Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Anti-Inflammatory, Anti-Oxidant, and Anti-Lipaemic Effects of Daily Dietary Coenzyme-Q10 Supplement in a Mouse Model of Metabolic Syndrome

Author(s): Olakunle J. Onaolapo, Sarafa A. Omotoso, Anthony T. Olofinnade and Adejoke Y. Onaolapo*

Volume 20, Issue 4, 2021

Published on: 27 April, 2021

Page: [380 - 388] Pages: 9

DOI: 10.2174/1871523020666210427111328

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The dietary model of metabolic syndrome has continued to aid our understanding of its pathogenesis and possible management interventions. However, despite progress in research, therapy continues to be challenging for humans; hence, the search for newer treatment and prevention options continues.

Objective: The objective of this study was to evaluate the impact of dietary CQ10 supplementation on metabolic, oxidative, and inflammatory markers in a diet-induced mouse model of metabolic syndrome.

Methods: Mouse groups were fed a Standard Diet (SD), High-Fat High-Sugar (HFHS) diet, and SD or HFHS diet (with incorporated CQ10) at 60 and 120 mg/kg of feed. At the completion of the study (8 weeks), blood glucose levels, Superoxide Dismutase (SOD) activity, plasma insulin, leptin, adiponectin, TNF-α, IL-10, serum lipid profile, and Lipid Peroxidation (LPO) levels were assessed. The liver was either homogenised for the assessment of antioxidant status or processed for general histology.

Results: Dietary CQ10 mitigated HFHS diet-induced weight gain, decreased glucose, insulin, and leptin levels, and increased adiponectin levels in mice. Coenzyme-Q10 improved the antioxidant status of the liver and blood in HFHS diet-fed mice while also decreasing lipid peroxidation. Lipid profile improved, level of TNF-α decreased, and IL-10 increased following CQ10 diet. A mitigation of HFHS diet-induced alteration in liver morphology was also observed with CQ10.

Conclusion: Dietary CQ10 supplementation mitigates HFHS diet-induced changes in mice, possibly through its anti-oxidant, anti-lipaemic, and anti-inflammatory potential.

Keywords: Diet, inflammation, lipid dysmetabolism, metabolism, nutrients, oxidative stress.

Graphical Abstract
[1]
Onaolapo, A.Y.; Adebisi, E.O.; Adeleye, A.E.; Olofinnade, A.T.; Onaolapo, O.J. Dietary melatonin protects against behavioural, metabolic, oxidative, and organ morphological changes in mice that are fed high-fat, high-sugar diet. Endocr. Metab. Immune Disord. Drug Targets, 2019, 20(4), 570-583.
[http://dx.doi.org/10.2174/1871530319666191009161228] [PMID: 32138638]
[2]
Sigit, F.S.; Tahapary, D.L.; Trompet, S.; Sartono, E.; Willems van Dijk, K.; Rosendaal, F.R.; de Mutsert, R. The prevalence of metabolic syndrome and its association with body fat distribution in middle-aged individuals from Indonesia and the Netherlands: A cross-sectional analysis of two population-based studies. Diabetol. Metab. Syndr., 2020, 12, 2.
[http://dx.doi.org/10.1186/s13098-019-0503-1] [PMID: 31921359]
[3]
Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The metabolic syndrome. Endocr. Rev., 2008, 29(7), 777-822.
[http://dx.doi.org/10.1210/er.2008-0024] [PMID: 18971485]
[4]
World Health Organization. Global action plan for the prevention and control of non communicable diseases., 2013-2020. 2013, 1-55.
[5]
Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: A systematic review. BMC Public Health, 2017, 17(1), 101.
[http://dx.doi.org/10.1186/s12889-017-4041-1] [PMID: 28109251]
[6]
Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 2004, 114(12), 1752-1761.
[http://dx.doi.org/10.1172/JCI21625] [PMID: 15599400]
[7]
Xu, Z.; Huo, J.; Ding, X.; Yang, M.; Li, L.; Dai, J.; Hosoe, K.; Kubo, H.; Mori, M.; Higuchi, K.; Sawashita, J. Coenzyme Q10 Improves Lipid Metabolism and Ameliorates Obesity by Regulating CaMKII-Mediated PDE4 Inhibition. Sci. Rep., 2017, 7(1), 8253.
[http://dx.doi.org/10.1038/s41598-017-08899-7] [PMID: 28811612]
[8]
Cooper, S.A.; Whaley-Connell, A.; Habibi, J.; Wei, Y.; Lastra, G.; Manrique, C.; Stas, S.; Sowers, J.R. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(4), H2009-H2023.
[http://dx.doi.org/10.1152/ajpheart.00522.2007] [PMID: 17586614]
[9]
Kim, JA; Wei, Y; Sowers, JR Role of mitochondrial dysfunction in insulin resistanceCirc Res. 2008, 102(4), 401-414.
[10]
Sowers, J.R.; Whaley-Connell, A.; Epstein, M. Narrative review: The emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann. Intern. Med., 2009, 150(11), 776-783.
[http://dx.doi.org/10.7326/0003-4819-150-11-200906020-00005] [PMID: 19487712]
[11]
Ren, J.; Pulakat, L.; Whaley-Connell, A.; Sowers, J.R. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med. (Berl.), 2010, 88(10), 993-1001.
[http://dx.doi.org/10.1007/s00109-010-0663-9] [PMID: 20725711]
[12]
Nishio, Y.; Kanazawa, A.; Nagai, Y.; Inagaki, H.; Kashiwagi, A. Regulation and role of the mitochondrial transcription factor in the diabetic rat heart. Ann. N. Y. Acad. Sci., 2004, 1011, 78-85.
[http://dx.doi.org/10.1196/annals.1293.009] [PMID: 15126286]
[13]
Nisoli, E.; Clementi, E.; Carruba, M.O.; Moncada, S. Defective mitochondrial biogenesis: A hallmark of the high cardiovascular risk in the metabolic syndrome? Circ. Res., 2007, 100(6), 795-806.
[http://dx.doi.org/10.1161/01.RES.0000259591.97107.6c] [PMID: 17395885]
[14]
Lowell, B.B.; Shulman, G.I. Mitochondrial dysfunction and type 2 diabetes. Science, 2005, 307(5708), 384-387.
[http://dx.doi.org/10.1126/science.1104343] [PMID: 15662004]
[15]
Molyneux, S.L.; Young, J.M.; Florkowski, C.M.; Lever, M.; George, P.M. Coenzyme Q10: Is there a clinical role and a case for measurement? Clin. Biochem. Rev., 2008, 29(2), 71-82.
[PMID: 18787645]
[16]
Huang, C.H.; Kuo, C.L.; Huang, C.S.; Tseng, W.M.; Lian, I.B.; Chang, C.C.; Liu, C.S. High plasma coenzyme Q10 concentration is correlated with good left ventricular performance after primary angioplasty in patients with acute myocardial infarction. Medicine (Baltimore), 2016, 95(31), e4501.
[http://dx.doi.org/10.1097/MD.0000000000004501] [PMID: 27495100]
[17]
Onaolapo, O.J.; Odeniyi, A.O.; Jonathan, S.O.; Samuel, M.O.; Amadiegwu, D.; Olawale, A.; Tiamiyu, A.O.; Ojo, F.O.; Yahaya, H.A.; Ayeni, O.J.; Onaolapo, A.Y. An investigation of the anti- Parkinsonism potential of co-enzyme Q10 and co-enzyme Q10 /levodopa-carbidopa combination in mice. Curr. Aging Sci., 2019.
[http://dx.doi.org/10.2174/1874609812666191023153724] [PMID: 31702498]
[18]
Zozina, V.I.; Covantev, S.; Goroshko, O.A.; Krasnykh, L.M.; Kukes, V.G. Coenzyme Q10 in Cardiovascular and Metabolic Diseases: Current State of the Problem. Curr. Cardiol. Rev., 2018, 14(3), 164-174.
[http://dx.doi.org/10.2174/1573403X14666180416115428] [PMID: 29663894]
[19]
Flowers, N.; Hartley, L.; Todkill, D.; Stranges, S.; Rees, K. Co-enzyme Q10 supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev., 2014, (12), CD010405.
[http://dx.doi.org/10.1002/14651858.CD010405.pub2] [PMID: 25474484]
[20]
Hargreaves, I.P. Coenzyme Q10 as a therapy for mitochondrial disease. Int. J. Biochem. Cell Biol., 2014, 49, 105-111.
[http://dx.doi.org/10.1016/j.biocel.2014.01.020] [PMID: 24495877]
[21]
Garrido-Maraver, J.; Cordero, M.D.; Oropesa-Avila, M.; Vega, A.F.; de la Mata, M.; Pavon, A.D.; Alcocer-Gomez, E.; Calero, C.P.; Paz, M.V.; Alanis, M.; de Lavera, I.; Cotan, D.; Sanchez-Alcazar, J.A. Clinical applications of coenzyme Q10. Front. Biosci., 2014, 19, 619-633.
[http://dx.doi.org/10.2741/4231] [PMID: 24389208]
[22]
Moazen, M.; Mazloom, Z.; Ahmadi, A.; Dabbaghmanesh, M.H.; Roosta, S. Effect of coenzyme Q10 on glycaemic control, oxidative stress and adiponectin in type 2 diabetes. J. Pak. Med. Assoc., 2015, 65(4), 404-408.
[PMID: 25976576]
[23]
Hernández-Camacho, J.D.; Bernier, M.; López-Lluch, G.; Navas, P. Coenzyme Q10 supplementation in aging and disease. Front. Physiol., 2018, 9, 44.
[http://dx.doi.org/10.3389/fphys.2018.00044] [PMID: 29459830]
[24]
Mezawa, M.; Takemoto, M.; Onishi, S.; Ishibashi, R.; Ishikawa, T.; Yamaga, M.; Fujimoto, M.; Okabe, E.; He, P.; Kobayashi, K.; Yokote, K. The reduced form of coenzyme Q10 improves glycemic control in patients with type 2 diabetes: An open label pilot study. Biofactors, 2012, 38(6), 416-421.
[http://dx.doi.org/10.1002/biof.1038] [PMID: 22887051]
[25]
Onaolapo, A.Y.; Onaolapo, O.J.; Nwoha, P.U. Alterations in behaviour, cerebral cortical morphology and cerebral oxidative stress markers following aspartame ingestion. J. Chem. Neuroanat., 2016, 78, 42-56.
[http://dx.doi.org/10.1016/j.jchemneu.2016.08.006] [PMID: 27565676]
[26]
Onaolapo, A.Y.; Odetunde, I.; Akintola, A.S.; Ogundeji, M.O.; Ajao, A.; Obelawo, A.Y.; Onaolapo, O.J. Dietary composition modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice. Biomed. Pharmacother., 2019, 109, 417-428.
[http://dx.doi.org/10.1016/j.biopha.2018.10.172] [PMID: 30399577]
[27]
Onaolapo, A.Y.; Onaolapo, O.J.; Adewole, O.S. Ocimum gratissimumlinn worsens streptozotocin-induced nephrotoxicity in diabetic Wistar rats. Maced. J. Med. Sci., 2012, 5, 382-388.
[http://dx.doi.org/10.3889/MJMS.1857-5773.2011.0206]
[28]
Mollica, A.; Zengin, G.; Locatelli, M.; Stefanucci, A.; Macedonio, G.; Bellagamba, G.; Onaolapo, O.; Onaolapo, A.; Azeez, F.; Ayileka, A.; Novellino, E. An assessment of the nutraceutical potential of Juglans regia L. leaf powder in diabetic rats. Food Chem. Toxicol., 2017, 107(Pt B), 554-564.
[http://dx.doi.org/10.1016/j.fct.2017.03.056] [PMID: 28366844]
[29]
Mollica, A.; Stefanucci, S.; Macedonio, G.; Locatelli, M.; Onaolapo, O.J.; Onaolapo, A.Y. Adegoke J, OlaniyanM, NovellinoE. Capparisspinosa L: In vivo and in vitro evaluation of the anti-diabetic and anti-hyperlipidaemic activity. J. Funct. Foods, 2017, 35, 32-42.
[http://dx.doi.org/10.1016/j.jff.2017.05.001]
[30]
Mollica, A.; Zengin, G.; Stefanucci, A.; Ferrante, C.; Menghini, L.; Orlando, G.; Brunetti, L.; Locatelli, M.; Dimmito, M.P.; Novellino, E.; Wakeel, O.K.; Ogundeji, M.O.; Onaolapo, A.Y.; Onaolapo, O.J. Nutraceutical potential of Corylusavellana daily supplements for obesity and related dysmetabolism. J. Funct. Foods, 2018, 47, 562-574.
[http://dx.doi.org/10.1016/j.jff.2018.06.016]
[31]
Onaolapo, AY; Ayeni, OJ; Ogundeji, MO; Ajao, A; Onaolapo, OJ; Owolabi, AR Subchronic ketamine alters behaviour, metabolic indices and brain morphology in adolescent rats: Involvement of oxidative stress, glutamate toxicity and caspase-3 mediated apoptosis. J. Chem. Neuroanat., 2019, 96, 22-33.
[http://dx.doi.org/10.1016/j.jchemneu.2018.12.002]
[32]
Onaolapo, O.J.; Ademakinwa, O.Q.; Olalekan, T.O.; Onaolapo, A.Y. Ketamine-induced behavioural and brain oxidative changes in mice: An assessment of possible beneficial effects of zinc as mono- or adjunct therapy. Psychopharmacology (Berl.), 2017, 234(18), 2707-2725.
[http://dx.doi.org/10.1007/s00213-017-4666-x] [PMID: 28612134]
[33]
Mehrdadi, P.; Kolahdouz Mohammadi, R.; Alipoor, E.; Eshraghian, M.R.; Esteghamati, A.; Hosseinzadeh-Attar, M.J. The Effect of Coenzyme Q10 Supplementation on Circulating Levels of Novel Adipokine Adipolin/CTRP12 in Overweight and Obese Patients with Type 2 Diabetes. Exp. Clin. Endocrinol. Diabetes, 2017, 125(3), 156-162.
[http://dx.doi.org/10.1055/s-0042-110570] [PMID: 27657997]
[34]
Tarry-Adkins, J.L.; Fernandez-Twinn, D.S.; Madsen, R.; Chen, J-H.; Carpenter, A.; Hargreaves, I.P.; McConnell, J.M.; Ozanne, S.E. Coenzyme Q10 Prevents Insulin Signaling Dysregulation and Inflammation Prior to Development of Insulin Resistance in Male Offspring of a Rat Model of Poor Maternal Nutrition and Accelerated Postnatal Growth. Endocrinology, 2015, 156(10), 3528-3537.
[http://dx.doi.org/10.1210/en.2015-1424] [PMID: 26214037]
[35]
Song, M-H.; Kim, H-N.; Lim, Y.; Jang, I.S. Effects of coenzyme Q10 on the antioxidant system in SD rats exposed to lipopolysaccharide-induced toxicity. Lab. Anim. Res., 2017, 33(1), 24-31.
[http://dx.doi.org/10.5625/lar.2017.33.1.24] [PMID: 28400836]
[36]
Jorat, M.V.; Tabrizi, R.; Mirhosseini, N.; Lankarani, K.B.; Akbari, M.; Heydari, S.T.; Mottaghi, R.; Asemi, Z. The effects of coenzyme Q10 supplementation on lipid profiles among patients with coronary artery disease: A systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis., 2018, 17(1), 230.
[http://dx.doi.org/10.1186/s12944-018-0876-4] [PMID: 30296936]
[37]
Bessler, H.; Bergman, M.; Blumberger, N.; Djaldetti, M.; Salman, H. Coenzyme Q10 decreases TNF-alpha and IL-2 secretion by human peripheral blood mononuclear cells. J. Nutr. Sci. Vitaminol. (Tokyo), 2010, 56(1), 77-81.
[http://dx.doi.org/10.3177/jnsv.56.77] [PMID: 20354351]
[38]
Hassanzadeh, S.; Jameie, S.B.; Soleimani, M.; Farhadi, M.; Kerdari, M.; Danaei, N. Coenzyme Q10 Influences on the Levels of TNF-α and IL-10 and the Ratio of Bax/Bcl2 in a Menopausal Rat Model Following Lumbar Spinal Cord Injury. J. Mol. Neurosci., 2018, 65(2), 255-264.
[http://dx.doi.org/10.1007/s12031-018-1090-6] [PMID: 29948851]
[39]
Gao, H.L.; Yu, X.J.; Qi, J.; Yi, Q.Y.; Jing, W.H.; Sun, W.Y.; Cui, W.; Mu, J.J.; Yuan, Z.Y.; Zhao, X.F.; Liu, K.L.; Zhu, G.Q.; Shi, X.L.; Liu, J.J.; Kang, Y.M. Oral CoQ10 attenuates high salt-induced hypertension by restoring neurotransmitters and cytokines in the hypothalamic paraventricular nucleus. Sci. Rep., 2016, 6, 30301.
[http://dx.doi.org/10.1038/srep30301] [PMID: 27452860]
[40]
Mantle, D.; Hargreaves, I. Coenzyme Q10 and Degenerative Disorders Affecting Longevity: An Overview. Antioxidants, 2019, 8(2), 44.
[http://dx.doi.org/10.3390/antiox8020044] [PMID: 30781472]
[41]
Fouad, A.A.; Jresat, I. Hepatoprotective effect of coenzyme Q10 in rats with acetaminophen toxicity. Environ. Toxicol. Pharmacol., 2012, 33(2), 158-167.
[http://dx.doi.org/10.1016/j.etap.2011.12.011] [PMID: 22222558]
[42]
Tarry-Adkins, J.L.; Fernandez-Twinn, D.S.; Hargreaves, I.P.; Neergheen, V.; Aiken, C.E.; Martin-Gronert, M.S.; McConnell, J.M.; Ozanne, S.E. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth. Am. J. Clin. Nutr., 2016, 103(2), 579-588.
[http://dx.doi.org/10.3945/ajcn.115.119834] [PMID: 26718412]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy