Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

An Updated Review on Therapeutic Potential and Recent Advances in Drug Delivery of Berberine: Current Status and Future Prospect

Author(s): Md Ali Mujtaba*, Md Habban Akhter, Md. Sarfaraz Alam, Mohammad Daud Ali and Afzal Hussain

Volume 23, Issue 1, 2022

Published on: 08 February, 2021

Page: [60 - 71] Pages: 12

DOI: 10.2174/1389201022666210208152113

Open Access Journals Promotions 2
Abstract

Natural products are well known for their high potency with minimum side effects. Plant extracts are the most commonly used natural products because of their ease of availability and relatively low production cost. Berberine (BBR), a phytochemical component of some Chinese medicinal herbs (most commonly Berberis vulgaris), is an isoquinoline alkaloid with several biological and pharmacological effects including antioxidant, anti-inflammatory, antitumour, antimicrobial, antidepressant, hepatoprotective, hypolipidemic, and hypoglycemic actions. Interestingly, multiple studies have shown that BBR is a potential drug candidate with a multi-spectrum therapeutic application. However, the oral delivery of BBR is challenged owing to its poor bioavailability. Therefore, its oral bioavailability needs to be enhanced before it can be used in many clinical applications. This review provides an overview of the various studies that support the broad range of pharmacological activities of BBR. Also, it includes a section to address the issues and challenges related to the drug and methods to improve the properties of BBR, such as solubility, stability and bioavailability that may be explored to help patients reap the maximum benefit from this potentially useful drug.

Keywords: Berberine, isoquinoline alkaloid, oral bioavailability, pharmacokinetics, drug delivery, drug candidate.

Graphical Abstract
[1]
Patwardhan, B.; Vaidya, A.D.B.; Chorghade, M. Ayurveda and natural products drug discovery. Curr. Sci., 2004, 86, 6-25.
[2]
Tillhon, M.; Guamán Ortiz, L.M.; Lombardi, P.; Scovassi, A.I. Berberine: new perspectives for old remedies. Biochem. Pharmacol., 2012, 84(10), 1260-1267.
[http://dx.doi.org/10.1016/j.bcp.2012.07.018 ] [PMID: 22842630]
[3]
Cicero, A.F.; Baggioni, A. Berberine and its role in chronic disease. Adv. Exp. Med. Biol., 2016, 928, 27-45.
[http://dx.doi.org/10.1007/978-3-319-41334-1_2 ] [PMID: 27671811]
[4]
Battu, S.K.; Repka, M.A.; Maddineni, S.; Chittiboyina, A.G.; Avery, M.A.; Majumdar, S. Physicochemical characterization of berberine chloride: A perspective in the development of a solution dosage form for oral delivery. AAPS PharmSciTech, 2010, 11(3), 1466-1475.
[http://dx.doi.org/10.1208/s12249-010-9520-y ] [PMID: 20842541]
[5]
Bhutada, P.; Mundhada, Y.; Bansod, K.; Dixit, P.; Umathe, S.; Mundhada, D. Anticonvulsant activity of berberine, an isoquinoline alkaloid in mice. Epilepsy Behav., 2010, 18(3), 207-210.
[http://dx.doi.org/10.1016/j.yebeh.2010.03.007 ] [PMID: 20638957]
[6]
Kulkarni, S.K.; Dhir, A. Berberine: A plant alkaloid with therapeutic potential for central nervous system disorders. Phytother. Res., 2010, 24(3), 317-324.
[http://dx.doi.org/10.1002/ptr.2968 ] [PMID: 19998323]
[7]
Domitrović, R.; Cvijanović, O.; Pernjak-Pugel, E.; Škoda, M.; Mikelić, L.; Crnčević-Orlić, Z. Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis. Food Chem. Toxicol., 2013, 62, 397-406.
[http://dx.doi.org/10.1016/j.fct.2013.09.003 ] [PMID: 24025684]
[8]
Li, J.; Pan, Y.; Kan, M.; Xiao, X.; Wang, Y.; Guan, F.; Zhang, X.; Chen, L. Hepatoprotective effects of berberine on liver fibrosis via activation of AMP-activated protein kinase. Life Sci., 2014, 98(1), 24-30.
[http://dx.doi.org/10.1016/j.lfs.2013.12.211 ] [PMID: 24412384]
[9]
Othman, M.S.; Safwat, G.; Aboulkhair, M.; Abdel Moneim, A.E. The potential effect of berberine in mercury-induced hepatorenal toxicity in albino rats. Food Chem. Toxicol., 2014, 69, 175-181.
[http://dx.doi.org/10.1016/j.fct.2014.04.012 ] [PMID: 24751971]
[10]
Li, M.H.; Zhang, Y.J.; Yu, Y.H.; Yang, S.H.; Iqbal, J.; Mi, Q.Y.; Li, B.; Wang, Z.M.; Mao, W.X.; Xie, H.G.; Chen, S.L. Berberine improves pressure overload-induced cardiac hypertrophy and dysfunction through enhanced autophagy. Eur. J. Pharmacol., 2014, 728, 67-76.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.061 ] [PMID: 24508518]
[11]
Ahmed, T.; Gilani, A.U.H.; Abdollahi, M.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Berberine and neurodegeneration: A review of literature. Pharmacol. Rep., 2015, 67(5), 970-979.
[http://dx.doi.org/10.1016/j.pharep.2015.03.002 ] [PMID: 26398393]
[12]
Liu, Y.T.; Hao, H.P.; Xie, H.G.; Lai, L.; Wang, Q.; Liu, C.X.; Wang, G.J. Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats. Drug Metab. Dispos., 2010, 38(10), 1779-1784.
[http://dx.doi.org/10.1124/dmd.110.033936 ] [PMID: 20634337]
[13]
Chen, W.; Miao, Y.Q.; Fan, D.J.; Yang, S.S.; Lin, X.; Meng, L.K.; Tang, X. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech, 2011, 12(2), 705-711.
[http://dx.doi.org/10.1208/s12249-011-9632-z ] [PMID: 21637946]
[14]
Wang, J.; Wang, L.; Lou, G.H.; Zeng, H.R.; Hu, J.; Huang, Q.W.; Peng, W.; Yang, X.B. Coptidis rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm. Biol., 2019, 57(1), 193-225.
[http://dx.doi.org/10.1080/13880209.2019.1577466 ] [PMID: 30963783]
[15]
Desai, A.B.; Shah, K.M.; Shah, D.M. Berberine in treatment of diarrhoea. Indian Pediatr., 1971, 8(9), 462-465.
[PMID: 5131809]
[16]
Naruka, B.S.; Sharma, U.; Saxena, S.; Sharma, M.L. Berberine in the treatment of infective diarrhoea of infancy and childhood. Arch. Child Health, 1979, 21, 88-98.
[17]
Chevallier, A. Encyclopedia of Medicinal Plants. Encycl Med Plants, 2nd ed; Dorling Kindersley: London, 2001.
[18]
Kim, S.H.; Shin, D.S.; Oh, M.N.; Chung, S.C.; Lee, J.S.; Oh, K.B. Inhibition of the bacterial surface protein anchoring transpeptidase sortase by isoquinoline alkaloids. Biosci. Biotechnol. Biochem., 2004, 68(2), 421-424.
[http://dx.doi.org/10.1271/bbb.68.421 ] [PMID: 14981307]
[19]
Paterson, G.K.; Mitchell, T.J. The biology of Gram-positive sortase enzymes. Trends Microbiol., 2004, 12(2), 89-95.
[http://dx.doi.org/10.1016/j.tim.2003.12.007 ] [PMID: 15036325]
[20]
Peng, L.; Kang, S.; Yin, Z.; Jia, R.; Song, X.; Li, L.; Li, Z.; Zou, Y.; Liang, X.; Li, L.; He, C.; Ye, G.; Yin, L.; Shi, F.; Lv, C.; Jing, B. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5217-5223.
[PMID: 26191220]
[21]
Wojtyczka, R.D.; Dziedzic, A.; Kępa, M.; Kubina, R.; Kabała-Dzik, A.; Mularz, T.; Idzik, D. Berberine enhances the antibacterial activity of selected antibiotics against coagulase-negative Staphylococcus strains in vitro. Molecules, 2014, 19(5), 6583-6596.
[http://dx.doi.org/10.3390/molecules19056583 ] [PMID: 24858093]
[22]
Levine, B.; Mizushima, N.; Virgin, H.W. Autophagy in immunity and inflammation. Nature, 2011, 469(7330), 323-335.
[http://dx.doi.org/10.1038/nature09782 ] [PMID: 21248839]
[23]
Zhang, Y.; Li, X.; Zhang, Q.; Li, J.; Ju, J.; Du, N.; Liu, X.; Chen, X.; Cheng, F.; Yang, L.; Xu, C.; Bilal, M.U.; Wei, Y.; Lu, Y.; Yang, B. Berberine hydrochloride prevents postsurgery intestinal adhesion and inflammation in rats. J. Pharmacol. Exp. Ther., 2014, 349(3), 417-426.
[http://dx.doi.org/10.1124/jpet.114.212795 ] [PMID: 24676878]
[24]
Wang, X.; Feng, S.; Ding, N.; He, Y.; Li, C.; Li, M. Anti-inflammatory effects of berberine hydrochloride in an lps-induced murine model of mastitis.Evid.-Based Complement. Altern. Med., 2018, 5164314.,
[25]
Nemoto, S.; Vallejo, J.G.; Knuefermann, P.; Misra, A.; Defreitas, G.; Carabello, B.A.; Mann, D.L. Escherichia coli LPS-induced LV dysfunction: Role of toll-like receptor-4 in the adult heart. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(6), H2316-H2323.
[http://dx.doi.org/10.1152/ajpheart.00763.2001 ] [PMID: 12003842]
[26]
Hu, S.; Zhao, R.; Liu, Y.; Chen, J.; Zheng, Z.; Wang, S. Preventive and therapeutic roles of berberine in gastrointestinal cancers. BioMed Res. Int., 2019, 20196831520
[http://dx.doi.org/10.1155/2019/6831520 ] [PMID: 31950049]
[27]
Fu, L.; Chen, W.; Guo, W.; Wang, J.; Tian, Y.; Shi, D.; Zhang, X.; Qiu, H.; Xiao, X.; Kang, T.; Huang, W.; Wang, S.; Deng, W. Berberine targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and cytochrome-c/caspase signaling to suppress human cancer cell growth. PLoS One, 2013, 8(7)e69240
[http://dx.doi.org/10.1371/journal.pone.0069240 ] [PMID: 23869238]
[28]
Tan, W.; Li, Y.; Chen, M.; Wang, Y. Berberine hydrochloride: Anticancer activity and nanoparticulate delivery system. Int. J. Nanomedicine, 2011, 6, 1773-1777.
[http://dx.doi.org/10.2147/IJN.S22683 ] [PMID: 21931477]
[29]
Mantena, S.K.; Sharma, S.D.; Katiyar, S.K. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol. Cancer Ther., 2006, 5(2), 296-308.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0448 ] [PMID: 16505103]
[30]
Yan, K.; Zhang, C.; Feng, J.; Hou, L.; Yan, L.; Zhou, Z.; Liu, Z.; Liu, C.; Fan, Y.; Zheng, B.; Xu, Z. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells. Eur. J. Pharmacol., 2011, 661(1-3), 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.021 ] [PMID: 21545798]
[31]
James, M.A.; Fu, H.; Liu, Y.; Chen, D.R.; You, M.M.A.J. Dietary administration of berberine or Phellodendron amurense extract inhibits cell cycle progression and lung tumorigenesis. Mol. Carcinog., 2011, 50(1), 1-7.
[http://dx.doi.org/10.1002/mc.20690 ] [PMID: 21061266]
[32]
Mittal, A.; Tabasum, S.; Singh, R.P. Berberine in combination with doxorubicin suppresses growth of murine melanoma B16F10 cells in culture and xenograft. Phytomedicine, 2014, 21(3), 340-347.
[http://dx.doi.org/10.1016/j.phymed.2013.09.002 ] [PMID: 24176840]
[33]
Cai, Y.; Xia, Q.; Luo, R.; Huang, P.; Sun, Y.; Shi, Y.; Jiang, W. Berberine inhibits the growth of human colorectal adenocarcinoma in vitro and in vivo. J. Nat. Med., 2014, 68(1), 53-62.
[http://dx.doi.org/10.1007/s11418-013-0766-z ] [PMID: 23604974]
[34]
Letasiová, S.; Jantová, S.; Cipák, L.; Múcková, M. Berberine-antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett., 2006, 239(2), 254-262.
[http://dx.doi.org/10.1016/j.canlet.2005.08.024 ] [PMID: 16229943]
[35]
Xiao, X.; Zhang, Q.; Feng, K.; Wang, T.; Li, W.; Yuan, T. Berberine moderates glucose and lipid metabolism through multipathway mechanism.Evid.-Based Complement. Altern. Med., 2011, 924851.,
[36]
Xie, X.; Li, W.; Lan, T.; Liu, W.; Peng, J.; Huang, K.; Huang, J.; Shen, X.; Liu, P.; Huang, H. Berberine ameliorates hyperglycemia in alloxan-induced diabetic C57BL/6 mice through activation of Akt signaling pathway. Endocr. J., 2011, 58(9), 761-768.
[http://dx.doi.org/10.1507/endocrj.K11E-024 ] [PMID: 21705841]
[37]
Dong, H.; Wang, N.; Zhao, L.; Lu, F. Berberine in the treatment of type 2 diabetes mellitus: A systemic review and meta-analysis. Evid. Based Complement. Alternat. Med., 2012, 2012591654
[http://dx.doi.org/10.1155/2012/591654 ] [PMID: 23118793]
[38]
Jiang, S.J.; Dong, H.; Li, J.B.; Xu, L.J.; Zou, X.; Wang, K.F.; Lu, F.E.; Yi, P. Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats. World J. Gastroenterol., 2015, 21(25), 7777-7785.
[http://dx.doi.org/10.3748/wjg.v21.i25.7777 ] [PMID: 26167077]
[39]
Xia, X.; Yan, J.; Shen, Y.; Tang, K.; Yin, J.; Zhang, Y.; Yang, D.; Liang, H.; Ye, J.; Weng, J. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS One, 2011, 6(2)e16556
[http://dx.doi.org/10.1371/journal.pone.0016556 ] [PMID: 21304897]
[40]
Yin, J.; Ye, J.; Jia, W. Effects and mechanisms of berberine in diabetes treatment. Acta Pharm. Sin. B, 2012, (4), 327-334.
[http://dx.doi.org/10.1016/j.apsb.2012.06.003]
[41]
Zhang, W.; Xu, Y.C.; Guo, F.J.; Meng, Y.; Li, M.L. Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chin. Med. J. (Engl.), 2008, 121(21), 2124-2128.
[http://dx.doi.org/10.1097/00029330-200811010-00003 ] [PMID: 19080170]
[42]
Yin, J.; Hu, R.; Chen, M.; Tang, J.; Li, F.; Yang, Y.; Chen, J. Effects of berberine on glucose metabolism in vitro. Metabolism, 2002, 51(11), 1439-1443.
[http://dx.doi.org/10.1053/meta.2002.34715 ] [PMID: 12404195]
[43]
Fan, J.; Li, B.; Ge, T.; Zhang, Z.; Lv, J.; Zhao, J.; Wang, P.; Liu, W.; Wang, X.; Mlyniec, K.; Cui, R. Berberine produces antidepressant-like effects in ovariectomized mice. Sci. Rep., 2017, 7(1), 1310-1319.
[http://dx.doi.org/10.1038/s41598-017-01035-5 ] [PMID: 28465511]
[44]
Kessler, R.C.; Chiu, W.T.; Demler, O.; Merikangas, K.R.; Walters, E.E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry, 2005, 62(6), 617-627.
[http://dx.doi.org/10.1001/archpsyc.62.6.617 ] [PMID: 15939839]
[45]
Bauer, M.; Pfennig, A.; Severus, E.; Whybrow, P.C.; Angst, J.; Möller, H.J. World Federation of Societies of Biological Psychiatry. Task Force on Unipolar Depressive Disorders. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders, part 1: Update 2013 on the acute and continuation treatment of unipolar depressive disorders. World J. Biol. Psychiatry, 2013, 14(5), 334-385.
[http://dx.doi.org/10.3109/15622975.2013.804195 ] [PMID: 23879318]
[46]
Shen, J.D.; Ma, L.G.; Hu, C.Y.; Pei, Y.Y.; Jin, S.L.; Fang, X.Y.; Li, Y.C. Berberine up-regulates the BDNF expression in hippocampus and attenuates corticosterone-induced depressive-like behavior in mice. Neurosci. Lett., 2016, 614, 77-82.
[http://dx.doi.org/10.1016/j.neulet.2016.01.002 ] [PMID: 26773864]
[47]
Kong, L.D.; Cheng, C.H.; Tan, R.X. Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med., 2001, 67(1), 74-76.
[http://dx.doi.org/10.1055/s-2001-10874 ] [PMID: 11270727]
[48]
Kulkarni, S.K.; Dhir, A. On the mechanism of antidepressant-like action of berberine chloride. Eur. J. Pharmacol., 2008, 589(1-3), 163-172.
[http://dx.doi.org/10.1016/j.ejphar.2008.05.043 ] [PMID: 18585703]
[49]
Peng, W.H.; Lo, K.L.; Lee, Y.H.; Hung, T.H.; Lin, Y.C. Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice. Life Sci., 2007, 81(11), 933-938.
[http://dx.doi.org/10.1016/j.lfs.2007.08.003 ] [PMID: 17804020]
[50]
Nelson, R.H. Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care, 2013, 40(1), 195-211.
[http://dx.doi.org/10.1016/j.pop.2012.11.003 ] [PMID: 23402469]
[51]
Wang, Y.; Jia, X.; Ghanam, K.; Beaurepaire, C.; Zidichouski, J.; Miller, L. Berberine and plant stanols synergistically inhibit cholesterol absorption in hamsters. Atherosclerosis, 2010, 209(1), 111-117.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.08.050 ] [PMID: 19782362]
[52]
Kim, W.S.; Lee, Y.S.; Cha, S.H.; Jeong, H.W.; Choe, S.S.; Lee, M.R.; Oh, G.T.; Park, H.S.; Lee, K.U.; Lane, M.D.; Kim, J.B. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. Am. J. Physiol. Endocrinol. Metab., 2009, 296(4), E812-E819.
[http://dx.doi.org/10.1152/ajpendo.90710.2008 ] [PMID: 19176354]
[53]
Wang, Y.; Yi, X.; Ghanam, K.; Zhang, S.; Zhao, T.; Zhu, X. Berberine decreases cholesterol levels in rats through multiple mechanisms, including inhibition of cholesterol absorption. Metabolism, 2014, 63(9), 1167-1177.
[http://dx.doi.org/10.1016/j.metabol.2014.05.013 ] [PMID: 25002181]
[54]
Jia, X.; Chen, Y.; Zidichouski, J.; Zhang, J.; Sun, C.; Wang, Y. Co-administration of berberine and plant stanols synergistically reduces plasma cholesterol in rats. Atherosclerosis, 2008, 201(1), 101-107.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.03.008 ] [PMID: 18430428]
[55]
He, K.; Kou, S.; Zou, Z.; Hu, Y.; Feng, M.; Han, B.; Li, X.; Ye, X. Hypolipidemic effects of alkaloids from Rhizoma coptidis in diet-induced hyperlipidemic hamsters. Planta Med., 2016, 82(8), 690-697.
[http://dx.doi.org/10.1055/s-0035-1568261 ] [PMID: 26848702]
[56]
Hepatoprotective effects of berberine on carbon tetrachloride-induced acute hepatotoxicity in rats. Chin. Med., 2010, 5, 33.
[57]
Pirillo, A.; Catapano, A.L. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis, 2015, 243(2), 449-461.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.032 ] [PMID: 26520899]
[58]
Zuo, F.; Nakamura, N.; Akao, T.; Hattori, M. Pharmacokinetics of berberine and its main metabolites in conventional and pseudo germ-free rats determined by liquid chromatography/ion trap mass spectrometry. Drug Metab. Dispos., 2006, 34(12), 2064-2072.
[http://dx.doi.org/10.1124/dmd.106.011361 ] [PMID: 16956957]
[59]
Zhang, Y.; Cui, Y.L.; Gao, L.N.; Jiang, H.L. Effects of β-cyclodextrin on the intestinal absorption of berberine hydrochloride, a P-glycoprotein substrate. Int. J. Biol. Macromol., 2013, 59, 363-371.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.074 ] [PMID: 23664937]
[60]
Maeng, H.J.; Yoo, H.J.; Kim, I.W.; Song, I.S.; Chung, S.J.; Shim, C.K. P-glycoprotein-mediated transport of berberine across Caco-2 cell monolayers. J. Pharm. Sci., 2002, 91(12), 2614-2621.
[http://dx.doi.org/10.1002/jps.10268 ] [PMID: 12434406]
[61]
Kheir, M.M.; Wang, Y.; Hua, L.; Hu, J.; Li, L.; Lei, F.; Du, L. Acute toxicity of berberine and its correlation with the blood concentration in mice. Food Chem. Toxicol., 2010, 48(4), 1105-1110.
[http://dx.doi.org/10.1016/j.fct.2010.01.033 ] [PMID: 20138204]
[62]
Li, G.H.; Wang, D.L.; Hu, Y.D.; Pu, P.; Li, D.Z.; Wang, W.D.; Zhu, B.; Hao, P.; Wang, J.; Xu, X.Q.; Wan, J.Q.; Zhou, Y.B.; Chen, Z.T. Berberine inhibits acute radiation intestinal syndrome in human with abdomen radiotherapy. Med. Oncol., 2010, 27(3), 919-925.
[http://dx.doi.org/10.1007/s12032-009-9307-8 ] [PMID: 19757213]
[63]
Ma, J.Y.; Feng, R.; Tan, X.S.; Ma, C.; Shou, J.W.; Fu, J.; Huang, M.; He, C.Y.; Chen, S.N.; Zhao, Z.X.; He, W.Y.; Wang, Y.; Jiang, J.D. Excretion of berberine and its metabolites in oral administration in rats. J. Pharm. Sci., 2013, 102(11), 4181-4192.
[http://dx.doi.org/10.1002/jps.23718 ] [PMID: 24006193]
[64]
Liu, C.S.; Zheng, Y.R.; Zhang, Y.F.; Long, X.Y. Research progress on berberine with a special focus on its oral bioavailability. Fitoterapia, 2016, 109, 274-282.
[http://dx.doi.org/10.1016/j.fitote.2016.02.001 ] [PMID: 26851175]
[65]
Spinozzi, S.; Colliva, C.; Camborata, C.; Roberti, M.; Ianni, C.; Neri, F.; Calvarese, C.; Lisotti, A.; Mazzella, G.; Roda, A. Berberine and its metabolites: relationship between physicochemical properties and plasma levels after administration to human subjects. J. Nat. Prod., 2014, 77(4), 766-772.
[http://dx.doi.org/10.1021/np400607k ] [PMID: 24593257]
[66]
Zhang, X.; Qiu, F.; Jiang, J.; Gao, C.; Tan, Y. Intestinal absorption mechanisms of berberine, palmatine, jateorhizine, and coptisine: Involvement of P-glycoprotein. Xenobiotica, 2011, 41(4), 290-296.
[http://dx.doi.org/10.3109/00498254.2010.529180 ] [PMID: 21319959]
[67]
Lv, X.Y.; Li, J.; Zhang, M.; Wang, C.M.; Fan, Z.; Wang, C.Y.; Chen, L. Enhancement of sodium caprate on intestine absorption and antidiabetic action of berberine. AAPS PharmSciTech, 2010, 11(1), 372-382.
[http://dx.doi.org/10.1208/s12249-010-9386-z ] [PMID: 20237966]
[68]
Zhaojie, M.; Ming, Z.; Shengnan, W.; Xiaojia, B.; Hatch, G.M.; Jingkai, G.; Li, C. Amorphous solid dispersion of berberine with absorption enhancer demonstrates a remarkable hypoglycemic effect via improving its bioavailability. Int. J. Pharm., 2014, 467(1-2), 50-59.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.017 ] [PMID: 24607213]
[69]
Fan, D.; Wu, X.; Dong, W.; Sun, W.; Li, J.; Tang, X. Enhancement by sodium caprate and sodium deoxycholate of the gastrointestinal absorption of berberine chloride in rats. Drug Dev. Ind. Pharm., 2013, 39(9), 1447-1456.
[http://dx.doi.org/10.3109/03639045.2012.723219 ] [PMID: 23020091]
[70]
Chen, W.; Fan, D.; Meng, L.; Miao, Y.; Yang, S.; Weng, Y.; He, H.; Tang, X. Enhancing effects of chitosan and chitosan hydrochloride on intestinal absorption of berberine in rats. Drug Dev. Ind. Pharm., 2012, 38(1), 104-110.
[http://dx.doi.org/10.3109/03639045.2011.592531 ] [PMID: 21774632]
[71]
Cano-Cebrián, M.J.; Zornoza, T.; Granero, L.; Polache, A. Intestinal absorption enhancement via the paracellular route by fatty acids, chitosans and others: a target for drug delivery. Curr. Drug Deliv., 2005, 2(1), 9-22.
[http://dx.doi.org/10.2174/1567201052772834 ] [PMID: 16305404]
[72]
Zhou, S.; Lim, L.Y.; Chowbay, B. Herbal modulation of P-glycoprotein. Drug Metab. Rev., 2004, 36(1), 57-104.
[http://dx.doi.org/10.1081/DMR-120028427 ] [PMID: 15072439]
[73]
Fu, L.; Liang, Y.; Deng, L.; Ding, Y.; Chen, L.; Ye, Y.; Yang, X.; Pan, Q. Characterization of tetrandrine, a potent inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Chemother. Pharmacol., 2004, 53(4), 349-356.
[http://dx.doi.org/10.1007/s00280-003-0742-5 ] [PMID: 14666379]
[74]
Wu, S.H.W.; Hopkins, W.K. Characteristics of D-α-tocopheryl PEG 1000 succinate for applications as an absorption enhancer in drug delivery systems. Pharm. Technol., 1999, 23, 52-68.
[75]
Cornaire, G.; Woodley, J.; Hermann, P.; Cloarec, A.; Arellano, C.; Houin, G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int. J. Pharm., 2004, 278(1), 119-131.
[http://dx.doi.org/10.1016/j.ijpharm.2004.03.001 ] [PMID: 15158955]
[76]
Di, P.F.; Bellone, I.; Rapacioli, G.; Putignano, P. Clinical role of a fixed combination of standardized Berberis aristata and Silybum marianum extracts in diabetic and hypercholesterolemic patients intolerant to statins. Diabetes. Metab Syndr Obes Targets Ther, 2015, 8, 89-96.
[77]
Shan, Y.Q.; Zhu, Y.P.; Pang, J.; Wang, Y.X.; Song, D.Q.; Kong, W.J.; Jiang, J.D. Tetrandrine potentiates the hypoglycemic efficacy of berberine by inhibiting P-glycoprotein function. Biol. Pharm. Bull., 2013, 36(10), 1562-1569.
[http://dx.doi.org/10.1248/bpb.b13-00272 ] [PMID: 23924821]
[78]
Shan, Y.Q.; Ren, G.; Wang, Y.X.; Pang, J.; Zhao, Z.Y.; Yao, J.; You, X.F.; Si, S.Y.; Song, D.Q.; Kong, W.J.; Jiang, J.D. Berberine analogue IMB-Y53 improves glucose-lowering efficacy by averting cellular efflux especially P-glycoprotein efflux. Metabolism, 2013, 62(3), 446-456.
[http://dx.doi.org/10.1016/j.metabol.2012.09.009 ] [PMID: 23079743]
[79]
Mujtaba, A.; Ali, M.; Kohli, K. Formulation of extended release cefpodoxime proxetil chitosan-alginate beads using quality by design approach. Int. J. Biol. Macromol., 2014, 69, 420-429.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.066 ] [PMID: 24915550]
[80]
Zhang, Y.; Liu, H. Development of bioadhesive microspheres for oral bioavailability enhancement of berberine hydrochloride. Int. J. Polym. Sci., 2016, (3), 1-7.
[http://dx.doi.org/10.1155/2016/4235832]
[81]
Godugu, C.; Patel, A.R.; Doddapaneni, R.; Somagoni, J.; Singh, M. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid. PLoS One, 2014, 9(3)e89919
[http://dx.doi.org/10.1371/journal.pone.0089919 ] [PMID: 24614362]
[82]
Sahibzada, M.U.K.; Sadiq, A.; Faidah, H.S.; Khurram, M.; Amin, M.U.; Haseeb, A.; Kakar, M. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity. Drug Des. Devel. Ther., 2018, 12, 303-312.
[http://dx.doi.org/10.2147/DDDT.S156123 ] [PMID: 29491706]
[83]
Yu, F.; Li, Y.; Chen, Q.; He, Y.; Wang, H.; Yang, L.; Guo, S.; Meng, Z.; Cui, J.; Xue, M.; Chen, X.D. Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. Eur. J. Pharm. Biopharm., 2016, 103, 136-148.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.019 ] [PMID: 27020531]
[84]
Mujtaba, A.; Hassan, K. Nanotechnology based approach to enhance the potential of chemopreventive agent berberine hydrochloride in cancer therapy. Int. J. Biol. Pharm. Allied Sci., 2017, 6(5), 1-23.
[85]
Liu, X.; Wu, W.Y.; Jiang, B.H.; Yang, M.; Guo, D.A. Pharmacological tools for the development of traditional Chinese medicine. Trends Pharmacol. Sci., 2013, 34(11), 620-628.
[http://dx.doi.org/10.1016/j.tips.2013.09.004 ] [PMID: 24139610]
[86]
Jia, W.; Li, H.; Zhao, L.; Nicholson, J.K. Gut microbiota: A potential new territory for drug targeting. Nat. Rev. Drug Discov., 2008, 7(2), 123-129.
[http://dx.doi.org/10.1038/nrd2505 ] [PMID: 18239669]
[87]
Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489(7415), 242-249.
[http://dx.doi.org/10.1038/nature11552 ] [PMID: 22972297]
[88]
Feng, R.; Shou, J.W.; Zhao, Z.X.; He, C.Y.; Ma, C.; Huang, M.; Fu, J.; Tan, X.S.; Li, X.Y.; Wen, B.Y.; Chen, X.; Yang, X.Y.; Ren, G.; Lin, Y.; Chen, Y.; You, X.F.; Wang, Y.; Jiang, J.D. Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci. Rep., 2015, 5, 12155.
[http://dx.doi.org/10.1038/srep12155 ] [PMID: 26174047]
[89]
Akhter, M.H.; Ahmad, A.; Ali, J.; Mohan, G. Formulation and development of CoQ10-loaded s-SNEDDS for enhancement of oral bioavailability. J. Pharm. Innov., 2014, 9(2), 121-131.
[http://dx.doi.org/10.1007/s12247-014-9179-0]
[90]
Ahmad, J.; Amin, S.; Singh, S.; Mustafa, G.; Barkat, M.A. Self-nanoemulsifying drug delivery system for improving efficacy of bioactive phytochemicals.Nanophytomedicine; Beg, S.; Barkat, M.; Ahmad, F., Eds.; Springer: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-15-4909-0_5]
[91]
Yu, C.; Gu, P.; Zhang, W.; Qi, N.; Cai, C.; He, H.; Tang, X. Preparation and evaluation of zolmitriptan submicron emulsion for rapid and effective nasal absorption in beagle dogs. Drug Dev. Ind. Pharm., 2011, 37(12), 1509-1516.
[http://dx.doi.org/10.3109/03639045.2011.587432 ] [PMID: 21671836]
[92]
Balakrishnan, P.; Lee, B.J.; Oh, D.H.; Kim, J.O.; Lee, Y.I.; Kim, D.D.; Jee, J.P.; Lee, Y.B.; Woo, J.S.; Yong, C.S.; Choi, H.G. Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems. Int. J. Pharm., 2009, 374(1-2), 66-72.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.008 ] [PMID: 19446761]
[93]
Qi, X.; Wang, L.; Zhu, J. Water-in-oil-in-water double emulsions: an excellent delivery system for improving the oral bioavailability of pidotimod in rats. J. Pharm. Sci., 2011, 100(6), 2203-2211.
[http://dx.doi.org/10.1002/jps.22443 ] [PMID: 21491444]
[94]
Zhu, J.X.; Tang, D.; Feng, L.; Zheng, Z.G.; Wang, R.S.; Wu, A.G.; Duan, T.T.; He, B.; Zhu, Q. Development of self-microemulsifying drug delivery system for oral bioavailability enhancement of berberine hydrochloride. Drug Dev. Ind. Pharm., 2013, 39(3), 499-506.
[http://dx.doi.org/10.3109/03639045.2012.683875 ] [PMID: 22563917]
[95]
Kuche, K.; Bhargavi, N.; Dora, C.P.; Jain, S. Drug-phospholipid complex-a go through strategy for enhanced oral bioavailability. AAPS PharmSciTech, 2019, 20(2), 43.
[http://dx.doi.org/10.1208/s12249-018-1252-4 ] [PMID: 30610392]
[96]
Yu, F.; Ao, M.; Zheng, X.; Li, N.; Xia, J.; Li, Y.; Li, D.; Hou, Z.; Qi, Z.; Chen, X.D. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency. Drug Deliv., 2017, 24(1), 825-833.
[http://dx.doi.org/10.1080/10717544.2017.1321062 ] [PMID: 28509588]
[97]
Hadinoto, K.; Sundaresan, A.; Cheow, W.S. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt A), 427-443.
[http://dx.doi.org/10.1016/j.ejpb.2013.07.002 ] [PMID: 23872180]
[98]
Cui, F.; Shi, K.; Zhang, L.; Tao, A.; Kawashima, Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J. Control. Release, 2006, 114(2), 242-250.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.013 ] [PMID: 16859800]
[99]
Sut, S.; Faggian, M.; Baldan, V.; Poloniato, G.; Castagliuolo, I.; Grabnar, I.; Perissutti, B.; Brun, P.; Maggi, F.; Voinovich, D.; Peron, G.; Dall’Acqua, S. Natural Deep Eutectic Solvents (NADES) to enhance berberine absorption: An in vivo pharmacokinetic study. Molecules, 2017, 22(11), 1921.
[http://dx.doi.org/10.3390/molecules22111921 ] [PMID: 29117131]
[100]
Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta, 2013, 766, 61-68.
[http://dx.doi.org/10.1016/j.aca.2012.12.019 ] [PMID: 23427801]
[101]
Faggian, M.; Sut, S.; Perissutti, B.; Baldan, V.; Grabnar, I.; Dall’Acqua, S. Natural Deep Eutectic Solvents (NADES) as a tool for bioavailability improvement: Pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: Possible application in nutraceuticals. Molecules, 2016, 21(11), 1531.
[http://dx.doi.org/10.3390/molecules21111531 ] [PMID: 27854256]
[102]
Engel, A.; Oswald, S.; Siegmund, W.; Keiser, M. Pharmaceutical excipients influence the function of human uptake transporting proteins. Mol. Pharm., 2012, 9(9), 2577-2581.
[http://dx.doi.org/10.1021/mp3001815 ] [PMID: 22808947]
[103]
Ma, B.L.; Yang, Y.; Dai, Y.; Li, Q.; Lin, G.; Ma, Y.M. Polyethylene glycol 400 (PEG400) affects the systemic exposure of oral drugs based on multiple mechanisms: Taking berberine as an example. RSC Adv, 2017, 7, 2435-2442.
[http://dx.doi.org/10.1039/C6RA26284H]
[104]
Han, H.K.; Lee, B.J.; Lee, H.K. Enhanced dissolution and bioavailability of biochanin A via the preparation of solid dispersion: In vitro and in vivo evaluation. Int. J. Pharm., 2011, 415(1-2), 89-94.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.055 ] [PMID: 21645596]
[105]
Pham, C.V.; Cho, C.W. Application of D-α-Tocopheryl Polyethylene Glycol 1000 succinate (TPGS) in Transdermal and Topical Drug Delivery Systems (TDDS). J. Pharm. Investig., 2017, 47, 111-121.
[http://dx.doi.org/10.1007/s40005-016-0300-x]
[106]
Planinšek, O.; Kovačič, B.; Vrečer, F. Carvedilol dissolution improvement by preparation of solid dispersions with porous silica. Int. J. Pharm., 2011, 406(1-2), 41-48.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.035 ] [PMID: 21219991]
[107]
Zhang, Z.; Chen, Y.; Deng, J.; Jia, X.; Zhou, J.; Lv, H. Solid dispersion of berberine-phospholipid complex/TPGS 1000/SiO2: preparation, characterization and in vivo studies. Int. J. Pharm., 2014, 465(1-2), 306-316.
[http://dx.doi.org/10.1016/j.ijpharm.2014.01.023 ] [PMID: 24456672]
[108]
Poonia, N.; Kharb, R.; Lather, V.; Pandita, D. Nanostructured lipid carriers: Versatile oral delivery vehicle. Future Sci. OA, 2016, 2(3)FSO135
[http://dx.doi.org/10.4155/fsoa-2016-0030 ] [PMID: 28031979]
[109]
Andrade, L.M.; de Fátima Reis, C.; Maione-Silva, L.; Anjos, J.L.; Alonso, A.; Serpa, R.C.; Marreto, R.N.; Lima, E.M.; Taveira, S.F. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur. J. Pharm. Biopharm., 2014, 88(1), 40-47.
[http://dx.doi.org/10.1016/j.ejpb.2014.04.015 ] [PMID: 24816130]
[110]
Qi, J.; Zhuang, J.; Lu, Y.; Dong, X.; Zhao, W.; Wu, W. In vivo fate of lipid-based nanoparticles. Drug Discov. Today, 2017, 22(1), 166-172.
[http://dx.doi.org/10.1016/j.drudis.2016.09.024 ] [PMID: 27713035]
[111]
Ogawa-Wong, A.N.; Berry, M.J.; Seale, L.A. Selenium and metabolic disorders: An emphasis on type 2 diabetes risk. Nutrients, 2016, 8(2), 80.
[http://dx.doi.org/10.3390/nu8020080 ] [PMID: 26861388]
[112]
Yin, J.; Hou, Y.; Yin, Y.; Song, X. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect. Int. J. Nanomedicine, 2017, 12, 8671-8680.
[http://dx.doi.org/10.2147/IJN.S144615] [PMID: 29263662]

© 2024 Bentham Science Publishers | Privacy Policy