Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Zebrafish Avatar to Develop Precision Breast Cancer Therapies

Author(s): Debora Corsinovi, Alice Usai, Miriam De Sarlo, Martina Giannaccini and Michela Ori*

Volume 22, Issue 4, 2022

Published on: 02 April, 2021

Page: [748 - 759] Pages: 12

DOI: 10.2174/1871520621666210402111634

Price: $65

Abstract

Background: Zebrafish (Danio rerio) is a vertebrate that has become a popular alternative model for the cellular and molecular study of human tumors and for drug testing and validating approaches. Notably, zebrafish embryos, thanks to their accessibility, allow rapid collection of in vivo results prodromal to validation in the murine models in respect to the 3R principles. The generation of tumor xenograft in zebrafish embryos and larvae, or zebrafish avatar, represents a unique opportunity to study tumor growth, angiogenesis, cell invasion and metastatic dissemination, interaction between tumor and host in vivo avoiding immunogenic rejection, representing a promising platform for the translational research and personalized therapies.

Objective: In this mini-review, we report recent advances in breast cancer research and drug testing that took advantage of the zebrafish xenograft model using both breast cancer cell lines and patient’s biopsy.

Conclusion: Patient derived xenograft, together with the gene editing, the omics biotechnology, the in vivo time lapse imaging and the high-throughput screening that are already set up and largely used in zebrafish, could represent a step forward towards precision and personalized medicine in the breast cancer research field.

Keywords: Zebrafish, breast cancer, xenotransplantation, personalized medicine, PDX, patient derived xenograft, drug screening.

Graphical Abstract
[1]
Anastasiadi, Z.; Lianos, G.D.; Ignatiadou, E.; Harissis, H.V.; Mitsis, M. Breast cancer in young women: an overview. Updates Surg., 2017, 69(3), 313-317.
[http://dx.doi.org/10.1007/s13304-017-0424-1] [PMID: 28260181]
[2]
Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers, 2019, 5(1), 66.
[http://dx.doi.org/10.1038/s41572-019-0111-2] [PMID: 31548545]
[3]
Caparica, R.; Brandão, M.; Piccart, M. Systemic treatment of patients with early breast cancer: recent updates and state of the art. Breast, 2019, 48(Suppl. 1), S7-S20.
[http://dx.doi.org/10.1016/S0960-9776(19)31115-4] [PMID: 31839166]
[4]
Taherian-Fard, A.; Srihari, S.; Ragan, M.A. Breast cancer classification: linking molecular mechanisms to disease prognosis. Brief. Bioinform., 2015, 16(3), 461-474.
[http://dx.doi.org/10.1093/bib/bbu020] [PMID: 24950687]
[5]
Cheang, M.C.; Martin, M.; Nielsen, T.O.; Prat, A.; Voduc, D.; Rodriguez-Lescure, A.; Ruiz, A.; Chia, S.; Shepherd, L.; Ruiz-Borrego, M.; Calvo, L.; Alba, E.; Carrasco, E.; Caballero, R.; Tu, D.; Pritchard, K.I.; Levine, M.N.; Bramwell, V.H.; Parker, J.; Bernard, P.S.; Ellis, M.J.; Perou, C.M.; Di Leo, A.; Carey, L.A. Defining breast cancer intrinsic subtypes by quantitative receptor expression. Oncologist, 2015, 20(5), 474-482.
[http://dx.doi.org/10.1634/theoncologist.2014-0372] [PMID: 25908555]
[6]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[7]
Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A.; Muñoz, M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast, 2015, 24(Suppl. 2), S26-S35.
[http://dx.doi.org/10.1016/j.breast.2015.07.008] [PMID: 26253814]
[8]
Williams, C.; Lin, C.Y. Oestrogen receptors in breast cancer: basic mechanisms and clinical implications. Ecancermedicalscience, 2013, 7, 370.
[PMID: 24222786]
[9]
Mina, L.A.; Lim, S.; Bahadur, S.W.; Firoz, A.T. Immunotherapy for the treatment of breast cancer: emerging new data. Breast Cancer (Dove Med. Press), 2019, 11, 321-328.
[http://dx.doi.org/10.2147/BCTT.S184710] [PMID: 32099454]
[10]
Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; Roché, H.; Im, Y.H.; Quek, R.G.W.; Markova, D.; Tudor, I.C.; Hannah, A.L.; Eiermann, W.; Blum, J.L. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med., 2018, 379(8), 753-763.
[http://dx.doi.org/10.1056/NEJMoa1802905] [PMID: 30110579]
[11]
Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; Wu, W.; Goessl, C.; Runswick, S.; Conte, P. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med., 2017, 377(6), 523-533.
[http://dx.doi.org/10.1056/NEJMoa1706450] [PMID: 28578601]
[12]
Zhao, S.; Zuo, W.J.; Shao, Z.M.; Jiang, Y.Z. Molecular subtypes and precision treatment of triple-negative breast cancer. Ann. Transl. Med., 2020, 8(7), 499.
[http://dx.doi.org/10.21037/atm.2020.03.194] [PMID: 32395543]
[13]
Costa, B.; Estrada, M.F.; Mendes, R.V.; Fior, R. Zebrafish avatars towards personalized medicine-A comparative review between avatar models. Cells, 2020, 9(2), E293.
[http://dx.doi.org/10.3390/cells9020293] [PMID: 31991800]
[14]
Fazio, M.; Ablain, J.; Chuan, Y.; Langenau, D.M.; Zon, L.I. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat. Rev. Cancer, 2020, 20(5), 263-273.
[http://dx.doi.org/10.1038/s41568-020-0252-3] [PMID: 32251397]
[15]
Wertman, J.; Veinotte, C.J.; Dellaire, G.; Berman, J.N. The zebrafish xenograft platform: evolution of a novel cancer model and preclinical screening tool. Adv. Exp. Med. Biol., 2016, 916, 289-314.
[http://dx.doi.org/10.1007/978-3-319-30654-4_13] [PMID: 27165359]
[16]
Astone, M.; Dankert, E.N.; Alam, S.K.; Hoeppner, L.H. Fishing for cures: the alLURE of using zebrafish to develop precision oncology therapies. NPJ Precis. Oncol., 2017, 1, 39.
[17]
Vacaru, A.M.; Unlu, G.; Spitzner, M.; Mione, M.; Knapik, E.W.; Sadler, K.C. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease. J. Cell Sci., 2014, 127(Pt 3), 485-495.
[http://dx.doi.org/10.1242/jcs.140194] [PMID: 24481493]
[18]
Corallo, D.; Donadon, M.; Pantile, M.; Sidarovich, V.; Cocchi, S.; Ori, M.; De Sarlo, M.; Candiani, S.; Frasson, C.; Distel, M.; Quattrone, A.; Zanon, C.; Basso, G.; Tonini, G.P.; Aveic, S. LIN28B increases neural crest cell migration and leads to transformation of trunk sympathoadrenal precursors. Cell Death Differ., 2020, 27(4), 1225-1242.
[http://dx.doi.org/10.1038/s41418-019-0425-3] [PMID: 31601998]
[19]
Franceschi, S.; Corsinovi, D.; Lessi, F.; Tantillo, E.; Aretini, P.; Menicagli, M.; Scopelliti, C.; Civita, P.; Pasqualetti, F.; Naccarato, A.G.; Ori, M.; Mazzanti, C.M. Mitochondrial enzyme GLUD2 plays a critical role in glioblastoma progression. EBioMedicine, 2018, 37, 56-67.
[http://dx.doi.org/10.1016/j.ebiom.2018.10.008] [PMID: 30314897]
[20]
Liu, J.; Zhou, Y.; Qi, X.; Chen, J.; Chen, W.; Qiu, G.; Wu, Z.; Wu, N. CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling. Hum. Genet., 2017, 136(1), 1-12.
[http://dx.doi.org/10.1007/s00439-016-1739-6] [PMID: 27807677]
[21]
Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J.C.; Koch, R.; Rauch, G.J.; White, S.; Chow, W.; Kilian, B.; Quintais, L.T.; Guerra-Assunção, J.A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S.F.; Laird, G.K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliot, D.; Eliott, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Mortimer, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Barker, G.; Whitehead, S.; Kay, M.; Brown, J.; Murnane, C.; Gray, E.; Humphries, M.; Sycamore, N.; Barker, D.; Saunders, D.; Wallis, J.; Babbage, A.; Hammond, S.; Mashreghi-Mohammadi, M.; Barr, L.; Martin, S.; Wray, P.; Ellington, A.; Matthews, N.; Ellwood, M.; Woodmansey, R.; Clark, G.; Cooper, J.; Tromans, A.; Grafham, D.; Skuce, C.; Pandian, R.; Andrews, R.; Harrison, E.; Kimberley, A.; Garnett, J.; Fosker, N.; Hall, R.; Garner, P.; Kelly, D.; Bird, C.; Palmer, S.; Gehring, I.; Berger, A.; Dooley, C.M.; Raddatz, G.; Osoegawa, K.; Zhu, B.; Rapp, A.; Widaa, S.; Langford, C.; Yang, F.; Schuster, S.C.; Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J.C.; Koch, R.; Rauch, G.J.; White, S.; Chow, W.; Kilian, B.; Quintais, L.T.; Guerra-Assunção, J.A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S.F.; Laird, G.K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliot, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Barker, G.; Whitehead, S.; Kay, M.; Brown, J.; Murnane, C.; Gray, E.; Humphries, M.; Sycamore, N.; Barker, D.; Saunders, D.; Wallis, J.; Babbage, A.; Hammond, S.; Mashreghi-Mohammadi, M.; Barr, L.; Martin, S.; Wray, P.; Ellington, A.; Matthews, N.; Ellwood, M.; Woodmansey, R.; Clark, G.; Cooper, J.; Tromans, A.; Grafham, D.; Skuce, C.; Pandian, R.; Andrews, R.; Harrison, E.; Kimberley, A.; Garnett, J.; Fosker, N.; Hall, R.; Garner, P.; Kelly, D.; Bird, C.; Palmer, S.; Gehring, I.; Berger, A.; Dooley, C.M.; Ersan-Ürün, Z.; Eser, C.; Geiger, H.; Geisler, M.; Karotki, L.; Kirn, A.; Konantz, J.; Konantz, M.; Oberländer, M.; Rudolph-Geiger, S.; Teucke, M.; Lanz, C.; Raddatz, G.; Osoegawa, K.; Zhu, B.; Rapp, A.; Widaa, S.; Langford, C.; Yang, F.; Schuster, S.C.; Carter, N.P.; Harrow, J.; Ning, Z.; Herrero, J.; Searle, S.M.; Enright, A.; Geisler, R.; Plasterk, R.H.; Lee, C.; Westerfield, M.; de Jong, P.J.; Zon, L.I.; Postlethwait, J.H.; Nüsslein-Volhard, C.; Hubbard, T.J.; Roest Crollius, H.; Rogers, J.; Stemple, D.L. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496(7446), 498-503.
[http://dx.doi.org/10.1038/nature12111] [PMID: 23594743]
[22]
Payne, E.; Look, T. Zebrafish modelling of leukaemias. Br. J. Haematol., 2009, 146(3), 247-256.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07705.x] [PMID: 19466976]
[23]
Veinotte, C.J.; Dellaire, G.; Berman, J.N. Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis. Model. Mech., 2014, 7(7), 745-754.
[http://dx.doi.org/10.1242/dmm.015784] [PMID: 24973744]
[24]
Corallo, D.; Candiani, S.; Ori, M.; Aveic, S.; Tonini, G.P. The zebrafish as a model for studying neuroblastoma. Cancer Cell Int., 2016, 16, 82.
[http://dx.doi.org/10.1186/s12935-016-0360-z] [PMID: 27822138]
[25]
Lee, Y.; Grill, S.; Sanchez, A.; Murphy-Ryan, M.; Poss, K.D. FGF signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development, 2005, 132(23), 5173-5183.
[http://dx.doi.org/10.1242/dev.02101] [PMID: 16251209]
[26]
Yan, C.; Brunson, D.C.; Tang, Q.; Do, D.; Iftimia, N.A.; Moore, J.C.; Hayes, M.N.; Welker, A.M.; Garcia, E.G.; Dubash, T.D.; Hong, X.; Drapkin, B.J.; Myers, D.T.; Phat, S.; Volorio, A.; Marvin, D.L.; Ligorio, M.; Dershowitz, L.; McCarthy, K.M.; Karabacak, M.N.; Fletcher, J.A.; Sgroi, D.C.; Iafrate, J.A.; Maheswaran, S.; Dyson, N.J.; Haber, D.A.; Rawls, J.F.; Langenau, D.M. Visualizing engrafted human cancer and therapy responses in immunodeficient zebrafish. Cell, 2019, 177(7), 1903-1914.
[http://dx.doi.org/10.1016/j.cell.2019.04.004] [PMID: 31031007]
[27]
Letrado, P.; de Miguel, I.; Lamberto, I.; Díez-Martínez, R.; Oyarzabal, J. Zebrafish: speeding up the cancer drug discovery process. Cancer Res., 2018, 78(21), 6048-6058.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1029] [PMID: 30327381]
[28]
Mathias, J.R.; Dodd, M.E.; Walters, K.B.; Yoo, S.K.; Ranheim, E.A.; Huttenlocher, A. Characterization of zebrafish larval inflammatory macrophages. Dev. Comp. Immunol., 2009, 33(11), 1212-1217.
[http://dx.doi.org/10.1016/j.dci.2009.07.003] [PMID: 19619578]
[29]
Ellett, F.; Pase, L.; Hayman, J.W.; Andrianopoulos, A.; Lieschke, G.J. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood, 2011, 117(4), e49-e56.
[http://dx.doi.org/10.1182/blood-2010-10-314120] [PMID: 21084707]
[30]
He, S.; Lamers, G.E.; Beenakker, J.W.; Cui, C.; Ghotra, V.P.; Danen, E.H.; Meijer, A.H.; Spaink, H.P.; Snaar-Jagalska, B.E. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J. Pathol., 2012, 227(4), 431-445.
[http://dx.doi.org/10.1002/path.4013] [PMID: 22374800]
[31]
Kim, I.S.; Heilmann, S.; Kansler, E.R.; Zhang, Y.; Zimmer, M.; Ratnakumar, K.; Bowman, R.L.; Simon-Vermot, T.; Fennell, M.; Garippa, R.; Lu, L.; Lee, W.; Hollmann, T.; Xavier, J.B.; White, R.M. Microenvironment-derived factors driving metastatic plasticity in melanoma. Nat. Commun., 2017, 8, 14343.
[http://dx.doi.org/10.1038/ncomms14343] [PMID: 28181494]
[32]
Patton, E.E.; Zon, L.I. The art and design of genetic screens: zebrafish. Nat. Rev. Genet., 2001, 2(12), 956-966.
[http://dx.doi.org/10.1038/35103567] [PMID: 11733748]
[33]
White, R.M.; Sessa, A.; Burke, C.; Bowman, T.; LeBlanc, J.; Ceol, C.; Bourque, C.; Dovey, M.; Goessling, W.; Burns, C.E.; Zon, L.I. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell, 2008, 2(2), 183-189.
[http://dx.doi.org/10.1016/j.stem.2007.11.002] [PMID: 18371439]
[34]
White, R.; Rose, K.; Zon, L. Zebrafish cancer: the state of the art and the path forward. Nat. Rev. Cancer, 2013, 13(9), 624-636.
[http://dx.doi.org/10.1038/nrc3589] [PMID: 23969693]
[35]
Nguyen-Chi, M.; Laplace-Builhe, B.; Travnickova, J.; Luz-Crawford, P.; Tejedor, G.; Phan, Q.T.; Duroux-Richard, I.; Levraud, J.P.; Kissa, K.; Lutfalla, G.; Jorgensen, C.; Djouad, F. Identification of polarized macrophage subsets in zebrafish. eLife, 2015, 4,e07288.
[http://dx.doi.org/10.7554/eLife.07288] [PMID: 26154973]
[36]
Lawson, N.D.; Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol., 2002, 248(2), 307-318.
[http://dx.doi.org/10.1006/dbio.2002.0711] [PMID: 12167406]
[37]
Gabellini, C.; Gómez-Abenza, E.; Ibáñez-Molero, S.; Tupone, M.G.; Pérez-Oliva, A.B.; de Oliveira, S.; Del Bufalo, D.; Mulero, V. Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. Int. J. Cancer, 2018, 142(3), 584-596.
[http://dx.doi.org/10.1002/ijc.31075] [PMID: 28949016]
[38]
Roh-Johnson, M.; Shah, A.N.; Stonick, J.A.; Poudel, K.R.; Kargl, J.; Yang, G.H.; di Martino, J.; Hernandez, R.E.; Gast, C.E.; Zarour, L.R.; Antoku, S.; Houghton, A.M.; Bravo-Cordero, J.J.; Wong, M.H.; Condeelis, J.; Moens, C.B. Macrophage-dependent cytoplasmic transfer during melanoma invasion in vivo. Dev. Cell, 2017, 43(5), 549-562.
[http://dx.doi.org/10.1016/j.devcel.2017.11.003] [PMID: 29207258]
[39]
Konantz, M.; Balci, T.B.; Hartwig, U.F.; Dellaire, G.; André, M.C.; Berman, J.N.; Lengerke, C. Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann. N. Y. Acad. Sci., 2012, 1266, 124-137.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06575.x] [PMID: 22901264]
[40]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[41]
Weaver, V.M.; Lelièvre, S.; Lakins, J.N.; Chrenek, M.A.; Jones, J.C.; Giancotti, F.; Werb, Z.; Bissell, M.J. beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell, 2002, 2(3), 205-216.
[http://dx.doi.org/10.1016/S1535-6108(02)00125-3] [PMID: 12242153]
[42]
Burdall, S.E.; Hanby, A.M.; Lansdown, M.R.; Speirs, V. Breast cancer cell lines: friend or foe? Breast Cancer Res., 2003, 5(2), 89-95.
[http://dx.doi.org/10.1186/bcr577] [PMID: 12631387]
[43]
Kondo, J.; Inoue, M. Application of cancer organoid model for drug screening and personalized therapy. Cells, 2019, 8(5),E470.
[http://dx.doi.org/10.3390/cells8050470] [PMID: 31108870]
[44]
Kersten, K.; de Visser, K.E.; van Miltenburg, M.H.; Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med., 2017, 9(2), 137-153.
[http://dx.doi.org/10.15252/emmm.201606857] [PMID: 28028012]
[45]
Geisler, R.; Köhler, A.; Dickmeis, T.; Strähle, U. Archiving of zebrafish lines can reduce animal experiments in biomedical research. EMBO Rep., 2017, 18(1), 1-2.
[http://dx.doi.org/10.15252/embr.201643561] [PMID: 27979973]
[46]
Casey, M.J.; Stewart, R.A. Pediatric cancer models in zebrafish. Trends Cancer, 2020, 6(5), 407-418.
[http://dx.doi.org/10.1016/j.trecan.2020.02.006] [PMID: 32348736]
[47]
Goessling, W.; North, T.E.; Zon, L.I. New waves of discovery: modeling cancer in zebrafish. J. Clin. Oncol., 2007, 25(17), 2473-2479.
[http://dx.doi.org/10.1200/JCO.2006.08.9821] [PMID: 17557959]
[48]
Zhang, F.; Qin, W.; Zhang, J.P.; Hu, C.Q. Antibiotic toxicity and absorption in zebrafish using liquid chromatography-tandem mass spectrometry. PLoS One, 2015, 10(5),e0124805.
[http://dx.doi.org/10.1371/journal.pone.0124805] [PMID: 25938774]
[49]
Brown, H.K.; Schiavone, K.; Tazzyman, S.; Heymann, D.; Chico, T.J. Zebrafish xenograft models of cancer and metastasis for drug discovery. Expert Opin. Drug Discov., 2017, 12(4), 379-389.
[http://dx.doi.org/10.1080/17460441.2017.1297416] [PMID: 28277839]
[50]
Wang, C.; Tao, W.; Wang, Y.; Bikow, J.; Lu, B.; Keating, A.; Verma, S.; Parker, T.G.; Han, R.; Wen, X.Y. Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur. Urol., 2010, 58(3), 418-426.
[http://dx.doi.org/10.1016/j.eururo.2010.05.024] [PMID: 20605315]
[51]
MacRae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov., 2015, 14(10), 721-731.
[http://dx.doi.org/10.1038/nrd4627] [PMID: 26361349]
[52]
Dyballa, S.; Miñana, R.; Rubio-Brotons, M.; Cornet, C.; Pederzani, T.; Escaramis, G.; Garcia-Serna, R.; Mestres, J.; Terriente, J. Comparison of zebrafish larvae and hiPSC cardiomyocytes for predicting drug induced cardiotoxicity in humans. Toxicol. Sci., 2019.,kfz165.
[http://dx.doi.org/10.1093/toxsci/kfz165] [PMID: 31359052]
[53]
Tessadori, F.; van Weerd, J.H.; Burkhard, S.B.; Verkerk, A.O.; de Pater, E.; Boukens, B.J.; Vink, A.; Christoffels, V.M.; Bakkers, J. Identification and functional characterization of cardiac pacemaker cells in zebrafish. PLoS One, 2012, 7(10),e47644.
[http://dx.doi.org/10.1371/journal.pone.0047644] [PMID: 23077655]
[54]
Kithcart, A.; MacRae, C.A. Using zebrafish for high-throughput screening of novel cardiovascular drugs. JACC Basic Transl. Sci., 2017, 2(1), 1-12.
[http://dx.doi.org/10.1016/j.jacbts.2017.01.004] [PMID: 30167552]
[55]
Milan, D.J.; Peterson, T.A.; Ruskin, J.N.; Peterson, R.T.; MacRae, C.A. Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation, 2003, 107(10), 1355-1358.
[http://dx.doi.org/10.1161/01.CIR.0000061912.88753.87] [PMID: 12642353]
[56]
Zhu, J.J.; Xu, Y.Q.; He, J.H.; Yu, H.P.; Huang, C.J.; Gao, J.M.; Dong, Q.X.; Xuan, Y.X.; Li, C.Q. Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish. J. Appl. Toxicol., 2014, 34(2), 139-148.
[http://dx.doi.org/10.1002/jat.2843] [PMID: 23307606]
[57]
Driessen, M.; Vitins, A.P.; Pennings, J.L.; Kienhuis, A.S.; Water, B.; van der Ven, L.T. A transcriptomics-based hepatotoxicity comparison between the zebrafish embryo and established human and rodent in vitro and in vivo models using cyclosporine A, amiodarone and acetaminophen. Toxicol. Lett., 2015, 232(2), 403-412.
[http://dx.doi.org/10.1016/j.toxlet.2014.11.020] [PMID: 25448281]
[58]
Ducharme, N.A.; Reif, D.M.; Gustafsson, J.A.; Bondesson, M. Comparison of toxicity values across zebrafish early life stages and mammalian studies: implications for chemical testing. Reprod. Toxicol., 2015, 55, 3-10.
[http://dx.doi.org/10.1016/j.reprotox.2014.09.005] [PMID: 25261610]
[59]
Truong, L.; Reif, D.M.; St Mary, L.; Geier, M.C.; Truong, H.D.; Tanguay, R.L. Multidimensional in vivo hazard assessment using zebrafish. Toxicol. Sci., 2014, 137(1), 212-233.
[http://dx.doi.org/10.1093/toxsci/kft235] [PMID: 24136191]
[60]
Khalili, A.; Rezai, P. Microfluidic devices for embryonic and larval zebrafish studies. Brief. Funct. Genomics, 2019, 18(6), 419-432.
[http://dx.doi.org/10.1093/bfgp/elz006] [PMID: 31034029]
[61]
Cornet, C.; Dyballa, S.; Terriente, J.; Di Giacomo, V. ZeOncoTest: refining and automating the zebrafish xenograft model for drug discovery in cancer. Pharmaceuticals (Basel), 2019, 13(1), E1.
[http://dx.doi.org/10.3390/ph13010001] [PMID: 31878274]
[62]
North, T.E.; Goessling, W.; Walkley, C.R.; Lengerke, C.; Kopani, K.R.; Lord, A.M.; Weber, G.J.; Bowman, T.V.; Jang, I.H.; Grosser, T.; Fitzgerald, G.A.; Daley, G.Q.; Orkin, S.H.; Zon, L.I. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007, 447(7147), 1007-1011.
[http://dx.doi.org/10.1038/nature05883] [PMID: 17581586]
[63]
White, R.M.; Cech, J.; Ratanasirintrawoot, S.; Lin, C.Y.; Rahl, P.B.; Burke, C.J.; Langdon, E.; Tomlinson, M.L.; Mosher, J.; Kaufman, C.; Chen, F.; Long, H.K.; Kramer, M.; Datta, S.; Neuberg, D.; Granter, S.; Young, R.A.; Morrison, S.; Wheeler, G.N.; Zon, L.I. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature, 2011, 471(7339), 518-522.
[http://dx.doi.org/10.1038/nature09882] [PMID: 21430780]
[64]
Yeh, J.R.; Munson, K.M.; Chao, Y.L.; Peterson, Q.P.; Macrae, C.A.; Peterson, R.T. AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression. Development, 2008, 135(2), 401-410.
[http://dx.doi.org/10.1242/dev.008904] [PMID: 18156164]
[65]
Zhang, Y.; Wang, J.; Wheat, J.; Chen, X.; Jin, S.; Sadrzadeh, H.; Fathi, A.T.; Peterson, R.T.; Kung, A.L.; Sweetser, D.A.; Yeh, J.R. AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/β-catenin signaling pathway. Blood, 2013, 121(24), 4906-4916.
[http://dx.doi.org/10.1182/blood-2012-08-447763] [PMID: 23645839]
[66]
Hason, M.; Bartůněk, P. Zebrafish models of cancer-new insights on modeling human cancer in a non-mammalian vertebrate. Genes (Basel), 2019, 10(11),E935.
[http://dx.doi.org/10.3390/genes10110935] [PMID: 31731811]
[67]
Park, J.H.; Williams, D.R.; Lee, J.H.; Lee, S.D.; Lee, J.H.; Ko, H.; Lee, G.E.; Kim, S.; Lee, J.M.; Abdelrahman, A.; Müller, C.E.; Jung, D.W.; Kim, Y.C. Potent suppressive effects of 1-piperidinylimidazole based novel P2X7 receptor antagonists on cancer cell migration and invasion. J. Med. Chem., 2016, 59(16), 7410-7430.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01690] [PMID: 27427902]
[68]
Xie, X.; Tang, S.C.; Cai, Y.; Pi, W.; Deng, L.; Wu, G.; Chavanieu, A.; Teng, Y. Suppression of breast cancer metastasis through the inactivation of ADP-ribosylation factor 1. Oncotarget, 2016, 7(36), 58111-58120.
[http://dx.doi.org/10.18632/oncotarget.11185] [PMID: 27517156]
[69]
Ghotra, V.P.; He, S.; de Bont, H.; van der Ent, W.; Spaink, H.P.; van de Water, B.; Snaar-Jagalska, B.E.; Danen, E.H. Automated whole animal bio-imaging assay for human cancer dissemination. PLoS One, 2012, 7(2),e31281.
[http://dx.doi.org/10.1371/journal.pone.0031281] [PMID: 22347456]
[70]
Drabsch, Y.; He, S.; Zhang, L.; Snaar-Jagalska, B.E.; ten Dijke, P. Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res., 2013, 15(6), R106.
[http://dx.doi.org/10.1186/bcr3573] [PMID: 24196484]
[71]
Naber, H.P.; Drabsch, Y.; Snaar-Jagalska, B.E.; ten Dijke, P.; van Laar, T. Snail and Slug, key regulators of TGF-β-induced EMT, are sufficient for the induction of single-cell invasion. Biochem. Biophys. Res. Commun., 2013, 435(1), 58-63.
[http://dx.doi.org/10.1016/j.bbrc.2013.04.037] [PMID: 23618854]
[72]
Truong, H.H.; Xiong, J.; Ghotra, V.P.; Nirmala, E.; Haazen, L.; Le Dévédec, S.E.; Balcioğlu, H.E.; He, S.; Snaar-Jagalska, B.E.; Vreugdenhil, E.; Meerman, J.H.; van de Water, B.; Danen, E.H. β1 integrin inhibition elicits a prometastatic switch through the TGFβ-miR-200-ZEB network in E-cadherin-positive triple-negative breast cancer. Sci. Signal., 2014, 7(312), ra15.
[http://dx.doi.org/10.1126/scisignal.2004751] [PMID: 24518294]
[73]
Tulotta, C.; Stefanescu, C.; Beletkaia, E.; Bussmann, J.; Tarbashevich, K.; Schmidt, T.; Snaar-Jagalska, B.E. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. Dis. Model. Mech., 2016, 9(2), 141-153.
[http://dx.doi.org/10.1242/dmm.023275] [PMID: 26744352]
[74]
Tulotta, C.; Stefanescu, C.; Chen, Q.; Torraca, V.; Meijer, A.H.; Snaar-Jagalska, B.E. CXCR4 signaling regulates metastatic onset by controlling neutrophil motility and response to malignant cells. Sci. Rep., 2019, 9(1), 2399.
[http://dx.doi.org/10.1038/s41598-019-38643-2] [PMID: 30787324]
[75]
Yang, Y.; Hao, E.; Pan, X.; Tan, D.; Du, Z.; Xie, J.; Hou, X.; Deng, J.; Wei, K. Gomisin M2 from Baizuan suppresses breast cancer stem cell proliferation in a zebrafish xenograft model. Aging (Albany NY), 2019, 11(19), 8347-8361.
[http://dx.doi.org/10.18632/aging.102323] [PMID: 31612865]
[76]
Golbaghi, G.; Pitard, I.; Lucas, M.; Haghdoost, M.M.; de Los Santos, Y.L.; Doucet, N.; Patten, S.A.; Sanderson, J.T.; Castonguay, A. Synthesis and biological assessment of a ruthenium(II) cyclopentadienyl complex in breast cancer cells and on the development of zebrafish embryos. Eur. J. Med. Chem., 2020, 188,112030.
[http://dx.doi.org/10.1016/j.ejmech.2019.112030] [PMID: 31945643]
[77]
Asokan, N.; Daetwyler, S.; Bernas, S.N.; Schmied, C.; Vogler, S.; Lambert, K.; Wobus, M.; Wermke, M.; Kempermann, G.; Huisken, J.; Brand, M.; Bornhäuser, M. Long-term in vivo imaging reveals tumor-specific dissemination and captures host tumor interaction in zebrafish xenografts. Sci. Rep., 2020, 10(1), 13254.
[http://dx.doi.org/10.1038/s41598-020-69956-2] [PMID: 32764590]
[78]
Yao, D.; Li, C.; Jiang, J.; Huang, J.; Wang, J.; He, Z.; Zhang, J. Design, synthesis and biological evaluation of novel HDAC inhibitors with improved pharmacokinetic profile in breast cancer. Eur. J. Med. Chem., 2020, 205,112648.
[http://dx.doi.org/10.1016/j.ejmech.2020.112648] [PMID: 32791401]
[79]
Eguiara, A.; Holgado, O.; Beloqui, I.; Abalde, L.; Sanchez, Y.; Callol, C.; Martin, A.G. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification. Cell Cycle, 2011, 10(21), 3751-3757.
[http://dx.doi.org/10.4161/cc.10.21.17921] [PMID: 22033190]
[80]
Schaefer, T.; Wang, H.; Mir, P.; Konantz, M.; Pereboom, T.C.; Paczulla, A.M.; Merz, B.; Fehm, T.; Perner, S.; Rothfuss, O.C.; Kanz, L.; Schulze-Osthoff, K.; Lengerke, C. Molecular and functional interactions between AKT and SOX2 in breast carcinoma. Oncotarget, 2015, 6(41), 43540-43556.
[http://dx.doi.org/10.18632/oncotarget.6183] [PMID: 26498353]
[81]
Lee, J.K.; Liu, Z.; Sa, J.K.; Shin, S.; Wang, J.; Bordyuh, M.; Cho, H.J.; Elliott, O.; Chu, T.; Choi, S.W.; Rosenbloom, D.I.S.; Lee, I.H.; Shin, Y.J.; Kang, H.J.; Kim, D.; Kim, S.Y.; Sim, M.H.; Kim, J.; Lee, T.; Seo, Y.J.; Shin, H.; Lee, M.; Kim, S.H.; Kwon, Y.J.; Oh, J.W.; Song, M.; Kim, M.; Kong, D.S.; Choi, J.W.; Seol, H.J.; Lee, J.I.; Kim, S.T.; Park, J.O.; Kim, K.M.; Song, S.Y.; Lee, J.W.; Kim, H.C.; Lee, J.E.; Choi, M.G.; Seo, S.W.; Shim, Y.M.; Zo, J.I.; Jeong, B.C.; Yoon, Y.; Ryu, G.H.; Kim, N.K.D.; Bae, J.S.; Park, W.Y.; Lee, J.; Verhaak, R.G.W.; Iavarone, A.; Lee, J.; Rabadan, R.; Nam, D.H. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat. Genet., 2018, 50(10), 1399-1411.
[http://dx.doi.org/10.1038/s41588-018-0209-6] [PMID: 30262818]
[82]
Hidalgo, M.; Amant, F.; Biankin, A.V.; Budinská, E.; Byrne, A.T.; Caldas, C.; Clarke, R.B.; de Jong, S.; Jonkers, J.; Mælandsmo, G.M.; Roman-Roman, S.; Seoane, J.; Trusolino, L.; Villanueva, A. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov., 2014, 4(9), 998-1013.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0001] [PMID: 25185190]
[83]
Malaney, P.; Nicosia, S.V.; Davé, V. One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett., 2014, 344(1), 1-12.
[http://dx.doi.org/10.1016/j.canlet.2013.10.010] [PMID: 24157811]
[84]
Rygaard, J.; Povlsen, C.O. Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol. Microbiol. Scand., 1969, 77(4), 758-760.
[http://dx.doi.org/10.1111/j.1699-0463.1969.tb04520.x] [PMID: 5383844]
[85]
Flanagan, S.P. ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet. Res., 1966, 8(3), 295-309.
[http://dx.doi.org/10.1017/S0016672300010168] [PMID: 5980117]
[86]
Mercatali, L.; La Manna, F.; Groenewoud, A.; Casadei, R.; Recine, F.; Miserocchi, G.; Pieri, F.; Liverani, C.; Bongiovanni, A.; Spadazzi, C.; de Vita, A.; van der Pluijm, G.; Giorgini, A.; Biagini, R.; Amadori, D.; Ibrahim, T.; Snaar-Jagalska, E. Development of a Patient-Derived Xenograft (PDX) of breast cancer bone metastasis in a zebrafish model. Int. J. Mol. Sci., 2016, 17(8),E1375.
[http://dx.doi.org/10.3390/ijms17081375] [PMID: 27556456]
[87]
Fior, R.; Póvoa, V.; Mendes, R.V.; Carvalho, T.; Gomes, A.; Figueiredo, N.; Ferreira, M.G. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc. Natl. Acad. Sci. USA, 2017, 114(39), E8234-E8243.
[http://dx.doi.org/10.1073/pnas.1618389114] [PMID: 28835536]
[88]
Gacha-Garay, M.J.; Niño-Joya, A.F.; Bolaños, N.I.; Abenoza, L.; Quintero, G.; Ibarra, H.; Gonzalez, J.M.; Akle, V.; Garavito-Aguilar, Z.V. Pilot study of an integrative new tool for studying clinical outcome discrimination in acute leukemia. Front. Oncol., 2019, 9, 245.
[http://dx.doi.org/10.3389/fonc.2019.00245] [PMID: 31024847]
[89]
Lee, L.M.; Seftor, E.A.; Bonde, G.; Cornell, R.A.; Hendrix, M.J. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev. Dyn., 2005, 233(4), 1560-1570.
[http://dx.doi.org/10.1002/dvdy.20471] [PMID: 15968639]
[90]
Smith, S.J.; Wilson, M.; Ward, J.H.; Rahman, C.V.; Peet, A.C.; Macarthur, D.C.; Rose, F.R.; Grundy, R.G.; Rahman, R. Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition. PLoS One, 2012, 7(12),e52335.
[http://dx.doi.org/10.1371/journal.pone.0052335] [PMID: 23272238]
[91]
Inoue, T.; Terada, N.; Kobayashi, T.; Ogawa, O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat. Rev. Urol., 2017, 14(5), 267-283.
[http://dx.doi.org/10.1038/nrurol.2017.19] [PMID: 28248952]
[92]
Marques, I.J.; Weiss, F.U.; Vlecken, D.H.; Nitsche, C.; Bakkers, J.; Lagendijk, A.K.; Partecke, L.I.; Heidecke, C.D.; Lerch, M.M.; Bagowski, C.P. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer, 2009, 9, 128.
[http://dx.doi.org/10.1186/1471-2407-9-128] [PMID: 19400945]
[93]
Bentley, V.L.; Veinotte, C.J.; Corkery, D.P.; Pinder, J.B.; LeBlanc, M.A.; Bedard, K.; Weng, A.P.; Berman, J.N.; Dellaire, G. Focused chemical genomics using zebrafish xenotransplantation as a pre-clinical therapeutic platform for T-cell acute lymphoblastic leukemia. Haematologica, 2015, 100(1), 70-76.
[http://dx.doi.org/10.3324/haematol.2014.110742] [PMID: 25281505]
[94]
Di Franco, G.; Usai, A.; Funel, N.; Palmeri, M.; Montesanti, I.E.R.; Bianchini, M.; Gianardi, D.; Furbetta, N.; Guadagni, S.; Vasile, E.; Falcone, A.; Pollina, L.E.; Raffa, V.; Morelli, L. Use of zebrafish embryos as avatar of patients with pancreatic cancer: a new xenotransplantation model towards personalized medicine. World J. Gastroenterol., 2020, 26(21), 2792-2809.
[http://dx.doi.org/10.3748/wjg.v26.i21.2792] [PMID: 32550755]
[95]
Wu, J.Q.; Zhai, J.; Li, C.Y.; Tan, A.M.; Wei, P.; Shen, L.Z.; He, M.F. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in gastric cancer. J. Exp. Clin. Cancer Res., 2017, 36(1), 160.
[http://dx.doi.org/10.1186/s13046-017-0631-0] [PMID: 29141689]
[96]
Vitale, G.; Gaudenzi, G.; Dicitore, A.; Cotelli, F.; Ferone, D.; Persani, L. Zebrafish as an innovative model for neuroendocrine tumors. Endocr. Relat. Cancer, 2014, 21(1), R67-R83.
[http://dx.doi.org/10.1530/ERC-13-0388] [PMID: 24292602]
[97]
Usai, A.; Di Franco, G.; Colucci, P.; Pollina, L.E.; Vasile, E.; Funel, N.; Palmeri, M.; Dente, L.; Falcone, A.; Morelli, L.; Raffa, V. A model of a zebrafish avatar for co-clinical trials. Cancers (Basel), 2020, 12(3),E677.
[http://dx.doi.org/10.3390/cancers12030677] [PMID: 32183229]
[98]
Strähle, U.; Scholz, S.; Geisler, R.; Greiner, P.; Hollert, H.; Rastegar, S.; Schumacher, A.; Selderslaghs, I.; Weiss, C.; Witters, H.; Braunbeck, T. Zebrafish embryos as an alternative to animal experiments-a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol., 2012, 33(2), 128-132.
[http://dx.doi.org/10.1016/j.reprotox.2011.06.121] [PMID: 21726626]
[99]
Hill, D.; Chen, L.; Snaar-Jagalska, E.; Chaudhry, B. Embryonic zebrafish xenograft assay of human cancer metastasis. F1000 Res., 2018, 7, 1682.
[http://dx.doi.org/10.12688/f1000research.16659.2] [PMID: 30473782]
[100]
Lal, S.; La Du, J.; Tanguay, R.L.; Greenwood, J.A. Calpain 2 is required for the invasion of glioblastoma cells in the zebrafish brain microenvironment. J. Neurosci. Res., 2012, 90(4), 769-781.
[http://dx.doi.org/10.1002/jnr.22794] [PMID: 22183788]
[101]
Byrne, A.T.; Alférez, D.G.; Amant, F.; Annibali, D.; Arribas, J.; Biankin, A.V.; Bruna, A.; Budinská, E.; Caldas, C.; Chang, D.K.; Clarke, R.B.; Clevers, H.; Coukos, G.; Dangles-Marie, V.; Eckhardt, S.G.; Gonzalez-Suarez, E.; Hermans, E.; Hidalgo, M.; Jarzabek, M.A.; de Jong, S.; Jonkers, J.; Kemper, K.; Lanfrancone, L.; Mælandsmo, G.M.; Marangoni, E.; Marine, J.C.; Medico, E.; Norum, J.H.; Palmer, H.G.; Peeper, D.S.; Pelicci, P.G.; Piris-Gimenez, A.; Roman-Roman, S.; Rueda, O.M.; Seoane, J.; Serra, V.; Soucek, L.; Vanhecke, D.; Villanueva, A.; Vinolo, E.; Bertotti, A.; Trusolino, L. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer, 2017, 17(4), 254-268.
[http://dx.doi.org/10.1038/nrc.2016.140] [PMID: 28104906]
[102]
Costa, B.; Ferreira, S.; Póvoa, V.; Cardoso, M.J.; Vieira, S.; Stroom, J.; Fidalgo, P.; Rio-Tinto, R.; Figueiredo, N.; Parés, O.; Greco, C.; Ferreira, M.G.; Fior, R. Developments in zebrafish avatars as radiotherapy sensitivity reporters - towards personalized medicine. EBioMedicine, 2020, 51,102578.
[http://dx.doi.org/10.1016/j.ebiom.2019.11.039] [PMID: 31862441]
[103]
Yan, C.; Yang, Q.; Do, D.; Brunson, D.C.; Langenau, D.M. Adult immune compromised zebrafish for xenograft cell transplantation studies. EBioMedicine, 2019, 47, 24-26.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.016] [PMID: 31416720]
[104]
Rebelo de Almeida, C.; Mendes, R.V.; Pezzarossa, A.; Gago, J.; Carvalho, C.; Alves, A.; Nunes, V.; Brito, M.J.; Cardoso, M.J.; Ribeiro, J.; Cardoso, F.; Ferreira, M.G.; Fior, R. Zebrafish xenografts as a fast screening platform for bevacizumab cancer therapy. Commun. Biol., 2020, 3(1), 299.
[http://dx.doi.org/10.1038/s42003-020-1015-0] [PMID: 32523131]
[105]
Varanda, A.B.; Martins-Logrado, A.; Ferreira, M.G.; Fior, R. Zebrafish xenografts unveil sensitivity to olaparib beyond BRCA status. Cancers (Basel), 2020, 12(7),E1769.
[http://dx.doi.org/10.3390/cancers12071769] [PMID: 32630796]
[106]
Cabezas-Sáinz, P.; Pensado-López, A.; Sáinz, B., Jr; Sánchez, L. Modeling cancer using zebrafish xenografts: drawbacks for mimicking the human microenvironment. Cells, 2020, 9(9),E1978.
[http://dx.doi.org/10.3390/cells9091978] [PMID: 32867288]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy