Zheng, S.; Lü, N.; Xu, B.H.; Wang, X.; Chen, G.J.; Yu, D.K.; Lin, D.X. Polymorphisms of GSTP1 is associated with differences of chemotherapy response and toxicity in breast cancer. Chin. Med. J. (Engl.), 2011, 124(2), 199-204.
[PMID: 21362365]
[62]
Ishiguro, H.; Saji, S.; Nomura, S.; Tanaka, S.; Ueno, T.; Onoue, M.; Iwata, H.; Yamanaka, T.; Sasaki, Y.; Toi, M. A phase I/II pharmacokinetics/pharmacodynamics study of irinotecan combined with S-1 for recurrent/metastatic breast cancer in patients with selected UGT1A1 genotypes (the JBCRG-M01 study). Cancer Med., 2017, 6(12), 2909-2917.
[http://dx.doi.org/10.1002/cam4.1258] [PMID: 29131533]
[63]
Sawyer, M.B. A uridine glucuronosyltransferase 2B7 polymorphism predicts epirubicin clearance and outcomes in early-stage breast cancer. Clin. Breast Can., 2016, 16(2), 139-144. e3
[http://dx.doi.org/10.1016/j.clbc.2015.09.006]
[64]
Li, H.; Hu, B.; Guo, Z.; Jiang, X.; Su, X.; Zhang, X. Correlation of UGT2B7 polymorphism with cardiotoxicity in breast cancer patients undergoing epirubicin/cyclophosphamide-docetaxel adjuvant chemotherapy. Yonsei Med. J., 2019, 60(1), 30-37.
[http://dx.doi.org/10.3349/ymj.2019.60.1.30] [PMID: 30554488]
[65]
Parmar, S.; Stingl, J.C.; Huber-Wechselberger, A.; Kainz, A.; Renner, W.; Langsenlehner, U.; Krippl, P.; Brockmöller, J.; Haschke-Becher, E. Impact of UGT2B7 His268Tyr polymorphism on the outcome of adjuvant epirubicin treatment in breast cancer. Breast Cancer Res., 2011, 13(3), R57.
[http://dx.doi.org/10.1186/bcr2894] [PMID: 21658222]
[66]
Vulsteke, C.; Lambrechts, D.; Dieudonné, A.; Hatse, S.; Brouwers, B.; van Brussel, T.; Neven, P.; Belmans, A.; Schöffski, P.; Paridaens, R.; Wildiers, H. Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC). Ann. Oncol., 2013, 24(6), 1513-1525.
[http://dx.doi.org/10.1093/annonc/mdt008] [PMID: 23396606]
[67]
Zhou, X.; Qiao, G.; Wang, X.; Song, Q.; Morse, M.A.; Hobeika, A.; Gwin, W.R.; Ren, J.; Lyerly, H.K. CYP1A1 genetic polymorphism is a promising predictor to improve chemotherapy effects in patients with metastatic breast cancer treated with docetaxel plus thiotepa vs. docetaxel plus capecitabine. Cancer Chemother. Pharmacol., 2018, 81(2), 365-372.
[http://dx.doi.org/10.1007/s00280-017-3500-9] [PMID: 29242966]
[68]
Dong, N.; Yu, J.; Wang, C.; Zheng, X.; Wang, Z.; Di, L.; Song, G.; Zhu, B.; Che, L.; Jia, J.; Jiang, H.; Zhou, X.; Wang, X.; Ren, J. Pharmacogenetic assessment of clinical outcome in patients with metastatic breast cancer treated with docetaxel plus capecitabine. J. Cancer Res. Clin. Oncol., 2012, 138(7), 1197-1203.
[http://dx.doi.org/10.1007/s00432-012-1183-5] [PMID: 22426923]
[69]
Abdul Aziz, A.A.; Md Salleh, M.S.; Mohamad, I.; Krishna Bhavaraju, V.M.; Mazuwin Yahya, M.; Zakaria, A.D.; Hua Gan, S.; Ankathil, R. Single-nucleotide polymorphisms and mRNA expression of CYP1B1 influence treatment response in triple negative breast cancer patients undergoing chemotherapy. J. Genet., 2018, 97(5), 1185-1194.
[http://dx.doi.org/10.1007/s12041-018-1013-x] [PMID: 30555068]
[70]
Song, Q.; Zhou, X.; Yu, J.; Dong, N.; Wang, X.; Yang, H.; Ren, J.; Lyerly, H.K. The prognostic values of CYP2B6 genetic polymorphisms and metastatic sites for advanced breast cancer patients treated with docetaxel and thiotepa. Sci. Rep., 2015, 5(1), 16775.
[http://dx.doi.org/10.1038/srep16775] [PMID: 26602960]
[71]
Hertz, D.L.; Motsinger-Reif, A.A.; Drobish, A.; Winham, S.J.; McLeod, H.L.; Carey, L.A.; Dees, E.C. CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res. Treat., 2012, 134(1), 401-410.
[http://dx.doi.org/10.1007/s10549-012-2054-0] [PMID: 22527101]
[72]
Seredina, T.A.; Goreva, O.B.; Talaban, V.O.; Grishanova, A.Y.; Lyakhovich, V.V. Association of cytochrome P450 genetic polymorphisms with neoadjuvant chemotherapy efficacy in breast cancer patients. BMC Med. Genet., 2012, 13(1), 45.
[http://dx.doi.org/10.1186/1471-2350-13-45] [PMID: 22702493]
[73]
Damodaran, S.E.; Pradhan, S.C.; Umamaheswaran, G.; Kadambari, D.; Reddy, K.S.; Adithan, C. Genetic polymorphisms of CYP2D6 increase the risk for recurrence of breast cancer in patients receiving tamoxifen as an adjuvant therapy. Cancer Chemother. Pharmacol., 2012, 70(1), 75-81.
[http://dx.doi.org/10.1007/s00280-012-1891-1] [PMID: 22623212]
[74]
Zembutsu, H.; Nakamura, S.; Akashi-Tanaka, S.; Kuwayama, T.; Watanabe, C.; Takamaru, T.; Takei, H.; Ishikawa, T.; Miyahara, K.; Matsumoto, H.; Hasegawa, Y.; Kutomi, G.; Shima, H.; Satomi, F.; Okazaki, M.; Zaha, H.; Onomura, M.; Matsukata, A.; Sagara, Y.; Baba, S.; Yamada, A.; Shimada, K.; Shimizu, D.; Tsugawa, K.; Shimo, A.; Tan, E.Y.; Hartman, M.; Chan, C.W.; Lee, S.C.; Nakamura, Y. Significant effect of polymorphisms in CYP2D6 on response to tamoxifen therapy for breast cancer: a prospective multicenter study. Clin. Cancer Res., 2017, 23(8), 2019-2026.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1779] [PMID: 27797974]
[75]
Stingl, J.C.; Parmar, S.; Huber-Wechselberger, A.; Kainz, A.; Renner, W.; Seeringer, A.; Brockmöller, J.; Langsenlehner, U.; Krippl, P.; Haschke-Becher, E. Impact of CYP2D6*4 genotype on progression free survival in tamoxifen breast cancer treatment. Curr. Med. Res. Opin., 2010, 26(11), 2535-2542.
[http://dx.doi.org/10.1185/03007995.2010.518304] [PMID: 20849243]
[76]
Wegman, P.; Elingarami, S.; Carstensen, J.; Stål, O.; Nordenskjöld, B.; Wingren, S. Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res., 2007, 9(1), R7.
[http://dx.doi.org/10.1186/bcr1640] [PMID: 17244352]
[77]
Bijl, M.J.; van Schaik, R.H.; Lammers, L.A.; Hofman, A.; Vulto, A.G.; van Gelder, T.; Stricker, B.H.; Visser, L.E. The CYP2D6*4 polymorphism affects breast cancer survival in tamoxifen users. Breast Cancer Res. Treat., 2009, 118(1), 125-130.
[http://dx.doi.org/10.1007/s10549-008-0272-2] [PMID: 19189212]
[78]
Abreu, M.H.; Gomes, M.; Menezes, F.; Afonso, N.; Abreu, P.H.; Medeiros, R.; Pereira, D.; Lopes, C. CYP2D6*4 polymorphism: A new marker of response to hormonotherapy in male breast cancer? Breast, 2015, 24(4), 481-486.
[http://dx.doi.org/10.1016/j.breast.2015.04.010] [PMID: 25963137]
[79]
Chin, F.W.; Chan, S.C.; Abdul Rahman, S.; Noor Akmal, S.; Rosli, R. CYP2D6 genetic polymorphisms and phenotypes in different ethnicities of malaysian breast cancer patients. Breast J., 2016, 22(1), 54-62.
[http://dx.doi.org/10.1111/tbj.12518] [PMID: 26510986]
[80]
Sukasem, C.; Sirachainan, E.; Chamnanphon, M.; Pechatanan, K.; Sirisinha, T.; Ativitavas, T.; Panvichian, R.; Ratanatharathorn, V.; Trachu, N.; Chantratita, W. Impact of CYP2D6 polymorphisms on tamoxifen responses of women with breast cancer: a microarray-based study in Thailand. Asian Pac. J. Cancer Prev., 2012, 13(9), 4549-4553.
[http://dx.doi.org/10.7314/APJCP.2012.13.9.4549] [PMID: 23167378]
[81]
Schroth, W.; Goetz, M.P.; Hamann, U.; Fasching, P.A.; Schmidt, M.; Winter, S.; Fritz, P.; Simon, W.; Suman, V.J.; Ames, M.M.; Safgren, S.L.; Kuffel, M.J.; Ulmer, H.U.; Boländer, J.; Strick, R.; Beckmann, M.W.; Koelbl, H.; Weinshilboum, R.M.; Ingle, J.N.; Eichelbaum, M.; Schwab, M.; Brauch, H. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA, 2009, 302(13), 1429-1436.
[http://dx.doi.org/10.1001/jama.2009.1420] [PMID: 19809024]
[82]
Tulsyan, S.; Chaturvedi, P.; Singh, A.K.; Agarwal, G.; Lal, P.; Agrawal, S.; Mittal, R.D.; Mittal, B. Assessment of clinical outcomes in breast cancer patients treated with taxanes: multi-analytical approach. Gene, 2014, 543(1), 69-75.
[http://dx.doi.org/10.1016/j.gene.2014.04.004] [PMID: 24704000]
[83]
Ferraldeschi, R.; Arnedos, M.; Hadfield, K.D.; A’Hern, R.; Drury, S.; Wardley, A.; Howell, A.; Evans, D.G.; Roberts, S.A.; Smith, I.; Newman, W.G.; Dowsett, M. Polymorphisms of CYP19A1 and response to aromatase inhibitors in metastatic breast cancer patients. Breast Cancer Res. Treat., 2012, 133(3), 1191-1198.
[http://dx.doi.org/10.1007/s10549-012-2010-z] [PMID: 22418701]
[84]
Miron, L.; Negură, L.; Peptanariu, D.; Marinca, M. Research on aromatase gene (CYP19A1) polymorphisms as a predictor of endocrine therapy effectiveness in breast cancer. Rev. Med. Chir. Soc. Med. Nat. Iasi, 2012, 116(4), 997-1004.
[PMID: 23700878]
[85]
Liu, L.; Bai, Y.X.; Zhou, J.H.; Sun, X.W.; Sui, H.; Zhang, W.J.; Yuan, H.H.; Xie, R.; Wei, X.L.; Zhang, T.T.; Huang, P.; Li, Y.J.; Wang, J.X.; Zhao, S.; Zhang, Q.Y. A polymorphism at the 3′-UTR region of the aromatase gene is associated with the efficacy of the aromatase inhibitor, anastrozole, in metastatic breast carcinoma. Int. J. Mol. Sci., 2013, 14(9), 18973-18988.
[http://dx.doi.org/10.3390/ijms140918973] [PMID: 24065098]
[86]
Garcia-Casado, Z.; Guerrero-Zotano, A.; Llombart-Cussac, A.; Calatrava, A.; Fernandez-Serra, A.; Ruiz-Simon, A.; Gavila, J.; Climent, M.A.; Almenar, S.; Cervera-Deval, J.; Campos, J.; Albaladejo, C.V.; Llombart-Bosch, A.; Guillem, V.; Lopez-Guerrero, J.A. A polymorphism at the 3′-UTR region of the aromatase gene defines a subgroup of postmenopausal breast cancer patients with poor response to neoadjuvant letrozole. BMC Cancer, 2010, 10(1), 36.
[http://dx.doi.org/10.1186/1471-2407-10-36] [PMID: 20144226]
[87]
Tengström, M.; Mannermaa, A.; Kosma, V.M.; Hirvonen, A.; Kataja, V. SULT1A1 rs9282861 polymorphism-a potential modifier of efficacy of the systemic adjuvant therapy in breast cancer? BMC Cancer, 2012, 12(1), 257.
[http://dx.doi.org/10.1186/1471-2407-12-257] [PMID: 22708928]
[88]
Jamieson, D.; Cresti, N.; Bray, J.; Sludden, J.; Griffin, M.J.; Hawsawi, N.M.; Famie, E.; Mould, E.V.; Verrill, M.W.; May, F.E.; Boddy, A.V. Two minor NQO1 and NQO2 alleles predict poor response of breast cancer patients to adjuvant doxorubicin and cyclophosphamide therapy. Pharmacogenet. Genomics, 2011, 21(12), 808-819.
[http://dx.doi.org/10.1097/FPC.0b013e32834b6918] [PMID: 21946896]
[89]
Fagerholm, R.; Hofstetter, B.; Tommiska, J.; Aaltonen, K.; Vrtel, R.; Syrjäkoski, K.; Kallioniemi, A.; Kilpivaara, O.; Mannermaa, A.; Kosma, V.M.; Uusitupa, M.; Eskelinen, M.; Kataja, V.; Aittomäki, K.; von Smitten, K.; Heikkilä, P.; Lukas, J.; Holli, K.; Bartkova, J.; Blomqvist, C.; Bartek, J.; Nevanlinna, H. NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat. Genet., 2008, 40(7), 844-853.
[http://dx.doi.org/10.1038/ng.155] [PMID: 18511948]
[90]
Yu, K-D.; Huang, A.J.; Fan, L.; Li, W.F.; Shao, Z.M. Genetic variants in oxidative stress-related genes predict chemoresistance in primary breast cancer: a prospective observational study and validation. Cancer Res., 2012, 72(2), 408-419.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2998] [PMID: 22147260]
[91]
Lam, S.W.; van der Noort, V.; van der Straaten, T.; Honkoop, A.H.; Peters, G.J.; Guchelaar, H.J.; Boven, E. Single-nucleotide polymorphisms in the genes of CES2, CDA and enzymatic activity of CDA for prediction of the efficacy of capecitabine-containing chemotherapy in patients with metastatic breast cancer. Pharmacol. Res., 2018, 128, 122-129.
[http://dx.doi.org/10.1016/j.phrs.2017.08.005] [PMID: 28827188]
[92]
Markkula, A.; Simonsson, M.; Rosendahl, A.H.; Gaber, A.; Ingvar, C.; Rose, C.; Jernström, H. Impact of COX2 genotype, ER status and body constitution on risk of early events in different treatment groups of breast cancer patients. Int. J. Cancer, 2014, 135(8), 1898-1910.
[http://dx.doi.org/10.1002/ijc.28831] [PMID: 24599585]
[93]
Dumont, A.; Pannier, D.; Ducoulombier, A.; Tresch, E.; Chen, J.; Kramar, A.; Révillion, F.; Peyrat, J.P.; Bonneterre, J. ERCC1 and CYP1B1 polymorphisms as predictors of response to neoadjuvant chemotherapy in estrogen positive breast tumors. Springerplus, 2015, 4(1), 327.
[http://dx.doi.org/10.1186/s40064-015-1053-0] [PMID: 26180747]
[94]
Yang, X.; Liu, D.; Wu, H.; Kang, H.; Pang, H.; Huang, D.; Sha, X.; Wang, E.; Wang, Z.; Wei, M. Association of XPC polymorphisms with susceptibility and clinical outcome to chemotherapy in breast cancer patients. Cancer Sci., 2012, 103(7), 1207-1214.
[http://dx.doi.org/10.1111/j.1349-7006.2012.02312.x] [PMID: 22519360]
[95]
Chew, H.K.; Doroshow, J.H.; Frankel, P.; Margolin, K.A.; Somlo, G.; Lenz, H.J.; Gordon, M.; Zhang, W.; Yang, D.; Russell, C.; Spicer, D.; Synold, T.; Bayer, R.; Hantel, A.; Stiff, P.J.; Tetef, M.L.; Gandara, D.R.; Albain, K.S. Phase II studies of gemcitabine and cisplatin in heavily and minimally pretreated metastatic breast cancer. J. Clin. Oncol., 2009, 27(13), 2163-2169.
[http://dx.doi.org/10.1200/JCO.2008.17.4839] [PMID: 19307510]
[96]
Przybylowska-Sygut, K.; Stanczyk, M.; Kusinska, R.; Kordek, R.; Majsterek, I. Association of the Arg194Trp and the Arg399Gln polymorphisms of the XRCC1 gene with risk occurrence and the response to adjuvant therapy among Polish women with breast cancer. Clin. Breast Cancer, 2013, 13(1), 61-68.
[http://dx.doi.org/10.1016/j.clbc.2012.09.019] [PMID: 23103366]
[97]
Szkandera, J.; Absenger, G.; Dandachi, N.; Regitnig, P.; Lax, S.; Stotz, M.; Samonigg, H.; Renner, W.; Gerger, A. Analysis of functional germline polymorphisms for prediction of response to anthracycline-based neoadjuvant chemotherapy in breast cancer. Mol. Genet. Genomics, 2012, 287(9), 755-764.
[http://dx.doi.org/10.1007/s00438-012-0715-7] [PMID: 22903472]
[98]
Castro, E.; Olmos, D.; Garcia, A.; Cruz, J.J.; González-Sarmiento, R. Role of XRCC3, XRCC1 and XPD single-nucleotide polymorphisms in survival outcomes following adjuvant chemotherapy in early stage breast cancer patients. Clin. Transl. Oncol., 2014, 16(2), 158-165.
[http://dx.doi.org/10.1007/s12094-013-1055-8] [PMID: 23740134]
[99]
Söderlund Leifler, K.; Asklid, A.; Fornander, T.; Stenmark Askmalm, M. The RAD51 135G>C polymorphism is related to the effect of adjuvant therapy in early breast cancer. J. Cancer Res. Clin. Oncol., 2015, 141(5), 797-804.
[http://dx.doi.org/10.1007/s00432-014-1859-0] [PMID: 25354554]
[100]
Kumar, K.; Vamsy, M.; Jamil, K. Thymidylate synthase gene polymorphisms effecting 5-FU response in breast cancer patients. Cancer Biomark., 2010, 6(2), 83-93.
[http://dx.doi.org/10.3233/CBM-2009-0121] [PMID: 20571234]
[101]
Nordgard, S.H.; Alnaes, G.I.; Hihn, B.; Lingjaerde, O.C.; Liestøl, K.; Tsalenko, A.; Sørlie, T.; Lønning, P.E.; Børresen-Dale, A.L.; Kristensen, V.N. Pathway based analysis of SNPs with relevance to 5-FU therapy: relation to intratumoral mRNA expression and survival. Int. J. Cancer, 2008, 123(3), 577-585.
[http://dx.doi.org/10.1002/ijc.23541] [PMID: 18498133]
[102]
Labonte, M.J.; Wilson, P.M.; Yang, D.; Zhang, W.; Ladner, R.D.; Ning, Y.; Gerger, A.; Bohanes, P.O.; Benhaim, L.; El-Khoueiry, R.; El-Khoueiry, A.; Lenz, H.J. The Cyclin D1 (CCND1) A870G polymorphism predicts clinical outcome to lapatinib and capecitabine in HER2-positive metastatic breast cancer. Ann. Oncol., 2012, 23(6), 1455-1464.
[http://dx.doi.org/10.1093/annonc/mdr445] [PMID: 21989330]
[103]
Wong, A.L-A.; Yap, H.L.; Yeo, W.L.; Soong, R.; Ng, S.S.; Wang, L.Z.; Cordero, M.T.; Yong, W.P.; Goh, B.C.; Lee, S.C. Gemcitabine and platinum pathway pharmacogenetics in Asian breast cancer patients. Cancer Genomics Proteomics, 2011, 8(5), 255-259.
[PMID: 21980041]
[104]
Shrubsole, M.J.; Shu, X.O.; Ruan, Z.X.; Cai, Q.; Cai, H.; Niu, Q.; Gao, Y.T.; Zheng, W. MTHFR genotypes and breast cancer survival after surgery and chemotherapy: a report from the Shanghai Breast Cancer Study. Breast Cancer Res. Treat., 2005, 91(1), 73-79.
[http://dx.doi.org/10.1007/s10549-004-7265-6] [PMID: 15868433]
[105]
Yang, L.; Wang, X.W.; Zhu, L.P.; Wang, H.L.; Wang, B.; Wu, T.; Zhao, Q.; JinSiHan, D.L.; Wang, X.Y. Relationship between genetic polymorphisms of methylenetetrahydrofolate reductase and breast cancer chemotherapy response. Genet. Mol. Res., 2016, 15(3), 15.
[http://dx.doi.org/10.4238/gmr.15038679] [PMID: 27706773]
[106]
Choi, Y.H. An association between RRM1 haplotype and gemcitabine-induced neutropenia in breast cancer patients; , 2007.
[107]
Xu, Y.; Yao, L.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Lin, B.; Lu, Y.; Xie, Y. p53 Codon 72 polymorphism predicts the pathologic response to neoadjuvant chemotherapy in patients with breast cancer. Clin. Cancer Res., 2005, 11(20), 7328-7333.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0507] [PMID: 16243804]
[108]
Okishiro, M.; Kim, S.J.; Tsunashima, R.; Nakayama, T.; Shimazu, K.; Shimomura, A.; Maruyama, N.; Tamaki, Y.; Noguchi, S. MDM2 SNP309 and TP53 R72P associated with severe and febrile neutropenia in breast cancer patients treated with 5-FU/epirubicin/cyclophosphamide. Breast Cancer Res. Treat., 2012, 132(3), 947-953.
[http://dx.doi.org/10.1007/s10549-011-1637-5] [PMID: 21706156]
[109]
Chrisanthar, R.; Knappskog, S.; Løkkevik, E.; Anker, G.; Ostenstad, B.; Lundgren, S.; Risberg, T.; Mjaaland, I.; Skjønsberg, G.; Aas, T.; Schlichting, E.; Fjösne, H.E.; Nysted, A.; Lillehaug, J.R.; Lønning, P.E. Predictive and prognostic impact of TP53 mutations and MDM2 promoter genotype in primary breast cancer patients treated with epirubicin or paclitaxel. PLoS One, 2011, 6(4), e19249.
[http://dx.doi.org/10.1371/journal.pone.0019249] [PMID: 21556366]
[110]
Le Morvan, V.; Litière, S.; Laroche-Clary, A.; Ait-Ouferoukh, S.; Bellott, R.; Messina, C.; Cameron, D.; Bonnefoi, H.; Robert, J. Identification of SNPs associated with response of breast cancer patients to neoadjuvant chemotherapy in the EORTC-10994 randomized phase III trial. Pharmacogenomics J., 2015, 15(1), 63-68.
[http://dx.doi.org/10.1038/tpj.2014.24] [PMID: 24958282]
[111]
DeMichele, A.; Martin, A.M.; Mick, R.; Gor, P.; Wray, L.; Klein- Cabral, M.; Athanasiadis, G.; Colligan, T.; Stadtmauer, E.; Weber, B. Interleukin-6 -174G-->C polymorphism is associated with improved outcome in high-risk breast cancer. Cancer Res., 2003, 63(22), 8051-8056.
[PMID: 14633738]
[112]
DeMichele, A.; Gray, R.; Horn, M.; Chen, J.; Aplenc, R.; Vaughan, W.P.; Tallman, M.S. Host genetic variants in the interleukin-6 promoter predict poor outcome in patients with estrogen receptor- positive, node-positive breast cancer. Cancer Res., 2009, 69(10), 4184-4191.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2989] [PMID: 19435922]
[113]
Di Salvatore, M.; Lo Giudice, L.; Rossi, E.; Santonocito, C.; Nazzicone, G.; Rodriquenz, M.G.; Cappuccio, S.; Inno, A.; Fuso, P.; Orlandi, A.; Strippoli, A.; Capoluongo, E.; Astone, A.; Cassano, A.; Barone, C. Association of IL-8 and eNOS polymorphisms with clinical outcomes in bevacizumab-treated breast cancer patients: an exploratory analysis. Clin. Transl. Oncol., 2016, 18(1), 40-46.
[http://dx.doi.org/10.1007/s12094-015-1334-7] [PMID: 26141413]
[114]
Tamura, K.; Shimizu, C.; Hojo, T.; Akashi-Tanaka, S.; Kinoshita, T.; Yonemori, K.; Kouno, T.; Katsumata, N.; Ando, M.; Aogi, K.; Koizumi, F.; Nishio, K.; Fujiwara, Y. FcγR2A and 3A polymorphisms predict clinical outcome of trastuzumab in both neoadjuvant and metastatic settings in patients with HER2-positive breast cancer. Ann. Oncol., 2011, 22(6), 1302-1307.
[http://dx.doi.org/10.1093/annonc/mdq585] [PMID: 21109570]
[115]
Norton, N.; Olson, R.M.; Pegram, M.; Tenner, K.; Ballman, K.V.; Clynes, R.; Knutson, K.L.; Perez, E.A. Association studies of Fcγ receptor polymorphisms with outcome in HER2+ breast cancer patients treated with trastuzumab in NCCTG (Alliance) Trial N9831. Cancer Immunol. Res., 2014, 2(10), 962-969.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0059] [PMID: 24989892]
[116]
Musolino, A.; Naldi, N.; Dieci, M.V.; Zanoni, D.; Rimanti, A.; Boggiani, D.; Sgargi, P.; Generali, D.G.; Piacentini, F.; Ambroggi, M.; Cagossi, K.; Gianni, L.; Sarti, S.; Bisagni, G.; Ardizzoni, A.; Conte, P.F.; Guarneri, V. Immunoglobulin G fragment C receptor polymorphisms and efficacy of preoperative chemotherapy plus trastuzumab and lapatinib in HER2-positive breast cancer. Pharmacogenomics J., 2016, 16(5), 472-477.
[http://dx.doi.org/10.1038/tpj.2016.51] [PMID: 27378608]
[117]
Musolino, A.; Naldi, N.; Bortesi, B.; Pezzuolo, D.; Capelletti, M.; Missale, G.; Laccabue, D.; Zerbini, A.; Camisa, R.; Bisagni, G.; Neri, T.M.; Ardizzoni, A. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol., 2008, 26(11), 1789-1796.
[http://dx.doi.org/10.1200/JCO.2007.14.8957] [PMID: 18347005]
[118]
Gavin, P.G.; Song, N.; Kim, S.R.; Lipchik, C.; Johnson, N.L.; Bandos, H.; Finnigan, M.; Rastogi, P.; Fehrenbacher, L.; Mamounas, E.P.; Swain, S.M.; Wickerham, D.L.; Geyer, C.E., Jr; Jeong, J.H.; Costantino, J.P.; Wolmark, N.; Paik, S.; Pogue-Geile, K.L. Association of polymorphisms in FCGR2A and FCGR3A with degree of trastuzumab benefit in the adjuvant treatment of ERBB2/HER2–positive breast cancer: analysis of the NSABP B-31 trial. JAMA Oncol., 2017, 3(3), 335-341.
[http://dx.doi.org/10.1001/jamaoncol.2016.4884] [PMID: 27812689]
[119]
Griseri, P.; Bourcier, C.; Hieblot, C.; Essafi-Benkhadir, K.; Chamorey, E.; Touriol, C.; Pagès, G. A synonymous polymorphism of the Tristetraprolin (TTP) gene, an AU-rich mRNA-binding protein, affects translation efficiency and response to Herceptin treatment in breast cancer patients. Hum. Mol. Genet., 2011, 20(23), 4556-4568.
[http://dx.doi.org/10.1093/hmg/ddr390] [PMID: 21875902]
[120]
Marmé, F.; Werft, W.; Walter, A.; Keller, S.; Wang, X.; Benner, A.; Burwinkel, B.; Sinn, P.; Hug, S.; Sohn, C.; Bretz, N.; Moldenhauer, G.; Rupp, C.; Rupp, A.K.; Biakhov, M.Y.; Bottini, A.; Friedrichs, K.; Khailenko, V.A.; Manikhas, G.M.; Ruiz, A.; Sánchez-Rovira, P.; Santoro, A.; Segui, M.A.; Villena, C.; Lichter, P.; Kristiansen, G.; Altevogt, P.; Schneeweiss, A. CD24 Ala57Val polymorphism predicts pathologic complete response to sequential anthracycline- and taxane-based neoadjuvant chemotherapy for primary breast cancer. Breast Cancer Res. Treat., 2012, 132(3), 819-831.
[http://dx.doi.org/10.1007/s10549-011-1759-9] [PMID: 21960110]
[121]
Zhou, X. CD24 polymorphisms cannot predict pathologic complete response to anthracycline- and taxane-based neoadjuvant chemotherapy in breast cancer. Clin. Breast Cancer, 2014, 14(2), e33-e40.
[http://dx.doi.org/10.1016/j.clbc.2013.11.001] [PMID: 24393851]
[122]
Moreno-Muñoz, D.; de la Haba-Rodríguez, J.R.; Conde, F.; López-Sánchez, L.M.; Valverde, A.; Hernández, V.; Martínez, A.; Villar, C.; Gómez-España, A.; Porras, I.; Rodríguez-Ariza, A.; Aranda, E. Genetic variants in the renin-angiotensin system predict response to bevacizumab in cancer patients. Eur. J. Clin. Invest., 2015, 45(12), 1325-1332.
[http://dx.doi.org/10.1111/eci.12557] [PMID: 26509357]
[123]
Etienne-Grimaldi, M.C.; Formento, P.; Degeorges, A.; Pierga, J.Y.; Delva, R.; Pivot, X.; Dalenc, F.; Espié, M.; Veyret, C.; Formento, J.L.; Francoual, M.; Piutti, M.; de Crémoux, P.; Milano, G. Prospective analysis of the impact of VEGF-A gene polymorphisms on the pharmacodynamics of bevacizumab-based therapy in metastatic breast cancer patients. Br. J. Clin. Pharmacol., 2011, 71(6), 921-928.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03896.x] [PMID: 21204912]
[124]
Koutras, A.K.; Kotoula, V.; Papadimitriou, C.; Dionysopoulos, D.; Zagouri, F.; Kalofonos, H.P.; Kourea, H.P.; Skarlos, D.V.; Samantas, E.; Papadopoulou, K.; Kosmidis, P.; Pectasides, D.; Fountzilas, G. Vascular endothelial growth factor polymorphisms and clinical outcome in patients with metastatic breast cancer treated with weekly docetaxel. Pharmacogenomics J., 2014, 14(3), 248-255.
[http://dx.doi.org/10.1038/tpj.2013.36] [PMID: 24061601]
[125]
Hein, A.; Lambrechts, D.; von Minckwitz, G.; Häberle, L.; Eidtmann, H.; Tesch, H.; Untch, M.; Hilfrich, J.; Schem, C.; Rezai, M.; Gerber, B.; Dan Costa, S.; Blohmer, J.U.; Schwedler, K.; Kittel, K.; Fehm, T.; Kunz, G.; Beckmann, M.W.; Ekici, A.B.; Hanusch, C.; Huober, J.; Liedtke, C.; Mau, C.; Moisse, M.; Müller, V.; Nekljudova, V.; Peuteman, G.; Rack, B.; Rübner, M.; Van Brussel, T.; Wang, L.; Weinshilboum, R.M.; Loibl, S.; Fasching, P.A. Genetic variants in VEGF pathway genes in neoadjuvant breast cancer patients receiving bevacizumab: Results from the randomized phase III GeparQuinto study. Int. J. Cancer, 2015, 137(12), 2981-2988.
[http://dx.doi.org/10.1002/ijc.29656] [PMID: 26100253]
[126]
de Groot, S.; Charehbili, A.; van Laarhoven, H.W.; Mooyaart, A.L.; Dekker-Ensink, N.G.; van de Ven, S.; Janssen, L.G.; Swen, J.J.; Smit, V.T.; Heijns, J.B.; Kessels, L.W.; van der Straaten, T.; Böhringer, S.; Gelderblom, H.; van der Hoeven, J.J.; Guchelaar, H.J.; Pijl, H.; Kroep, J.R. Insulin-like growth factor 1 receptor expression and IGF1R 3129G > T polymorphism are associated with response to neoadjuvant chemotherapy in breast cancer patients: results from the NEOZOTAC trial (BOOG 2010-01). Breast Cancer Res., 2016, 18(1), 3.
[http://dx.doi.org/10.1186/s13058-015-0663-3] [PMID: 26738606]
[127]
Lundin, A-C.; Söderkvist, P.; Eriksson, B.; Bergman-Jungeström, M.; Wingren, S. Association of breast cancer progression with a vitamin D receptor gene polymorphism. Cancer Res., 1999, 59(10), 2332-2334.
[PMID: 10344739]
[128]
Babyshkina, N.; Vtorushin, S.; Zavyalova, M.; Patalyak, S.; Dronova, T.; Litviakov, N.; Slonimskaya, E.; Kzhyshkowska, J.; Cherdyntseva, N.; Choynzonov, E. The distribution pattern of ERα expression, ESR1 genetic variation and expression of growth factor receptors: association with breast cancer prognosis in Russian patients treated with adjuvant tamoxifen. Clin. Exp. Med., 2017, 17(3), 383-393.
[http://dx.doi.org/10.1007/s10238-016-0428-z] [PMID: 27225751]
[129]
Markiewicz, A.; Wełnicka-Jaśkiewicz, M.; Skokowski, J.; Jaśkiewicz, J.; Szade, J.; Jassem, J.; Zaczek, A.J. Prognostic significance of ESR1 amplification and ESR1 PvuII, CYP2C19*2, UGT2B15*2 polymorphisms in breast cancer patients. PLoS One, 2013, 8(8), e72219.
[http://dx.doi.org/10.1371/journal.pone.0072219] [PMID: 23951298]
[130]
Wu, L.; Yao, L.; Zhang, H.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Fan, T.; Lin, B.; Yin, C.C.; Xie, Y. A genome-wide association study identifies WT1 variant with better response to 5-fluorouracil, pirarubicin and cyclophosphamide neoadjuvant chemotherapy in breast cancer patients. Oncotarget, 2016, 7(4), 5042-5052.
[http://dx.doi.org/10.18632/oncotarget.5837] [PMID: 26573232]
[131]
Sheu, M-J.; Hsieh, M.J.; Chiang, W.L.; Yang, S.F.; Lee, H.L.; Lee, L.M.; Yeh, C.B. Fibroblast growth factor receptor 4 polymorphism is associated with liver cirrhosis in hepatocarcinoma. PLoS One, 2015, 10(4), e0122961.
[http://dx.doi.org/10.1371/journal.pone.0122961] [PMID: 25860955]
[132]
Howe, L.R.; Brown, P.H. Targeting the HER/EGFR/ErbB family to prevent breast cancer. Cancer Prev. Res. (Phila.), 2011, 4(8), 1149-1157.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0334] [PMID: 21816844]
[133]
Moghbeli, M.; Makhdoumi, Y.; Soltani Delgosha, M.; Aarabi, A.; Dadkhah, E.; Memar, B.; Abdollahi, A.; Abbaszadegan, M.R. ErbB1 and ErbB3 co-over expression as a prognostic factor in gastric cancer. Biol. Res., 2019, 52(1), 2. 1547ACCESS.
[http://dx.doi.org/10.1186/s40659-018-0208-1] [PMID: 30621788]
[134]
Sun, Y-L.; Patel, A.; Kumar, P.; Chen, Z.S. Role of ABC transporters in cancer chemotherapy. Chin. J. Cancer, 2012, 31(2), 51-57.
[http://dx.doi.org/10.5732/cjc.011.10466] [PMID: 22257384]
[135]
Ashariati, A. Polymorphism C3435T of the MDR-1 gene predict response to preoperative chemotherapy in locally advanced breast cancer with Her2/neu expression. Acta Med. Indones., 2008, 40(4), 187-191.
[PMID: 19151448]
[136]
Miura, M.; Satoh, S.; Inoue, K.; Kagaya, H.; Saito, M.; Inoue, T.; Suzuki, T.; Habuchi, T. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur. J. Clin. Pharmacol., 2007, 63(12), 1161-1169.
[http://dx.doi.org/10.1007/s00228-007-0380-7] [PMID: 17906856]
[137]
Moaven, O.; Raziee, H.R.; Sima, H.R.; Ganji, A.; Malekzadeh, R.; A’rabi, A.; Abdollahi, A.; Memar, B.; Sotoudeh, M.; Naseh, H.; Nekoui, N.; Razavipour, A.; Gholamin, M.; Dadkhah, E.; Farshchian, M.; Abbaszadegan, M.R. Interactions between Glutathione-S-Transferase M1, T1 and P1 polymorphisms and smoking, and increased susceptibility to esophageal squamous cell carcinoma. Cancer Epidemiol., 2010, 34(3), 285-290.
[http://dx.doi.org/10.1016/j.canep.2010.03.009] [PMID: 20409775]
[138]
Oliveira, A.L.; Rodrigues, F.F.; Santos, R.E.; Aoki, T.; Rocha, M.N.; Longui, C.A.; Melo, M.B. GSTT1, GSTM1, and GSTP1 polymorphisms and chemotherapy response in locally advanced breast cancer. Genet. Mol. Res., 2010, 9(2), 1045-1053.
[http://dx.doi.org/10.4238/vol9-2gmr726] [PMID: 20568049]
[139]
Forghanifard, M.M.; Aarabi, A.; Nasiri Aghdam, M.; Memar, B.; Hasanzadeh Khayat, M.; Dadkhah, E.; Abbaszadegan, M.R. GSTs polymorphisms are associated with epigenetic silencing of CDKN2A gene in esophageal squamous cell carcinoma. Environ. Sci. Pollut. Res. Int., 2020, 27(25), 31269-31277.
[http://dx.doi.org/10.1007/s11356-020-09408-6] [PMID: 32488710]
[140]
Li, J.; Bluth, M.H. Pharmacogenomics of drug metabolizing enzymes and transporters: implications for cancer therapy. Pharm. Genomics Pers. Med., 2011, 4, 11-33.
[PMID: 23226051]
[141]
Lynch, T.; Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician, 2007, 76(3), 391-396.
[PMID: 17708140]
[142]
Androutsopoulos, V.P.; Tsatsakis, A.M.; Spandidos, D.A. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer, 2009, 9(1), 187.
[http://dx.doi.org/10.1186/1471-2407-9-187] [PMID: 19531241]
[143]
Rodriguez-Antona, C.; Ingelman-Sundberg, M. Cytochrome P450 pharmacogenetics and cancer. Oncogene, 2006, 25(11), 1679-1691.
[http://dx.doi.org/10.1038/sj.onc.1209377] [PMID: 16550168]
[144]
Li, J.; Kim, S.; Sha, X.; Wiegand, R.; Wu, J.; LoRusso, P. Complex disease-, gene-, and drug-drug interactions: impacts of renal function, CYP2D6 phenotype, and OCT2 activity on veliparib pharmacokinetics. Clin. Cancer Res., 2014, 20(15), 3931-3944.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0791] [PMID: 24947923]
[145]
Tulsyan, S.; Agarwal, G.; Lal, P.; Mittal, B. Significant role of CYP450 genetic variants in cyclophosphamide based breast cancer treatment outcomes: a multi-analytical strategy. Clin. Chim. Acta, 2014, 434, 21-28.
[http://dx.doi.org/10.1016/j.cca.2014.04.009] [PMID: 24768782]
[146]
Wang, L.; Ellsworth, K.A.; Moon, I.; Pelleymounter, L.L.; Eckloff, B.W.; Martin, Y.N.; Fridley, B.L.; Jenkins, G.D.; Batzler, A.; Suman, V.J.; Ravi, S.; Dixon, J.M.; Miller, W.R.; Wieben, E.D.; Buzdar, A.; Weinshilboum, R.M.; Ingle, J.N. Functional genetic polymorphisms in the aromatase gene CYP19 vary the response of breast cancer patients to neoadjuvant therapy with aromatase inhibitors. Cancer Res., 2010, 70(1), 319-328.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3224] [PMID: 20048079]
[147]
Liang, G.; Miao, X.; Zhou, Y.; Tan, W.; Lin, D. A functional polymorphism in the SULT1A1 gene (G638A) is associated with risk of lung cancer in relation to tobacco smoking. Carcinogenesis, 2004, 25(5), 773-778.
[http://dx.doi.org/10.1093/carcin/bgh053] [PMID: 14688021]
[148]
Vasiliou, V.; Ross, D.; Nebert, D.W. Update of the NAD(P)H:quinone oxidoreductase (NQO) gene family. Hum. Genomics, 2006, 2(5), 329-335.
[http://dx.doi.org/10.1186/1479-7364-2-5-329] [PMID: 16595077]
[149]
Merali, Z.; Ross, S.; Paré, G. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. Drug Metabol. Drug Interact., 2014, 29(3), 143-151.
[http://dx.doi.org/10.1515/dmdi-2014-0009] [PMID: 24988246]
[150]
Potter, P.M.; Wadkins, R.M. Carboxylesterases--detoxifying enzymes and targets for drug therapy. Curr. Med. Chem., 2006, 13(9), 1045-1054.
[http://dx.doi.org/10.2174/092986706776360969] [PMID: 16611083]
[151]
Ferrandina, G.; Lauriola, L.; Zannoni, G.F.; Fagotti, A.; Fanfani, F.; Legge, F.; Maggiano, N.; Gessi, M.; Mancuso, S.; Ranelletti, F.O.; Scambia, G. Increased cyclooxygenase-2 (COX-2) expression is associated with chemotherapy resistance and outcome in ovarian cancer patients. Ann. Oncol., 2002, 13(8), 1205-1211.
[http://dx.doi.org/10.1093/annonc/mdf207] [PMID: 12181243]
[152]
Tang, D.; Cho, S.; Rundle, A.; Chen, S.; Phillips, D.; Zhou, J.; Hsu, Y.; Schnabel, F.; Estabrook, A.; Perera, F.P. Polymorphisms in the DNA repair enzyme XPD are associated with increased levels of PAH-DNA adducts in a case-control study of breast cancer. Breast Cancer Res. Treat., 2002, 75(2), 159-166.
[http://dx.doi.org/10.1023/A:1019693504183] [PMID: 12243508]
[153]
Mailand, N.; Bekker-Jensen, S.; Faustrup, H.; Melander, F.; Bartek, J.; Lukas, C.; Lukas, J. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell, 2007, 131(5), 887-900.
[http://dx.doi.org/10.1016/j.cell.2007.09.040] [PMID: 18001824]
[154]
Lee, H-J.; Li, C.F.; Ruan, D.; Powers, S.; Thompson, P.A.; Frohman, M.A.; Chan, C.H. The DNA damage transducer RNF8 facilitates cancer chemoresistance and progression through twist activation. Mol. Cell, 2016, 63(6), 1021-1033.
[http://dx.doi.org/10.1016/j.molcel.2016.08.009] [PMID: 27618486]
[155]
Irminger-Finger, I.; Ratajska, M.; Pilyugin, M. New concepts on BARD1: Regulator of BRCA pathways and beyond. Int. J. Biochem. Cell Biol., 2016, 72, 1-17.
[http://dx.doi.org/10.1016/j.biocel.2015.12.008] [PMID: 26738429]
[156]
Canalle, R.; Silveira, V.S.; Scrideli, C.A.; Queiroz, R.G.; Lopes, L.F.; Tone, L.G. Impact of thymidylate synthase promoter and DNA repair gene polymorphisms on susceptibility to childhood acute lymphoblastic leukemia. Leuk. Lymphoma, 2011, 52(6), 1118-1126.
[http://dx.doi.org/10.3109/10428194.2011.559672] [PMID: 21463130]
[157]
Ergul, E.; Sazci, A.; Utkan, Z.; Canturk, N.Z. Polymorphisms in the MTHFR gene are associated with breast cancer. Tumour Biol., 2003, 24(6), 286-290.
[http://dx.doi.org/10.1159/000076460] [PMID: 15004488]
[158]
Lee, S-Y.; Im, S.A.; Park, Y.H.; Woo, S.Y.; Kim, S.; Choi, M.K.; Chang, W.; Ahn, J.S.; Im, Y.H. Genetic polymorphisms of SLC28A3, SLC29A1 and RRM1 predict clinical outcome in patients with metastatic breast cancer receiving gemcitabine plus paclitaxel chemotherapy. Eur. J. Cancer, 2014, 50(4), 698-705.
[http://dx.doi.org/10.1016/j.ejca.2013.11.028] [PMID: 24361227]
[159]
Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M. Mdm2 promotes the rapid degradation of p53. Nature, 1997, 387(6630), 296-299.
[http://dx.doi.org/10.1038/387296a0] [PMID: 9153395]
[160]
Taghavi, N.; Biramijamal, F.; Sotoudeh, M.; Khademi, H.; Malekzadeh, R.; Moaven, O.; Memar, B.; A’rabi, A.; Abbaszadegan, M.R. p16INK4a hypermethylation and p53, p16 and MDM2 protein expression in esophageal squamous cell carcinoma. BMC Cancer, 2010, 10(1), 138.
[http://dx.doi.org/10.1186/1471-2407-10-138] [PMID: 20388212]
[161]
Wang, M-J.; Luo, Y.J.; Shi, Z.Y.; Xu, X.L.; Yao, G.L.; Liu, R.P.; Zhao, H. The associations between MDM4 gene polymorphisms and cancer risk. Oncotarget, 2016, 7(34), 55611-55623.
[http://dx.doi.org/10.18632/oncotarget.10877] [PMID: 27742919]
[162]
Masjedi, A.; Hashemi, V.; Hojjat-Farsangi, M.; Ghalamfarsa, G.; Azizi, G.; Yousefi, M.; Jadidi-Niaragh, F. The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed. Pharmacother., 2018, 108, 1415-1424.
[http://dx.doi.org/10.1016/j.biopha.2018.09.177] [PMID: 30372844]
[163]
Enholm, B.; Paavonen, K.; Ristimäki, A.; Kumar, V.; Gunji, Y.; Klefstrom, J.; Kivinen, L.; Laiho, M.; Olofsson, B.; Joukov, V.; Eriksson, U.; Alitalo, K. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene, 1997, 14(20), 2475-2483.
[http://dx.doi.org/10.1038/sj.onc.1201090] [PMID: 9188862]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy