Review Article

The Salivary miRNome: A Promising Biomarker of Disease

Author(s): Sara Tomei*, Harshitha Shobha Manjunath, Selvasankar Murugesan and Souhaila Al Khodor

Volume 10, Issue 1, 2021

Published on: 12 April, 2021

Page: [29 - 38] Pages: 10

DOI: 10.2174/2211536610666210412154455

Price: $65

Open Access Journals Promotions 2
Abstract

MicroRNAs (miRNAs) are non-coding RNAs ranging from 18-24 nucleotides, also known to regulate the human genome mainly at the post-transcriptional level. MiRNAs were shown to play an important role in most biological processes such as apoptosis and in the pathogenesis of many diseases such as cardiovascular diseases and cancer. Recent developments of advanced molecular high-throughput technologies have enhanced our knowledge of miRNAs. MiRNAs can now be discovered, interrogated, and quantified in various body fluids serving as diagnostic and therapeutic markers for many diseases.

While most studies use blood as a sample source to measure circulating miRNAs as possible biomarkers for disease pathogenesis, fewer studies have assessed the role of salivary miRNAs in health and disease. This review aims at providing an overview of the current knowledge of the salivary miRNome, addressing the technical aspects of saliva sampling, and highlighting the applicability of miRNA screening to clinical practice.

Keywords: miRNA, saliva, sequencing, biomarkers, cancer, microbiome.

Graphical Abstract
[1]
Mathew R, Mattei V, Al Hashmi M, Tomei S. Updates on the current technologies for microRNA profiling. MicroRNA 2020; 9(1): 17-24.
[http://dx.doi.org/10.2174/2211536608666190628112722] [PMID: 31264553]
[2]
Lu M, Zhang Q, Deng M, et al. An analysis of human microRNA and disease associations. PLoS One 2008; 3(10): e3420.
[http://dx.doi.org/10.1371/journal.pone.0003420] [PMID: 18923704]
[3]
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105(30): 10513-8.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219]
[4]
Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141(5): 672-5.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07077.x] [PMID: 18318758]
[5]
Setti G, Pezzi ME, Viani MV, et al. Salivary microRNA for diagnosis of cancer and systemic diseases: A systematic review. Int J Mol Sci 2020; 21(3): E907.
[http://dx.doi.org/10.3390/ijms21030907] [PMID: 32019170]
[6]
Sanz-Rubio D, Martin-Burriel I, Gil A, et al. Stability of circulating exosomal miRNAs in healthy subjects. Sci Rep 2018; 8(1): 10306.
[http://dx.doi.org/10.1038/s41598-018-28748-5] [PMID: 29985466]
[7]
Maheswari TNU, Venugopal A, Sureshbabu NM, Ramani P. Salivary micro RNA as a potential biomarker in oral potentially malignant disorders: A systematic review. Ci Ji Yi Xue Za Zhi 2018; 30(2): 55-60.
[http://dx.doi.org/10.4103/tcmj.tcmj_114_17] [PMID: 29875583]
[8]
Park NJ, Zhou H, Elashoff D, et al. Salivary microRNA: Discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 2009; 15(17): 5473-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0736] [PMID: 19706812]
[9]
Aghbari SMH, Gaafar SM, Shaker OG, Ashiry SE, Zayed SO. Evaluating the accuracy of microRNA27b and microRNA137 as biomarkers of activity and potential malignant transformation in oral lichen planus patients. Arch Dermatol Res 2018; 310(3): 209-20.
[http://dx.doi.org/10.1007/s00403-018-1805-0] [PMID: 29368136]
[10]
Al-Rawi NH, Al-Marzooq F, Al-Nuaimi AS, Hachim MY, Hamoudi R. Salivary microRNA 155, 146a/b and 203: A pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus. PLoS One 2020; 15(8): e0237004.
[http://dx.doi.org/10.1371/journal.pone.0237004] [PMID: 32756589]
[11]
Cressatti M, Juwara L, Galindez JM, et al. Salivary microR-153 and microR-223 levels as potential diagnostic biomarkers of idiopathic Parkinson’s disease. Mov Disord 2020; 35(3): 468-77.
[http://dx.doi.org/10.1002/mds.27935] [PMID: 31800144]
[12]
Gao S, Chen LY, Wang P, Liu LM, Chen Z. MicroRNA expression in salivary supernatant of patients with pancreatic cancer and its relationship with ZHENG. BioMed Res Int 2014; 2014: 756347.
[http://dx.doi.org/10.1155/2014/756347] [PMID: 25126577]
[13]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[14]
Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[15]
Davis-Dusenbery BN, Hata A. Mechanisms of control of microRNA biogenesis. J Biochem 2010; 148(4): 381-92.
[PMID: 20833630]
[16]
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11(9): 597-610.
[http://dx.doi.org/10.1038/nrg2843] [PMID: 20661255]
[17]
Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23(20): 4051-60.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[18]
Pfeffer S, Sewer A, Lagos-Quintana M, et al. Identification of microRNAs of the herpesvirus family. Nat Methods 2005; 2(4): 269-76.
[http://dx.doi.org/10.1038/nmeth746] [PMID: 15782219]
[19]
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature 2004; 432(7014): 231-5.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[20]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[21]
Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. Single processing center models for human Dicer and bacterial RNase III. Cell 2004; 118(1): 57-68.
[http://dx.doi.org/10.1016/j.cell.2004.06.017] [PMID: 15242644]
[22]
Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 2008; 9(1): 22-32.
[http://dx.doi.org/10.1038/nrm2321] [PMID: 18073770]
[23]
Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012; 7(3): e30679.
[http://dx.doi.org/10.1371/journal.pone.0030679] [PMID: 22427800]
[24]
de Rie D, Abugessaisa I, Alam T, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 2017; 35(9): 872-8.
[http://dx.doi.org/10.1038/nbt.3947] [PMID: 28829439]
[25]
Geekiyanage H, Rayatpisheh S, Wohlschlegel JA, Brown R Jr, Ambros V. Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides. Proc Natl Acad Sci USA 2020; 117(39): 24213-23.
[http://dx.doi.org/10.1073/pnas.2008323117] [PMID: 32929008]
[26]
Chen X, Liang H, Zhang J, Zen K, Zhang CY. Secreted microRNAs: A new form of intercellular communication. Trends Cell Biol 2012; 22(3): 125-32.
[http://dx.doi.org/10.1016/j.tcb.2011.12.001] [PMID: 22260888]
[27]
Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res 2011; 39(16): 7223-33.
[http://dx.doi.org/10.1093/nar/gkr254] [PMID: 21609964]
[28]
Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011; 108(12): 5003-8.
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[29]
Berckmans RJ, Sturk A, van Tienen LM, Schaap MC, Nieuwland R. Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood 2011; 117(11): 3172-80.
[http://dx.doi.org/10.1182/blood-2010-06-290460] [PMID: 21248061]
[30]
Ogawa Y, Miura Y, Harazono A, et al. Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull 2011; 34(1): 13-23.
[http://dx.doi.org/10.1248/bpb.34.13] [PMID: 21212511]
[31]
Michael A, Bajracharya SD, Yuen PS, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 2010; 16(1): 34-8.
[http://dx.doi.org/10.1111/j.1601-0825.2009.01604.x] [PMID: 19627513]
[32]
Hayashi T, Lombaert IM, Hauser BR, Patel VN, Hoffman MP. Exosomal microRNA transport from salivary mesenchyme regulates epithelial progenitor expansion during organogenesis. Dev Cell 2017; 40(1): 95-103.
[http://dx.doi.org/10.1016/j.devcel.2016.12.001] [PMID: 28041903]
[33]
Kapsogeorgou EK, Abu-Helu RF, Moutsopoulos HM, Manoussakis MN. Salivary gland epithelial cell exosomes: A source of autoantigenic ribonucleoproteins. Arthritis Rheum 2005; 52(5): 1517-21.
[http://dx.doi.org/10.1002/art.21005] [PMID: 15880835]
[34]
Lässer C, Alikhani VS, Ekström K, et al. Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages. J Transl Med 2011; 9: 9.
[http://dx.doi.org/10.1186/1479-5876-9-9] [PMID: 21235781]
[35]
Chiabotto G, Gai C, Deregibus MC, Camussi G. Salivary Extracellular vesicle-associated exRNA as cancer biomarker. Cancers (Basel) 2019; 11(7): E891.
[http://dx.doi.org/10.3390/cancers11070891] [PMID: 31247906]
[36]
Kaufman E, Lamster IB. The diagnostic applications of saliva-a review. Crit Rev Oral Biol Med 2002; 13(2): 197-212.
[http://dx.doi.org/10.1177/154411130201300209] [PMID: 12097361]
[37]
Mandel ID. The diagnostic uses of saliva. J Oral Pathol Med 1990; 19(3): 119-25.
[http://dx.doi.org/10.1111/j.1600-0714.1990.tb00809.x] [PMID: 2187975]
[38]
Salazar C, Nagadia R, Pandit P, et al. A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell Oncol (Dordr) 2014; 37(5): 331-8.
[http://dx.doi.org/10.1007/s13402-014-0188-2] [PMID: 25156495]
[39]
Proctor GB. The physiology of salivary secretion. Periodontol 2000 2016; 70(1): 11-25.
[http://dx.doi.org/10.1111/prd.12116] [PMID: 26662479]
[40]
Freudenreich O. Drug-induced sialorrhea. Drugs Today (Barc) 2005; 41(6): 411-8.
[http://dx.doi.org/10.1358/dot.2005.41.6.893628] [PMID: 16110348]
[41]
Karakus S, Baer AN, Akpek EK. Clinical correlations of novel autoantibodies in patients with dry eye. J Immunol Res 2019; 2019: 7935451.
[http://dx.doi.org/10.1155/2019/7935451] [PMID: 30766890]
[42]
Chen SY, Ravindran G, Zhang Q, Kisely S, Siskind D. Treatment strategies for clozapine-induced sialorrhea: A systematic review and meta-analysis. CNS Drugs 2019; 33(3): 225-38.
[http://dx.doi.org/10.1007/s40263-019-00612-8] [PMID: 30758782]
[43]
Oral Complications of Chemotherapy and Head/Neck Radiation (PDQ(R)): Patient Version. In: PDQ Cancer Information Summaries Bethesda (MD). 2002.
[44]
Hu S, Li Y, Wang J, et al. Human saliva proteome and transcriptome. J Dent Res 2006; 85(12): 1129-33.
[http://dx.doi.org/10.1177/154405910608501212] [PMID: 17122167]
[45]
Majem B, Rigau M, Reventós J, Wong DT. Non-coding RNAs in saliva: Emerging biomarkers for molecular diagnostics. Int J Mol Sci 2015; 16(4): 8676-98.
[http://dx.doi.org/10.3390/ijms16048676] [PMID: 25898412]
[46]
Oh SY, Kang SM, Kang SH, et al. Potential salivary mRNA biomarkers for early detection of oral cancer. J Clin Med 2020; 9(1): E243.
[http://dx.doi.org/10.3390/jcm9010243] [PMID: 31963366]
[47]
Li Y, Zhou X, St John MA, Wong DT. RNA profiling of cell-free saliva using microarray technology. J Dent Res 2004; 83(3): 199-203.
[http://dx.doi.org/10.1177/154405910408300303] [PMID: 14981119]
[48]
Park NJ, Zhou X, Yu T, et al. Characterization of salivary RNA by cDNA library analysis. Arch Oral Biol 2007; 52(1): 30-5.
[http://dx.doi.org/10.1016/j.archoralbio.2006.08.014] [PMID: 17052683]
[49]
Park NJ, Li Y, Yu T, Brinkman BM, Wong DT. Characterization of RNA in saliva. Clin Chem 2006; 52(6): 988-94.
[http://dx.doi.org/10.1373/clinchem.2005.063206] [PMID: 16601067]
[50]
Ostheim P, Tichý A, Sirak I, et al. Overcoming challenges in human saliva gene expression measurements. Sci Rep 2020; 10(1): 11147.
[http://dx.doi.org/10.1038/s41598-020-67825-6] [PMID: 32636420]
[51]
Palanisamy V, Wong DT. Transcriptomic analyses of saliva. Methods Mol Biol 2010; 666: 43-51.
[http://dx.doi.org/10.1007/978-1-60761-820-1_4] [PMID: 20717777]
[52]
Spielmann N, Ilsley D, Gu J, et al. The human salivary RNA transcriptome revealed by massively parallel sequencing. Clin Chem 2012; 58(9): 1314-21.
[http://dx.doi.org/10.1373/clinchem.2011.176941] [PMID: 22773539]
[53]
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56(11): 1733-41.
[http://dx.doi.org/10.1373/clinchem.2010.147405] [PMID: 20847327]
[54]
Patel RS, Jakymiw A, Yao B, et al. High resolution of microRNA signatures in human whole saliva. Arch Oral Biol 2011; 56(12): 1506-13.
[http://dx.doi.org/10.1016/j.archoralbio.2011.05.015] [PMID: 21704302]
[55]
Hanson EK, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 2009; 387(2): 303-14.
[http://dx.doi.org/10.1016/j.ab.2009.01.037] [PMID: 19454234]
[56]
Ragusa M, Santagati M, Mirabella F, et al. Potential associations among alteration of salivary miRNAs, saliva microbiome structure, and cognitive impairments in autistic children. Int J Mol Sci 2020; 21(17): E6203.
[http://dx.doi.org/10.3390/ijms21176203] [PMID: 32867322]
[57]
Courts C, Madea B. Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. J Forensic Sci 2011; 56(6): 1464-70.
[http://dx.doi.org/10.1111/j.1556-4029.2011.01894.x] [PMID: 21827476]
[58]
Machida T, Tomofuji T, Ekuni D, et al. MicroRNAs in salivary exosome as potential biomarkers of aging. Int J Mol Sci 2015; 16(9): 21294-309.
[http://dx.doi.org/10.3390/ijms160921294] [PMID: 26370963]
[59]
Gholamin S, Pasdar A, Khorrami MS, et al. The potential for circulating microRNAs in the diagnosis of myocardial infarction: A novel approach to disease diagnosis and treatment. Curr Pharm Des 2016; 22(3): 397-403.
[http://dx.doi.org/10.2174/1381612822666151112151924] [PMID: 26561061]
[60]
Yap T, Seers C, Koo K, et al. Non-invasive screening of a microRNA-based dysregulation signature in oral cancer and oral potentially malignant disorders. Oral Oncol 2019; 96: 113-20.
[http://dx.doi.org/10.1016/j.oraloncology.2019.07.013] [PMID: 31422202]
[61]
He L, Ping F, Fan Z, et al. Salivary exosomal miR-24-3p serves as a potential detective biomarker for oral squamous cell carcinoma screening. Biomed Pharmacother 2020; 121: 109553.
[http://dx.doi.org/10.1016/j.biopha.2019.109553] [PMID: 31704611]
[62]
Humphrey SP, Williamson RT. A review of saliva: Normal composition, flow, and function. J Prosthet Dent 2001; 85(2): 162-9.
[http://dx.doi.org/10.1067/mpr.2001.113778] [PMID: 11208206]
[63]
Henson BS, Wong DT. Collection, storage, and processing of saliva samples for downstream molecular applications. Methods Mol Biol 2010; 666: 21-30.
[http://dx.doi.org/10.1007/978-1-60761-820-1_2] [PMID: 20717775]
[64]
Navazesh M. Methods for collecting saliva. Ann N Y Acad Sci 1993; 694: 72-7.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb18343.x] [PMID: 8215087]
[65]
Pandit P, Cooper-White J, Punyadeera C. High-yield RNA-extraction method for saliva. Clin Chem 2013; 59(7): 1118-22.
[http://dx.doi.org/10.1373/clinchem.2012.197863] [PMID: 23564756]
[66]
Sullivan R, Heavey S, Graham DG, et al. An optimised saliva collection method to produce high-yield, high-quality RNA for translational research. PLoS One 2020; 15(3): e0229791.
[http://dx.doi.org/10.1371/journal.pone.0229791] [PMID: 32150588]
[67]
Lim Y, Totsika M, Morrison M, Punyadeera C. The saliva microbiome profiles are minimally affected by collection method or DNA extraction protocols. Sci Rep 2017; 7(1): 8523.
[http://dx.doi.org/10.1038/s41598-017-07885-3] [PMID: 28819242]
[68]
Li Y, St John MA, Zhou X, et al. Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res 2004; 10(24): 8442-50.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1167] [PMID: 15623624]
[69]
Laidi F, Bouziane A, Lakhdar A, et al. Significant correlation between salivary and serum Ca 15-3 in healthy women and breast cancer patients. Asian Pac J Cancer Prev 2014; 15(11): 4659-62.
[http://dx.doi.org/10.7314/APJCP.2014.15.11.4659] [PMID: 24969900]
[70]
Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000; 25(2): 169-93.
[http://dx.doi.org/10.1677/jme.0.0250169] [PMID: 11013345]
[71]
Tan GW, Tan LP. High-throughput RT-qPCR for the analysis of circulating microRNAs. Methods Mol Biol 2017; 1580: 7-19.
[http://dx.doi.org/10.1007/978-1-4939-6866-4_2] [PMID: 28439823]
[72]
Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol 2018; 141(4): 1202-7.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[73]
Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005; 33(20): e179.
[http://dx.doi.org/10.1093/nar/gni178] [PMID: 16314309]
[74]
Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 2005; 39(4): 519-25.
[http://dx.doi.org/10.2144/000112010] [PMID: 16235564]
[75]
Chugh P, Dittmer DP. Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev RNA 2012; 3(5): 601-16.
[http://dx.doi.org/10.1002/wrna.1120] [PMID: 22566380]
[76]
Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet 2010; 11(1): 31-46.
[http://dx.doi.org/10.1038/nrg2626] [PMID: 19997069]
[77]
Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: Approaches and considerations. Nat Rev Genet 2012; 13(5): 358-69.
[http://dx.doi.org/10.1038/nrg3198] [PMID: 22510765]
[78]
Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, Environment, diet, and diseases. Microorganisms 2019; 7(1): E14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[79]
Murugesan S, Al Ahmad SF, Singh P, Saadaoui M, Kumar M, Al Khodor S. Profiling the salivary microbiome of the Qatari population. J Transl Med 2020; 18(1): 127.
[http://dx.doi.org/10.1186/s12967-020-02291-2] [PMID: 32169076]
[80]
Nirmalkar K, Murugesan S, Pizano-Zárate ML, et al. Gut microbiota and endothelial dysfunction markers in obese mexican children and adolescents. Nutrients 2018; 10(12): E2009.
[http://dx.doi.org/10.3390/nu10122009] [PMID: 30572569]
[81]
Maya-Lucas O, Murugesan S, Nirmalkar K, et al. The gut microbiome of Mexican children affected by obesity. Anaerobe 2019; 55: 11-23.
[http://dx.doi.org/10.1016/j.anaerobe.2018.10.009] [PMID: 30366118]
[82]
Li B, Selmi C, Tang R, Gershwin ME, Ma X. The microbiome and autoimmunity: A paradigm from the gut-liver axis. Cell Mol Immunol 2018; 15(6): 595-609.
[http://dx.doi.org/10.1038/cmi.2018.7] [PMID: 29706647]
[83]
Ticinesi A, Tana C, Nouvenne A, Prati B, Lauretani F, Meschi T. Gut microbiota, cognitive frailty and dementia in older individuals: A systematic review. Clin Interv Aging 2018; 13: 1497-511.
[http://dx.doi.org/10.2147/CIA.S139163] [PMID: 30214170]
[84]
Mathee K, Cickovski T, Deoraj A, Stollstorff M, Narasimhan G. The gut microbiome and neuropsychiatric disorders: Implications for Attention Deficit Hyperactivity Disorder (ADHD). J Med Microbiol 2020; 69(1): 14-24.
[http://dx.doi.org/10.1099/jmm.0.001112] [PMID: 31821133]
[85]
Slavish DC, Graham-Engeland JE, Smyth JM, Engeland CG. Salivary markers of inflammation in response to acute stress. Brain Behav Immun 2015; 44: 253-69.
[http://dx.doi.org/10.1016/j.bbi.2014.08.008] [PMID: 25205395]
[86]
Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005; 43(11): 5721-32.
[http://dx.doi.org/10.1128/JCM.43.11.5721-5732.2005] [PMID: 16272510]
[87]
Sabharwal A, Ganley K, Miecznikowski JC, Haase EM, Barnes V, Scannapieco FA. The salivary microbiome of diabetic and non- diabetic adults with periodontal disease. J Periodontol 2019; 90(1): 26-34.
[http://dx.doi.org/10.1002/JPER.18-0167] [PMID: 29999529]
[88]
Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett 2014; 162(2 Pt A): 22-38.
[http://dx.doi.org/10.1016/j.imlet.2014.08.017] [PMID: 25447398]
[89]
Furquim CP, Soares GM, Ribeiro LL, et al. The salivary microbiome and oral cancer risk: A pilot study in fanconi anemia. J Dent Res 2017; 96(3): 292-9.
[http://dx.doi.org/10.1177/0022034516678169] [PMID: 27827319]
[90]
Singh N, Shirdel EA, Waldron L, Zhang RH, Jurisica I, Comelli EM. The murine caecal microRNA signature depends on the presence of the endogenous microbiota. Int J Biol Sci 2012; 8(2): 171-86.
[http://dx.doi.org/10.7150/ijbs.8.171] [PMID: 22211115]
[91]
Xue X, Feng T, Yao S, et al. Microbiota downregulates dendritic cell expression of miR-10a, which targets IL-12/IL-23p40. J Immunol 2011; 187(11): 5879-86.
[http://dx.doi.org/10.4049/jimmunol.1100535] [PMID: 22068236]
[92]
Liu S, da Cunha AP, Rezende RM, et al. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 2016; 19(1): 32-43.
[http://dx.doi.org/10.1016/j.chom.2015.12.005] [PMID: 26764595]
[93]
Yuan C, Burns MB, Subramanian S, Blekhman R. Interaction between host microRNAs and the gut microbiota in colorectal cancer. mSystems 2018; 3(3): e00205-17.
[http://dx.doi.org/10.1128/mSystems.00205-17] [PMID: 29795787]
[94]
Hicks SD, Khurana N, Williams J, Dowd Greene C, Uhlig R, Middleton FA. Diurnal oscillations in human salivary microRNA and microbial transcription: Implications for human health and disease. PLoS One 2018; 13(7): e0198288.
[http://dx.doi.org/10.1371/journal.pone.0198288] [PMID: 30020932]
[95]
Momen-Heravi F, Trachtenberg AJ, Kuo WP, Cheng YS. Genomewide study of salivary microRNAs for detection of oral cancer. J Dent Res 2014; 93(7)(Suppl.): 86S-93S.
[http://dx.doi.org/10.1177/0022034514531018] [PMID: 24718111]
[96]
Rapado-González Ó, Majem B, Muinelo-Romay L, et al. Human salivary microRNAs in Cancer. J Cancer 2018; 9(4): 638-49.
[http://dx.doi.org/10.7150/jca.21180] [PMID: 29556321]
[97]
Rapado-González Ó, Majem B, Álvarez-Castro A, et al. A novel saliva-based miRNA signature for colorectal cancer diagnosis. J Clin Med 2019; 8(12): E2029.
[http://dx.doi.org/10.3390/jcm8122029] [PMID: 31757017]
[98]
Humeau M, Vignolle-Vidoni A, Sicard F, et al. Salivary microRNA in pancreatic cancer patients. PLoS One 2015; 10(6): e0130996.
[http://dx.doi.org/10.1371/journal.pone.0130996] [PMID: 26121640]
[99]
Fang C, Li Y. Prospective applications of microRNAs in oral cancer. Oncol Lett 2019; 18(4): 3974-84.
[http://dx.doi.org/10.3892/ol.2019.10751] [PMID: 31579085]
[100]
Zahran F, Ghalwash D, Shaker O, Al-Johani K, Scully C. Salivary microRNAs in oral cancer. Oral Dis 2015; 21(6): 739-47.
[http://dx.doi.org/10.1111/odi.12340] [PMID: 25784212]
[101]
Liu CJ, Lin SC, Yang CC, Cheng HW, Chang KW. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck 2012; 34(2): 219-24.
[http://dx.doi.org/10.1002/hed.21713] [PMID: 22083872]
[102]
Duz MB, Karatas OF, Guzel E, et al. Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: A pilot study. Cell Oncol (Dordr) 2016; 39(2): 187-93.
[http://dx.doi.org/10.1007/s13402-015-0259-z] [PMID: 26650483]
[103]
Wu L, Zheng K, Yan C, et al. Genome-wide study of salivary microRNAs as potential noninvasive biomarkers for detection of nasopharyngeal carcinoma. BMC Cancer 2019; 19(1): 843.
[http://dx.doi.org/10.1186/s12885-019-6037-y] [PMID: 31455274]
[104]
Xie Z, Chen G, Zhang X, et al. Salivary microRNAs as promising biomarkers for detection of esophageal cancer. PLoS One 2013; 8(4): e57502.
[http://dx.doi.org/10.1371/journal.pone.0057502] [PMID: 23560033]
[105]
Xie ZJ, Chen G, Zhang XC, Li DF, Huang J, Li ZJ. Saliva supernatant miR-21: A novel potential biomarker for esophageal cancer detection. Asian Pac J Cancer Prev 2012; 13(12): 6145-9.
[http://dx.doi.org/10.7314/APJCP.2012.13.12.6145] [PMID: 23464420]
[106]
Ye M, Ye P, Zhang W, Rao J, Xie Z. Diagnostic values of salivary versus and plasma microRNA-21 for early esophageal cancer. Nan Fang Yi Ke Da Xue Xue Bao 2014; 34(6): 885-9.
[PMID: 24968850]
[107]
Wu W, Hou W, Wu Z, Wang Y, Yi Y, Lin W. miRNA-144 in the saliva is a genetic marker for early diagnosis of esophageal cancer. Nan Fang Yi Ke Da Xue Xue Bao 2013; 33(12): 1783-6.
[PMID: 24369245]
[108]
Xie Z, Yin X, Gong B, et al. Salivary microRNAs show potential as a noninvasive biomarker for detecting resectable pancreatic cancer. Cancer Prev Res (Phila) 2015; 8(2): 165-73.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0192] [PMID: 25538087]
[109]
Machida T, Tomofuji T, Maruyama T, et al. miR-1246 and miR-4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. Oncol Rep 2016; 36(4): 2375-81.
[http://dx.doi.org/10.3892/or.2016.5021] [PMID: 27573701]
[110]
Sazanov AA, Kiselyova EV, Zakharenko AA, Romanov MN, Zaraysky MI. Plasma and saliva miR-21 expression in colorectal cancer patients. J Appl Genet 2017; 58(2): 231-7.
[http://dx.doi.org/10.1007/s13353-016-0379-9] [PMID: 27910062]
[111]
Yang Y, Li YX, Yang X, Jiang L, Zhou ZJ, Zhu YQ. Progress risk assessment of oral premalignant lesions with saliva miRNA analysis. BMC Cancer 2013; 13: 129.
[http://dx.doi.org/10.1186/1471-2407-13-129] [PMID: 23510112]
[112]
Smith-Vikos T, Slack FJ. MicroRNAs and their roles in aging. J Cell Sci 2012; 125(Pt 1): 7-17.
[http://dx.doi.org/10.1242/jcs.099200] [PMID: 22294612]
[113]
Han Y, Jia L, Zheng Y, Li W. Salivary exosomes: Emerging roles in systemic disease. Int J Biol Sci 2018; 14(6): 633-43.
[http://dx.doi.org/10.7150/ijbs.25018] [PMID: 29904278]
[114]
Amadeu JK, Lemes AL, Schussel JL, Amenábar JM. Effect of storage time and temperature on salivary total antioxidant capacity, total oxidant status, and oxidant stress index. Acta Stomatol Croat 2019; 53(2): 119-24.
[http://dx.doi.org/10.15644/asc53/2/3] [PMID: 31341319]
[115]
Kaczor-Urbanowicz KE, Martin Carreras-Presas C, Aro K, Tu M, Garcia-Godoy F, Wong DT. Saliva diagnostics - Current views and directions. Exp Biol Med (Maywood) 2017; 242(5): 459-72.
[http://dx.doi.org/10.1177/1535370216681550] [PMID: 27903834]
[116]
Wong DT. Salivaomics. J Am Dent Assoc 2012; 143(10)(Suppl.): 19S-24S.
[http://dx.doi.org/10.14219/jada.archive.2012.0339] [PMID: 23034834]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy