Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Molecular Docking Studies of Naringenin and its Protective Efficacy against Methotrexate Induced Oxidative Tissue Injury

Author(s): Suresh S. Dhanisha, Sudarsanan Drishya, Karyath P. Gangaraj , Muliyar K. Rajesh and Chandrasekharan Guruvayoorappan*

Volume 22, Issue 1, 2022

Published on: 22 March, 2021

Page: [169 - 180] Pages: 12

DOI: 10.2174/1871520621666210322102915

Price: $65

Abstract

Background: Although Methotrexate (MTX) possesses a wide clinical spectrum of activity, its toxic side effects on normal cells and drug resistance often hamper its successful outcome. Naringenin (NG) is one of the promising bioactive flavonoids that are extensively found in grapes, citrus fruits, and fruit arils of Pithecellobium dulce.

Objective: Only a few experimental in vivo studies on the efficacy of NG against chemotherapeutic drugs have been carried out. Aiming to fill this gap, the present study was carried out to characterize and identify its possible therapeutic targets and also to explore its protective efficacy against MTX-induced tissue damage.

Methods: Oxidative stress was induced in mice with MTX (20 mg/kg B.wt), and animals were orally administered with 10 mg/kg B.wt NG for 10 consecutive days. On day 11, all animals were sacrificed, and hematological and serum biochemical parameters were analyzed. The anti-oxidant efficacy of NG against MTX was evaluated by quantifying tissue superoxide dismutase (SOD), glutatione peroxidase (GPx), reduced glutathione (GSH) and catalase along with oxidative stress markers [malondialdehyde (MDA) and nitric oxide (NO)]. Further, the histopathological analysis was performed to confirm the protective efficacy of FPD. In silico docking studies were also performed to exploring anti-oxidant enzyme-based targets.

Results: Our results showed that concurrent administration of NG counteracted oxidative stress induced by MTX, as evidenced by increased expression of anti-oxidant markers, decreased expression of renal and hepatotoxicity serum marker enzymes (p <0.05). A molecular docking study was performed using Auto dock vina to understand the mechanism of ligand binding (S-NG and R-NG)with anti-oxidant enzymes. The binding affinity of S-NG with catalase, GPx, ALP, and SGPT was -10.1, -7.1, -7.1, and -7.3 kcal/mol, respectively, whereas for R-NG was -10.8, -7.1, -7.6, and -7.4 kcal/mol, respectively. Further, histopathological analysis affirmed the protective efficacy of NG against MTX-induced hepatic and renal toxicities.

Conclusion: Treatment with NG significantly reduced MTX-induced pancytopenia, renal, and hepatic toxicity.

Keywords: Methotrexate, naringenin, in vivo anti-oxidant activity, toxicity markers, target prediction analysis, molecular docking.

Graphical Abstract
[1]
Cheeseman, K.H.; Slater, T.F. An introduction to free radical biochemistry. Br. Med. Bull., 1993, 49(3), 481-493.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a072625] [PMID: 8221017]
[2]
Bagchi, K.; Puri, S. Free radicals and antioxidants in health and disease. East. Mediterr., 1998, 14, 350-360.
[3]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[4]
Oren, R.; Moshkowitz, M.; Odes, S.; Becker, S.; Keter, D.; Pomeranz, I.; Shirin, H.; Reisfeld, I.; Broide, E.; Lavy, A.; Fich, A.; Eliakim, R.; Patz, J.; Villa, Y.; Arber, N.; Gilat, T. Methotrexate in chronic active Crohn’s disease: a double-blind, randomized, Israeli multicenter trial. Am. J. Gastroenterol., 1997, 92(12), 2203-2209.
[PMID: 9399753]
[5]
Kitumara, M.; Kitumara, S.; Fujioka, M.; Kamijo, R.; Shinya, S.; Sawayama, Y.; Uramatsu, T.; Obata, Y.; Mochizuki, Y.; Nishikido, M.; Sakai, H.; Miyazaki, Y.; Mukae, H.; Nishino, T. Methotrexate-induced acute kidney injury in patients with haematological malignancies: three case reports with literature review. Ren. Replace The., 2018, 4, 39.
[http://dx.doi.org/10.1186/s41100-018-0180-9]
[6]
Widemann, B.C.; Adamson, P.C. Understanding and managing methotrexate nephrotoxicity. Oncologist, 2006, 11(6), 694-703.
[http://dx.doi.org/10.1634/theoncologist.11-6-694] [PMID: 16794248]
[7]
Conway, R.; Carey, J.J. Risk of liver disease in methotrexate treated patients. World J. Hepatol., 2017, 9(26), 1092-1100.
[http://dx.doi.org/10.4254/wjh.v9.i26.1092] [PMID: 28989565]
[8]
Bath, R.K.; Brar, N.K.; Forouhar, F.A.; Wu, G.Y. A review of methotrexate-associated hepatotoxicity. J. Dig. Dis., 2014, 15(10), 517-524.
[http://dx.doi.org/10.1111/1751-2980.12184] [PMID: 25139707]
[9]
Jakubovic, B.D.; Donovan, A.; Webster, P.M.; Shear, N.H. Methotrexate-induced pulmonary toxicity. Can. Respir. J., 2013, 20(3), 153-155.
[http://dx.doi.org/10.1155/2013/527912] [PMID: 23762881]
[10]
Lateef, O.; Shakoor, N.; Balk, R.A. Methotrexate pulmonary toxicity. Expert Opin. Drug Saf., 2005, 4(4), 723-730.
[http://dx.doi.org/10.1517/14740338.4.4.723] [PMID: 16011450]
[11]
Gonzalez-Ibarra, F.; Eivaz-Mohammadi, S.; Surapaneni, S.; Alsaadi, H.; Syed, A.K.; Badin, S.; Marian, V.; Elamir, M. Methotrexate induced pancytopenia. Case Rep. Rheumatol., 2014, 2014, 679580.
[http://dx.doi.org/10.1155/2014/679580] [PMID: 25006519]
[12]
Dhanisha, S.S.; Drishya, S.; Guruvayoorappan, C. Pithecellobium dulce fruit extract mitigates cyclophosphamide-mediated toxicity by regulating proinflammatory cytokines. J. Food Biochem., 2020, 44(1), e13083.
[http://dx.doi.org/10.1111/jfbc.13083] [PMID: 31633209]
[13]
Xue, N.; Wu, X.; Wu, L.; Li, L.; Wang, F. Antinociceptive and anti-inflammatory effect of Naringenin in different nociceptive and inflammatory mice models. Life Sci., 2019, 217, 148-154.
[http://dx.doi.org/10.1016/j.lfs.2018.11.013] [PMID: 30414428]
[14]
Cavia-Saiz, M.; Busto, M.D.; Pilar-Izquierdo, M.C.; Ortega, N.; Perez-Mateos, M.; Muñiz, P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J. Sci. Food Agric., 2010, 90(7), 1238-1244.
[http://dx.doi.org/10.1002/jsfa.3959] [PMID: 20394007]
[15]
Annadurai, T.; Muralidharan, A.R.; Joseph, T.; Hsu, M.J.; Thomas, P.A.; Geraldine, P. Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-nicotinamide-induced experimental diabetic rats. J. Physiol. Biochem., 2012, 68(3), 307-318.
[http://dx.doi.org/10.1007/s13105-011-0142-y] [PMID: 22234849]
[16]
Raza, S.S.; Khan, M.M.; Ahmad, A.; Ashafaq, M.; Islam, F.; Wagner, A.P.; Safhi, M.M.; Islam, F. Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke. Neuroscience, 2013, 230, 157-171.
[http://dx.doi.org/10.1016/j.neuroscience.2012.10.041] [PMID: 23103795]
[17]
Chance, B.; Maehly, A.C. Assay of catalases and peroxidases. Methods Enzymol., 1955, 136, 764-775.
[http://dx.doi.org/10.1016/S0076-6879(55)02300-8]
[18]
Flohé, L.; Günzler, W.A. Assays of glutathione peroxidase. Methods Enzymol., 1984, 105, 114-121.
[http://dx.doi.org/10.1016/S0076-6879(84)05015-1] [PMID: 6727659]
[19]
Moron, MS.; Depierre, JW.; Mannervik, B. Levels of glutathione, glutathione reductase and glutathione-s-transferase activities in rat lung and liver. Biochem. Biophys. Acta, 1979, 582(1), 67-78.
[http://dx.doi.org/10.1016/0304-4165(79)90289-7]
[20]
Bishayee, S.; Balasubramanian, A.S. Lipid peroxide formation in rat brain. J. Neurochem., 1971, 18(6), 909-920.
[http://dx.doi.org/10.1111/j.1471-4159.1971.tb12020.x] [PMID: 4398119]
[21]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[22]
Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem., 1982, 126(1), 131-138.
[http://dx.doi.org/10.1016/0003-2697(82)90118-X] [PMID: 7181105]
[23]
Marcocci, L.; Maguire, J.J.; Droy-Lefaix, M.T.; Packer, L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem. Biophys. Res. Commun., 1994, 201(2), 748-755.
[http://dx.doi.org/10.1006/bbrc.1994.1764] [PMID: 8003011]
[24]
McCord, J.M.; Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 1969, 244(22), 6049-6055.
[http://dx.doi.org/10.1016/S0021-9258(18)63504-5] [PMID: 5389100]
[25]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[26]
David, T.I.; Adelakun, N.S.; Omotuyi, O.I.; Metibemu, D.S.; Ekun, O.E.; Eniafe, G.O.; Inyang, O.K.; Adewumi, B.; Enejoh, O.A.; Owolabi, R.T.; Oribamise, E.I. Molecular docking analysis of phyto-constituents from Cannabis sativa with pfDHFR. Bioinformation, 2018, 14(9), 574-579.
[http://dx.doi.org/10.6026/97320630014574] [PMID: 31223216]
[27]
Lewars, E. Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics, 2nd ed; Springer publications: Netherlands, 2011.
[http://dx.doi.org/10.1007/978-90-481-3862-3]
[28]
Khan, ZA.; Tripathi, R.; Mishra, B. Methotrexate: a detailed review on drug delivery and clinical aspects. Expert opin. drug del., 2012, 9(2), 151-169.
[http://dx.doi.org/10.1517/17425247.2012.642362]
[29]
Hersh, E.M.; Wong, V.G.; Henderson, E.S.; Freireich, E.J. Hepatotoxic effects of methotrexate. Cancer, 1966, 19(4), 600-606.
[http://dx.doi.org/10.1002/1097-0142(196604)19:4<600::AID-CNCR2820190420>3.0.CO;2-3] [PMID: 5933584]
[30]
Hall, P.D.; Jenner, M.A.; Ahern, M.J. Hepatotoxicity in a rat model caused by orally administered methotrexate. Hepatology, 1991, 14(5), 906-910.
[http://dx.doi.org/10.1002/hep.1840140525] [PMID: 1937394]
[31]
Miyazono, Y.; Gao, F.; Horie, T. Oxidative stress contributes to methotrexate-induced small intestinal toxicity in rats. Scand. J. Gastroenterol., 2004, 39(11), 1119-1127.
[http://dx.doi.org/10.1080/00365520410003605] [PMID: 15545171]
[32]
Lim, A.Y.N.; Gaffney, K.; Scott, D.G. Methotrexate-induced pancytopenia: serious and under-reported? Our experience of 25 cases in 5 years. Rheumatology (Oxford), 2005, 44(8), 1051-1055.
[http://dx.doi.org/10.1093/rheumatology/keh685] [PMID: 15901903]
[33]
Dong, D.; Xu, Z.; Zhong, W.; Peng, S. Parallelization of molecular docking: a review. Curr. Top. Med. Chem., 2018, 18(12), 1015-1028.
[http://dx.doi.org/10.2174/1568026618666180821145215] [PMID: 30129415]
[34]
Jakhar, R.; Dangi, M.; Khichi, A.; Chhillar, A.K. Relevance of molecular docking in drug designing. Curr. Bioinform., 2020, 15(4), 270-278.
[http://dx.doi.org/10.2174/1574893615666191219094216]
[35]
Saikia, S.; Bordoloi, M. Molecular docking:challenges, advances and its use in drug discovery perspective. Curr. Drug Targets, 2019, 20(5), 501-521.
[http://dx.doi.org/10.2174/1389450119666181022153016] [PMID: 30360733]
[36]
Tousson, E.; Atteya, E.; El-Atrash, E.; Jeweely, O.I. Abrogation by Ginkgo Byloba leaf extract on hepatic and renal toxicity induced by methotrexate in rats. J. Cancer Res. Treat., 2014, 2(3), 44-51.
[http://dx.doi.org/10.12691/jcrt-2-3-1]
[37]
Abdel-Daim, M.M.; Khalifa, H.A.; Abushouk, A.I.; Dkhil, M.A.; Al-Quraishy, S.A. Diosmin Attenuates Methotrexate-Induced Hepatic, Renal, and Cardiac Injury: A Biochemical and Histopathological Study in Mice; Oxida. Med. Cell Longev, 2017, pp. 1-10.
[38]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[39]
Ji, P.; Yu, T.; Liu, Y.; Jiang, J.; Xu, J.; Zhao, Y.; Hao, Y.; Qiu, Y.; Zhao, W.; Wu, C. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des. Devel. Ther., 2016, 10, 911-925.
[PMID: 27041995]
[40]
Ortiz-Andrade, R.R.; Sánchez-Salgado, J.C.; Navarrete-Vázquez, G.; Webster, S.P.; Binnie, M.; García-Jiménez, S.; León-Rivera, I.; Cigarroa-Vázquez, P.; Villalobos-Molina, R.; Estrada-Soto, S. Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation. Diabetes Obes. Metab., 2008, 10(11), 1097-1104.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00869.x] [PMID: 18355329]
[41]
Murugesan, N.; Woodard, K.; Ramaraju, R.; Greenway, F.L.; Coulter, A.A.; Rebello, C.J. Naringenin increases insulin sensitivity and metabolic rate: A case study. J. Med. Food, 2020, 23(3), 343-348.
[http://dx.doi.org/10.1089/jmf.2019.0216] [PMID: 31670603]
[42]
Fuior, E.V.; Mocanu, C.A.; Deleanu, M.; Voicu, G.; Anghelache, M.; Rebleanu, D.; Simionescu, M.; Calin, M. Evaluation of VCAM-1 targeted naringenin/indocyanine green-loaded lipid nanoemulsions as theranostic nanoplatforms in inflammation. Pharmaceutics, 2020, 12(11), 1066.
[http://dx.doi.org/10.3390/pharmaceutics12111066] [PMID: 33182380]
[43]
Rehman, K.; Khan, I.I.; Akash, M.S.H.; Jabeen, K.; Haider, K. Naringenin downregulates inflammation-mediated nitric oxide overproduction and potentiates endogenous antioxidant status during hyperglycemia. J. Food Biochem., 2020, e13422.
[http://dx.doi.org/10.1111/jfbc.13422] [PMID: 32770581]
[44]
Ye, G.; Wang, M.; Liu, D.; Cheng, L.; Yin, X.; Zhang, Q.; Liu, W. E, G.; Wang, M.; Liu, D.; Cheng, L.; Yin, X.; Zhang, Q.; Liu, W. Mechanism of naringenin blocking the protection of LTB4/BLT1 receptor against septic cardiac dysfunction. Ann. Clin. Lab. Sci., 2020, 50(6), 769-774.
[PMID: 33334792]
[45]
Duda-Madej, A.; Kozłowska, J.; Krzyżek, P.; Anioł, M.; Seniuk, A.; Jermakow, K.; Dworniczek, E. Antimicrobial O-alkyl derivatives of naringenin and their oximes against multidrug-resistant bacteria. Molecules, 2020, 25(16), 3642.
[http://dx.doi.org/10.3390/molecules25163642] [PMID: 32785151]
[46]
Clementi, N.; Scagnolari, C.; D’Amore, A.; Palombi, F.; Criscuolo, E.; Frasca, F.; Pierangeli, A.; Mancini, N.; Antonelli, G.; Clementi, M.; Carpaneto, A.; Filippini, A. Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacol. Res., 2021, 163, 105255.
[http://dx.doi.org/10.1016/j.phrs.2020.105255] [PMID: 33096221]
[47]
Niu, X.; Sang, H.; Wang, J. Naringenin attenuates experimental autoimmune encephalomyelitis by protecting the intact of blood-brain barrier and controlling inflammatory cell migration. J. Nutr. Biochem., 2021, 89, 108560.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108560] [PMID: 33249188]
[48]
Chen, W.; Lin, B.; Xie, S.; Yang, W.; Lin, J.; Li, Z.; Zhan, Y.; Gui, S.; Lin, B. Naringenin protects RPE cells from NaIO3-induced oxidative damage in vivo and in vitro through up-regulation of SIRT1. Phytomedicine, 2021, 80, 153375.
[http://dx.doi.org/10.1016/j.phymed.2020.153375] [PMID: 33096452]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy