Title: Diabetes and the Impairment of Reproductive Function: Possible Role of Mitochondria and Reactive Oxygen Species
Volume: 4
Issue: 1
Author(s): Joao Ramalho-Santos, Sandra Amaral and Paulo J. Oliveira
Affiliation:
Keywords:
Diabetes, Hyperglycemia, Endothelial dysfunction, Reproductive/ sexual function, Oxidative stress, Mitochondria
Abstract: Diabetes Mellitus (DM), a state of chronic hyperglycemia, is a major cause of serious micro and macrovascular diseases, affecting, therefore, nearly every system in the body. Growing evidence indicates that oxidative stress is increased in diabetes due to overproduction of reactive oxygen species (ROS) and decreased efficiency of antioxidant defences, a process that starts very early and worsens over the course of the disease. During the development of diabetes, oxidation of lipids, proteins and DNA increase with time. Mitochondrial DNA mutations have also been reported in diabetic tissues, suggesting oxidative stress-related mitochondrial damage. Diabetes- related oxidative stress may also be the trigger for many alterations on sexual function, which can also include decreased testicular mitochondrial function. Although sexual disorders have been extensively studied in diabetic men, possible changes in the sexual function of diabetic women have only recently received attention. The prevalence of sexual dysfunction in diabetic men approaches 50%, whereas in diabetic women it seems to be slightly lower. Testicular dysfunction, impotence, decreased fertility potential and retrograde ejaculations are conditions that have been described in diabetic males. Diabetes is also the most common cause of erectile dysfunction in men. Poor semen quality has also been reported in diabetic men, including decreased sperm motility and concentration, abnormal morphology and increased seminal plasma abnormalities. In addition, diabetic men may have decreased serum testosterone due to impaired Leydig cell function. Among diabetic women neuropathy, vascular impairment and psychological complaints have been implicated in the pathogenesis of decreased libido, low arousability, decreased vaginal lubrication, orgasmic dysfunction, and dyspareunia. An association between the production of excess radical oxygen species and disturbed embryogenesis in diabetic pregnancies has also been suggested. In fact, maternal diabetes during pregnancy is associated with an increased risk of complications in the offspring, such as altered fetal growth, polyhydramnios, fetal loss and congenital malformations. In addition, hypocalemia and reduced bone mineral content are found in neonates of diabetic mothers. Abnormalities in gametogenesis and sexual function have also been documented in animal models for both types of Diabetes, which thus constitute an important research tool to both study the effects of the disease, and to test novel therapeutical interventions. Because sexuality and fertility are important aspects in the lives of individuals and couples, and considering that over 124 million individuals worldwide suffer from Diabetes, this review highlights the impact of Diabetes and associated oxidative stress on sexual function.