Review Article

基于纳米技术的肝细胞癌靶向研究

卷 22, 期 7, 2021

发表于: 09 December, 2020

页: [779 - 792] 页: 14

弟呕挨: 10.2174/1389450121999201209194524

价格: $65

Open Access Journals Promotions 2
摘要

肝细胞癌(HCC)是原发性肝癌,在世界范围内的多种癌症中发病率和死亡率都很高。大量化疗药物用于治疗,由于其有限的位点特异性药物靶向能力,其成功率有限。因此,需要开发新的方法来治疗HCC。随着纳米技术为基础的药物传递方法的进步,传统化疗的挑战不断减少。由脂质和高分子复合材料组成的纳米药物为肝细胞癌的治疗提供了一个更好的平台,并开辟了新的途径。许多纳米载体,如表面工程脂质体、纳米粒子、纳米管、胶束、量子点等,已被研究用于治疗HCC。这些纳米载体在临床上被认为是递送化疗药物的高效载体,具有较高的位点特异性和治疗效率。本文综述了利用各种配体受体特异性靶向策略的纳米载体系统在肝癌治疗和管理中的应用。此外,文章还包括了目前临床批准的用于肝癌治疗的药物治疗的信息,以及此类纳米药物批准的监管要求的更新。

关键词: 肝癌,化疗,纳米载体,配体,肿瘤靶向,量子点

图形摘要
[1]
Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70(1): 151-71.
[http://dx.doi.org/10.1016/j.jhep.2018.09.014] [PMID: 30266282]
[2]
Beg S, Kawish SM, Panda SK, et al. Nanomedicinal strategies as efficient therapeutic interventions for delivery of cancer vaccines. Semin Cancer Biol 2019.
[http://dx.doi.org/10.1016/j.semcancer.2019.10.005] [PMID: 31618687]
[3]
Pandey P, Rahman M, Bhatt PC, et al. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine (Lond) 2018; 13(8): 849-70.
[http://dx.doi.org/10.2217/nnm-2017-0306] [PMID: 29565220]
[4]
Shilpi S. Drug targeting strategies for liver cancer and other liver diseases. MOJ Drug Des Dev Ther 2018; 2(4): 171-7.
[http://dx.doi.org/10.15406/mojddt.2018.02.00044]
[5]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[6]
Marengo A, Rosso C, Bugianesi E. Liver cancer : Connections with obesity, fatty liver, and cirrhosis. Annu Rev Med 2016; 67(12): 103-17.
[http://dx.doi.org/10.1146/annurev-med-090514-013832] [PMID: 26473416]
[7]
Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018; 15(2): 95-111.
[http://dx.doi.org/10.1038/nrclinonc.2017.157] [PMID: 28994423]
[8]
Sharma D, Subbarao G, Saxena R. Hepatoblastoma. Semin Diagn Pathol 2017; 34(2): 192-200.
[http://dx.doi.org/10.1053/j.semdp.2016.12.015] [PMID: 28126357]
[9]
Usmani A, Mishra A, Ahmad M. Nanomedicines: a theranostic approach for hepatocellular carcinoma. Artif Cells Nanomed Biotechnol 2018; 46(4): 680-90.
[http://dx.doi.org/10.1080/21691401.2017.1374282] [PMID: 28884605]
[10]
Duan W, Liu Y. Targeted and synergistic therapy for hepatocellular carcinoma: monosaccharide modified lipid nanoparticles for the co-delivery of doxorubicin and sorafenib. Drug Des Devel Ther 2018; 12: 2149-61.https://dx.doi.org/10.2147%2FDDDT.S166402
[http://dx.doi.org/10.2147/DDDT.S166402] [PMID: 30034219]
[11]
Greten TF, Lai CW, Li G, Staveley-O’Carroll KF. Targeted and immune-based therapies for hepatocellular carcinoma. Gastroenterology 2019; 156(2): 510-24.
[http://dx.doi.org/10.1053/j.gastro.2018.09.051] [PMID: 30287171]
[12]
Pittman ME. Hepatocellular carcinoma: A practical review for the surgical pathologist. Diagn Histopathol 2018; 24(12): 500-7.
[http://dx.doi.org/10.1016/j.mpdhp.2018.09.005]
[13]
Kar P. Risk factors for hepatocellular carcinoma in India. J Clin Exp Hepatol 2014; 4(S3)(Suppl. 3): S34-42.
[http://dx.doi.org/10.1016/j.jceh.2014.02.155] [PMID: 25755609]
[14]
Ho BN, Pfeffer CM, Singh ATK. Update on nanotechnology-based drug delivery systems in cancer treatment. Anticancer Res 2017; 37(11): 5975-81.
[http://dx.doi.org/10.21873/anticanres.12044] [PMID: 29061776]
[15]
Lu C, Rong D, Zhang B, et al. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer 2019; 18(1): 130.
[http://dx.doi.org/10.1186/s12943-019-1047-6] [PMID: 31464625]
[16]
Sapir E, Tao Y, Schipper M J, et al. Stereotactic body radiotherapy as an alternative to transarterial chemoembolization for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2017; 100(1): 122-30.
[17]
Santambrogio R, Barabino M, Bruno S, et al. Surgical resection vs. Ablative therapies through a laparoscopic approach for hepatocellular carcinoma : A comparative study. J Gastrointest Surg 2018; 22(4): 650-60.
[http://dx.doi.org/10.1007/s11605-017-3648-y] [PMID: 29235004]
[18]
Kang TW, Lim HK, Cha DI. Aggressive tumor recurrence after radiofrequency ablation for hepatocellular carcinoma. Clical Mol Hepatol 2017; 23(1): 95-101.
[19]
Silva JP, Berger NG, Tsai S, et al. Transarterial chemoembolization in hepatocellular carcinoma with portal vein tumor thrombosis: a systematic review and meta-analysis. HPB (Oxford) 2017; 19(8): 659-66.
[http://dx.doi.org/10.1016/j.hpb.2017.04.016] [PMID: 28552299]
[20]
Sapisochin G, Bruix J. Liver transplantation for hepatocellular carcinoma: outcomes and novel surgical approaches. Nat Rev Gastroenterol Hepatol 2017; 14(4): 203-17.
[http://dx.doi.org/10.1038/nrgastro.2016.193] [PMID: 28053342]
[21]
Gans JH, Lipman J, Golowa Y, Kinkhabwala M, Kaubisch A. Hepatic cancers overview : Surgical and chemotherapeutic options, how do Y-90 microspheres fit in? Semin Nucl Med 2019; 49(3): 170-81.
[http://dx.doi.org/10.1053/j.semnuclmed.2019.01.001] [PMID: 30954182]
[22]
Belghiti J, Kianmanesh R. Surgical treatment of hepatocellular carcinoma. HPB (Oxford) 2005; 7(1): 42-9.
[http://dx.doi.org/10.1080/13651820410024067] [PMID: 18333160]
[23]
Rhim H, Lim HK. Radiofrequency ablation of hepatocellular carcinoma: pros and cons. Gut Liver 2010; 4(1)(Suppl. 1): S113-8.
[http://dx.doi.org/10.5009/gnl.2010.4.S1.S113] [PMID: 21103289]
[24]
Tu J, Jia Z, Ying X, et al. The incidence and outcome of major complication following conventional TAE/TACE for hepatocellular carcinoma. Medicine (Baltimore) 2016; 95(49): e5606.https://dx.doi.org/10.1097%2FMD.0000000000005606
[http://dx.doi.org/10.1097/MD.0000000000005606] [PMID: 27930585]
[25]
Khorsandi SE, Heaton N. Optimization of immunosuppressive medication upon liver transplantation against HCC recurrence. Transl Gastroenterol Hepatol 2016; 1(80): 25.
[http://dx.doi.org/10.21037/tgh.2016.03.18] [PMID: 28138592]
[26]
Kalogeridi M, Zygogianni A, Kyrgias G, Kouvaris J, Chatziioannou S, Kouloulias V. Role of radiotherapy in the management of hepatocellular carcinoma : A systematic review. world. J Hepatol 2015; 7(1): 101-12.
[http://dx.doi.org/10.4254/wjh.v7.i1.101] [PMID: 25135862]
[27]
Lohitesh K, Chowdhury R, Mukherjee S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int 2018; 18(44): 44.
[http://dx.doi.org/10.1186/s12935-018-0538-7] [PMID: 29568237]
[28]
Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics 2017; 9(4): 1-26.
[http://dx.doi.org/10.3390/pharmaceutics9040046] [PMID: 29036899]
[29]
Baig B, Halim SA, Farrukh A, Greish Y, Amin A. Current status of nanomaterial-based treatment for hepatocellular carcinoma. Biomed Pharmacother 2019; 116: 108852.
[http://dx.doi.org/10.1016/j.biopha.2019.108852] [PMID: 30999152]
[30]
Barkat MA, Beg S, Pottoo FH, Ahmad FJ. Nanopaclitaxel therapy: an evidence based review on the battle for next-generation formulation challenges. Nanomedicine (Lond) 2019; 14(10): 1323-41.
[http://dx.doi.org/10.2217/nnm-2018-0313] [PMID: 31124758]
[31]
Qiao W, Wang B, Wang Y, Yang L, Zhang Y, Shao P. Cancer therapy based on nanomaterials and nanocarrier systems. J Nanomater 2010; 2010: 1-9.
[http://dx.doi.org/10.1155/2010/796303]
[32]
Rahman M, Beg S, Ahmed A, Swain S. Emergence of functionalized nanomedicines in cancer chemotherapy: recent advancements, current challenges and toxicity considerations. Recent Pat Nanomed 2013; 2(3): 128-39.
[http://dx.doi.org/10.2174/18779123113036660002]
[33]
Rahman M, Beg S, Verma A, et al. Therapeutic applications of liposomal based drug delivery and drug targeting for immune linked inflammatory maladies: A contemporary view point. Curr Drug Targets 2017; 18(13): 1558-71.
[http://dx.doi.org/10.2174/1389450118666170414113926] [PMID: 28413980]
[34]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3(1): 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[35]
Zafar S, Beg S, Panda SK, et al. Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Semin Cancer Biol 2019; (July): 1-19.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.023] [PMID: 31442570]
[36]
Zhou F, Teng F, Deng P, Meng N, Song Z, Feng R. Recent progress of nano-drug delivery system for liver cancer treatment. Anticancer Agents Med Chem 2018; 17(14): 1884-97.
[http://dx.doi.org/10.2174/1871520617666170713151149] [PMID: 28707574]
[37]
Sun Y, Ma W, Yang Y, et al. Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian J Pharm Sci 2019; 14(6): 581-94.
[http://dx.doi.org/10.1016/j.ajps.2019.04.005] [PMID: 32104485]
[38]
Bhushan B, Khanadeev V, Khlebtsov B, Khlebtsov N, Gopinath P. Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Adv Colloid Interface Sci 2017; 246: 13-39.
[http://dx.doi.org/10.1016/j.cis.2017.06.012] [PMID: 28716187]
[39]
Hirsjärvi S, Passirani C, Benoit JP. Passive and active tumour targeting with nanocarriers. Curr Drug Discov Technol 2011; 8(3): 188-96.
[http://dx.doi.org/10.2174/157016311796798991] [PMID: 21513482]
[40]
Barkat A, Beg S, Panda SKS, S Alharbi K, Rahman M, Ahmed FJ. Functionalized mesoporous silica nanoparticles in anticancer therapeutics. Semin Cancer Biol 2019; 1-32.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.022] [PMID: 31442571]
[41]
Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol 2014; 2(6): 904-8.
[http://dx.doi.org/10.3892/mco.2014.356] [PMID: 25279172]
[42]
Dutta R, Mahato RI. Recent advances in hepatocellular carcinoma therapy. Pharmacol Ther 2017; 173: 106-17.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.010] [PMID: 28174094]
[43]
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63(3): 136-51.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[44]
Li R, Zheng K, Yuan C, Chen Z, Huang M. Be active or not : The relative contribution of active and passive tumor targeting of nanomaterials. Nanotheranostics 2017; 1(4): 346-57.
[http://dx.doi.org/10.7150/ntno.19380] [PMID: 29071198]
[45]
Goodman SL, Hölzemann G, Sulyok GA, Kessler H. Nanomolar small molecule inhibitors for alphav(β)6, alphav(β)5, and alphav(β)3 integrins. J Med Chem 2002; 45(5): 1045-51.
[http://dx.doi.org/10.1021/jm0102598] [PMID: 11855984]
[46]
Seymour LW, Ferry DR, Anderson D, et al. Cancer Research Campaign Phase I/II Clinical Trials committee. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol 2002; 20(6): 1668-76.
[http://dx.doi.org/10.1200/JCO.2002.20.6.1668] [PMID: 11896118]
[47]
Choi CHJ, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci USA 2010; 107(3): 1235-40.
[http://dx.doi.org/10.1073/pnas.0914140107] [PMID: 20080552]
[48]
Bazak R, Houri M, El Achy S, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 2015; 141(5): 769-84.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[49]
Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161(2): 175-87.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063] [PMID: 21945285]
[50]
Mohamed NK, Hamad MA, Hafez MZE, Wooley KL, Elsabahy M. Nanomedicine in management of hepatocellular carcinoma: Challenges and opportunities. Int J Cancer 2017; 140(7): 1475-84.
[http://dx.doi.org/10.1002/ijc.30517] [PMID: 27861850]
[51]
Yoo J, Park C, Yi G, Lee D, Koo H. Active Targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers (Basel) 2019; 11(5): 11050640.https://dx.doi.org/10.3390%2Fcancers11050640
[http://dx.doi.org/10.3390/cancers11050640] [PMID: 31072061]
[52]
Li M, Zhang W, Wang B, Gao Y, Song Z, Zheng QC. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma. Int J Nanomedicine 2016; 11: 5645-69.
[http://dx.doi.org/10.2147/IJN.S115727] [PMID: 27920520]
[53]
D’Souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J Control Release 2015; 203: 126-39.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.022] [PMID: 25701309]
[54]
Yousef S, Alsaab HO, Sau S, Iyer AK. Development of asialoglycoprotein receptor directed nanoparticles for selective delivery of curcumin derivative to hepatocellular carcinoma. Heliyon 2018; 4(12): e01071.
[http://dx.doi.org/10.1016/j.heliyon.2018.e01071] [PMID: 30603704]
[55]
Xu Z, Chen L, Gu W, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 2009; 30(2): 226-32.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.014] [PMID: 18851881]
[56]
Liang HF, Chen CT, Chen SC, et al. Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 2006; 27(9): 2051-9.
[http://dx.doi.org/10.1016/j.biomaterials.2005.10.027] [PMID: 16307794]
[57]
Rahman M, Kumar V, Beg S, Sharma G, Katare OP, Anwar F. Emergence of liposome as targeted magic bullet for inflammatory disorders: current state of the art. Artif Cells Nanomed Biotechnol 2016; 44(7): 1597-608.
[http://dx.doi.org/10.3109/21691401.2015.1129617] [PMID: 26758815]
[58]
Gonen N, Assaraf YG. Antifolates in cancer therapy: structure, activity and mechanisms of drug resistance. Drug Resist Updat 2012; 15(4): 183-210.
[http://dx.doi.org/10.1016/j.drup.2012.07.002] [PMID: 22921318]
[59]
Li YJ, Dong M, Kong FM, Zhou JP. Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics. Int J Pharm 2015; 489(1-2): 83-90.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.028] [PMID: 25888801]
[60]
Niu C, Sun Q, Zhou J, Cheng D, Hong G. Folate-functionalized polymeric micelles based on biodegradable PEG-PDLLA as a hepatic carcinoma-targeting delivery system. Asian Pac J Cancer Prev 2011; 12(8): 1995-9.
[PMID: 22292640]
[61]
Zhang L, Gong F, Zhang F, Ma J, Zhang P, Shen J. Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro. Int J Nanomedicine 2013; 8(1): 1517-24.
[http://dx.doi.org/10.2147/IJN.S43263] [PMID: 23620667]
[62]
Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 2012; 1820(3): 291-317.
[http://dx.doi.org/10.1016/j.bbagen.2011.07.016] [PMID: 21851850]
[63]
Pascale R M, Miglio M R, De , Muroni R R, Simile M M. Transferrin and transferrin receptor gene expression and iron uptake in hepatocellular carcinoma in the rat. hepatology 1998; 27(2): 452-61.
[64]
Sciot R, Paterson AC, van Eyken P, Callea F, Kew MC, Desmet VJ. Transferrin receptor expression in human hepatocellular carcinoma: an immunohistochemical study of 34 cases. Histopathology 1988; 12(1): 53-63.
[http://dx.doi.org/10.1111/j.1365-2559.1988.tb01916.x] [PMID: 2836292]
[65]
Zhang X, Li J, Yan M. Targeted hepatocellular carcinoma therapy: transferrin modified, self-assembled polymeric nanomedicine for co-delivery of cisplatin and doxorubicin. Drug Dev Ind Pharm 2016; 42(10): 1590-9.
[http://dx.doi.org/10.3109/03639045.2016.1160103] [PMID: 26942448]
[66]
Szwed M, Wrona D, Kania KD, Koceva-Chyla A, Marczak A. Doxorubicin-transferrin conjugate triggers pro-oxidative disorders in solid tumor cells. Toxicol In Vitro 2016; 31: 60-71.
[http://dx.doi.org/10.1016/j.tiv.2015.11.009] [PMID: 26607004]
[67]
Zhang J, Zhang M, Ji J, et al. Glycyrrhetinic acid-mediated polymeric drug delivery targeting the acidic microenvironment of hepatocellular carcinoma. Pharm Res 2015; 32(10): 3376-90.
[http://dx.doi.org/10.1007/s11095-015-1714-2] [PMID: 26148773]
[68]
Cai Y, Xu Y, Chan HF, Fang X, He C, Chen M. Glycyrrhetinic acid mediated drug delivery carriers for hepatocellular carcinoma therapy. Mol Pharm 2016; 13(3): 699-709.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00677] [PMID: 26808002]
[69]
Tian Q, Wang X, Wang W, Zhang C, Liu Y, Yuan Z. Insight into glycyrrhetinic acid: the role of the hydroxyl group on liver targeting. Int J Pharm 2010; 400(1-2): 153-7.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.032] [PMID: 20813176]
[70]
Anirudhan TS. Binusreejayan. Dextran based nanosized for the controlled and targeted delivery of curcumin to liver cancer cells. Int J Biol Macromol 2016; 88: 222-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.040] [PMID: 27012895]
[71]
Chen G, Li J, Cai Y, Zhan J, Gao J, Song M. Y. S. & Z. Y. A glycyrrhetinic acid-modified curcumin supramolecular hydrogel for liver tumor targeting therapy. Sci Rep 2017; 7(44210): 1-8.https://dx.doi.org/10.1038%2Fsrep44210
[http://dx.doi.org/10.1038/srep44210]
[72]
Zhang C, Wang W, Liu T, et al. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials 2012; 33(7): 2187-96.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.045] [PMID: 22169820]
[73]
Tian Q, Wang XH, Wang W, Zhang CN, Wang P, Yuan Z. Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid. Nanomedicine (Lond) 2012; 8(6): 870-9.
[http://dx.doi.org/10.1016/j.nano.2011.11.002] [PMID: 22100756]
[74]
Azzariti A, Mancarella S, Porcelli L, Quatrale A, Caligiuri A, Lupo L. Hepatic stellate cells induce hepatocellular carcinoma cell resistance to sorafenib through the laminin-332/a3 integrin axis recovery of focal adhesion kinase ubiquitination. hepatology 2016; 64(6): 2103-17.
[75]
Wu Y, Qiao X, Qiao S, Yu L. Targeting integrins in hepatocellular carcinoma. Expert Opin Ther Targets 2011; 15(4): 421-37.
[http://dx.doi.org/10.1517/14728222.2011.555402] [PMID: 21332366]
[76]
Bergamini C, Sgarra C, Trerotoli P, et al. Laminin-5 stimulates hepatocellular carcinoma growth through a different function of alpha6β4 and alpha3β1 integrins. Hepatology 2007; 46(6): 1801-9.
[http://dx.doi.org/10.1002/hep.21936] [PMID: 17948258]
[77]
Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 2012; 9(11): 2961-73.
[http://dx.doi.org/10.1021/mp3002733] [PMID: 22967287]
[78]
Chen L, Liu Y, Wang W, Liu K. Effect of integrin receptor-targeted liposomal paclitaxel for hepatocellular carcinoma targeting and therapy. Oncol Lett 2015; 10(1): 77-84.
[http://dx.doi.org/10.3892/ol.2015.3242] [PMID: 26170980]
[79]
Rahman M, Akhter S, Ahmad MZ, et al. Emerging advances in cancer nanotheranostics with graphene nanocomposites: opportunities and challenges. Nanomedicine (Lond) 2015; 10(15): 2405-22.
[http://dx.doi.org/10.2217/nnm.15.68] [PMID: 26252175]
[80]
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.https://dx.doi.org/10.2147%2FIJN.S146315
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[81]
Truong DH, Hoa Le VK, Pham TT, Dao AH, Dung Pham TP, Tran TH. Delivery of erlotinib for enhanced cancer treatment: An update review on particulate systems. J Drug Deliv Sci Technol 2019; 55: 101348.
[http://dx.doi.org/10.1016/j.jddst.2019.101348]
[82]
Peng Y, Bariwal J, Kumar V, Tan C, Mahato RI. Organic nanocarriers for delivery and targeting of therapeutic agents for cancer treatment. Adv Ther 2020; 3(2): 1900136.
[http://dx.doi.org/10.1002/adtp.201900136]
[83]
Chi X, Liu K, Luo X, Yin Z, Lin H, Gao J. Recent advances of nanomedicines for liver cancer therapy. J Mater Chem B Mater Biol Med 2020; 8(17): 3747-71.
[http://dx.doi.org/10.1039/C9TB02871D] [PMID: 32215381]
[84]
Rahman M, Kazmi I, Beg S, et al. Functionalized graphene-based nanomaterials for drug delivery and biomedical applications in cancer chemotherapy. Nanoparticles in Pharmacotherapy 2019; pp. 429-60.
[http://dx.doi.org/10.1016/B978-0-12-816504-1.00011-9]
[85]
Swain S, Sahu PK, Beg S, Babu SM. Nanoparticles for cancer targeting: current and future directions. Curr Drug Deliv 2016; 13(8): 1290-302.
[http://dx.doi.org/10.2174/1567201813666160713121122] [PMID: 27411485]
[86]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[87]
Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures and Nano-Objects 2019; 20: 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[88]
Ma Z, Zhang B, Fan Y, et al. Traditional Chinese medicine combined with hepatic targeted drug delivery systems: A new strategy for the treatment of liver diseases. Biomed Pharmacother 2019; 117: 109128.
[http://dx.doi.org/10.1016/j.biopha.2019.109128] [PMID: 31234023]
[89]
Mishra N, Yadav NP, Rai VK, et al. Efficient hepatic delivery of drugs: novel strategies and their significance. BioMed Res Int 2013; 2013: 382184.
[http://dx.doi.org/10.1155/2013/382184] [PMID: 24286077]
[90]
Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med 2020; 1: 10-9.
[http://dx.doi.org/10.1016/j.smaim.2020.04.001]
[91]
Tom G, Philip S, Isaac R, Praseetha PK, Jiji SG, Asha VV. Preparation of an efficient and safe polymeric-magnetic nanoparticle delivery system for sorafenib in hepatocellular carcinoma. Life Sci 2018; 206: 10-21.
[http://dx.doi.org/10.1016/j.lfs.2018.04.046] [PMID: 29709652]
[92]
Karimi MH, Mahdavinia GR, Massoumi B. pH-controlled sunitinib anticancer release from magnetic chitosan nanoparticles crosslinked with κ-carrageenan. Mater Sci Eng C 2018; 91: 705-14.
[http://dx.doi.org/10.1016/j.msec.2018.06.019] [PMID: 30033305]
[93]
Gao Y, Hu L, Liu Y, Xu X, Wu C. Targeted delivery of paclitaxel in liver cancer using hyaluronic acid functionalized mesoporous hollow alumina nanoparticles. BioMed Res Int 2019; 2019: 2928507.
[http://dx.doi.org/10.1155/2019/2928507] [PMID: 31119162]
[94]
Zhao R, Li T, Zheng G, Jiang K, Fan L, Shao J. Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials 2017; 143: 1-16.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.030] [PMID: 28755539]
[95]
Ménard M, Meyer F, Parkhomenko K, et al. Mesoporous silica templated-albumin nanoparticles with high doxorubicin payload for drug delivery assessed with a 3-D tumor cell model. Biochim Biophys Acta, Gen Subj 2019; 1863(2): 332-41.
[http://dx.doi.org/10.1016/j.bbagen.2018.10.020] [PMID: 30391506]
[96]
Ni W, Li Z, Liu Z, et al. Dual-targeting nanoparticles : Codelivery of curcumin and 5-fluorouracil for synergistic treatment of hepatocarcinoma. J Pharm Sci 2019; 108(3): 1284-95.
[http://dx.doi.org/10.1016/j.xphs.2018.10.042] [PMID: 30395829]
[97]
Gao W, Jia X, Wu J, et al. Preparation and evaluation of folate-decorated human serum albumin nanoparticles for the targeted delivery of sorafenib to enhance antihepatocarcinoma efficacy. J Drug Deliv Sci Technol 2019; 54(October): 101349.
[http://dx.doi.org/10.1016/j.jddst.2019.101349]
[98]
He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B 2019; 9(1): 36-48.
[http://dx.doi.org/10.1016/j.apsb.2018.06.005] [PMID: 30766776]
[99]
Kiaie SH, Mojarad-Jabali S, Khaleseh F, et al. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. Int J Pharm 2020; 581(January): 119269.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119269] [PMID: 32234427]
[100]
Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J Control Release 2012; 160(2): 117-34.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[101]
Monteiro LOF, Fernandes RS, Oda CMR, et al. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: A biodistribution study. Biomed Pharmacother 2018; 97(97): 489-95.
[http://dx.doi.org/10.1016/j.biopha.2017.10.135] [PMID: 29091899]
[102]
Wang L, Su W, Liu Z, et al. CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials 2012; 33(20): 5107-14.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.067] [PMID: 22494888]
[103]
Wei M, Xu Y, Zou Q, et al. Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin. Eur J Pharm Sci 2012; 46(3): 131-41.
[http://dx.doi.org/10.1016/j.ejps.2012.02.007] [PMID: 22369856]
[104]
Fu J, Li W, Xin X, Chen D, Hu H. Transferrin modified nano-liposome co-delivery strategies for enhancing the cancer therapy. J Pharm Sci 2020; 109(8): 2426-36.
[http://dx.doi.org/10.1016/j.xphs.2019.11.013] [PMID: 31760084]
[105]
Shah SM, Goel PN, Jain AS, et al. Liposomes for targeting hepatocellular carcinoma: use of conjugated arabinogalactan as targeting ligand. Int J Pharm 2014; 477(1-2): 128-39.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.014] [PMID: 25311181]
[106]
Wang T, Jiang Y, Chu H, Liu X, Dai Y, Wang D. Doxorubicin and lovastatin co-delivery liposomes for synergistic therapy of liver cancer. J Drug Deliv Sci Technol 2019; 52(January): 452-9.
[http://dx.doi.org/10.1016/j.jddst.2019.04.045]
[107]
Peretz S, Regev O. Carbon nanotubes as nanocarriers in medicine. Curr Opin Colloid Interface Sci 2012; 17(6): 360-8.
[http://dx.doi.org/10.1016/j.cocis.2012.09.001]
[108]
Badea N, Craciun MM, Dragomir AS, et al. Systems based on carbon nanotubes with potential in cancer therapy. Mater Chem Phys 2020; 241: 122435.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122435]
[109]
Eatemadi A, Daraee H. Karimkhanloo, H; Kouhi, M; Zarghami, N; Akbarzadeh, A; Mozhgan, A; Younes, H; Sang, W.J. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res Lett 2014; 9(1): 1-13.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 24380376]
[110]
Ji Z, Lin G, Lu Q, et al. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci 2012; 365(1): 143-9.
[http://dx.doi.org/10.1016/j.jcis.2011.09.013] [PMID: 21974923]
[111]
Qi X, Rui Y, Fan Y, Chen H, Ma N, Wu Z. Galactosylated chitosan-grafted multiwall carbon nanotubes for pH-dependent sustained release and hepatic tumor-targeted delivery of doxorubicin in vivo. Colloids Surf B Biointerfaces 2015; 133: 314-22.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.003] [PMID: 26123852]
[112]
García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, et al. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials (Basel) 2019; 9(4): 1-23.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[113]
Talluri SV, Kuppusamy G, Karri VVSR, Tummala S, Madhunapantula SV. Lipid-based nanocarriers for breast cancer treatment - comprehensive review. Drug Deliv 2016; 23(4): 1291-305.
[http://dx.doi.org/10.3109/10717544.2015.1092183] [PMID: 26430913]
[114]
Lim SB, Banerjee A, Önyüksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 2012; 163(1): 34-45.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.002] [PMID: 22698939]
[115]
Ali Khan A, Mudassir J, Mohtar N, Darwis Y. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine 2013; 8: 2733-44.
[http://dx.doi.org/10.2147/IJN.S41521] [PMID: 23926431]
[116]
Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: a translational perspective. Nanomedicine (Lond) 2018; 14(7): 2023-50.
[http://dx.doi.org/10.1016/j.nano.2018.05.021] [PMID: 29944981]
[117]
Tunki L, Kulhari H, Vadithe LN, et al. Modulating the site-specific oral delivery of sorafenib using sugar-grafted nanoparticles for hepatocellular carcinoma treatment. Eur J Pharm Sci 2019; 137: 104978.
[http://dx.doi.org/10.1016/j.ejps.2019.104978] [PMID: 31254645]
[118]
Harshita; Barkat, A.; Beg, S.; Pottoo, F. H.; Siddiqui, S.; Ahmad, F. J. Paclitaxel-loaded nanolipidic carriers with improved oral bioavailability and anticancer activity against human liver carcinoma. AAPS PharmSciTech 2019; 20(2): 1-14.
[http://dx.doi.org/10.1208/s12249-019-1304-4]
[119]
Bondì ML, Botto C, Amore E, et al. Lipid nanocarriers containing sorafenib inhibit colonies formation in human hepatocarcinoma cells. Int J Pharm 2015; 493(1-2): 75-85.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.055] [PMID: 26211902]
[120]
Shi H, van Steenbergen MJ, Lou B, Liu Y, Hennink WE, Kok RJ. Folate decorated polymeric micelles for targeted delivery of the kinase inhibitor dactolisib to cancer cells. Int J Pharm 2020; 582: 119305.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119305] [PMID: 32278056]
[121]
Hanafy NAN, Quarta A, Ferraro MM, et al. Polymeric nano-micelles as novel cargo-carriers for LY2157299 liver cancer cells delivery. Int J Mol Sci 2018; 19(3): 1-13.
[http://dx.doi.org/10.3390/ijms19030748] [PMID: 29509706]
[122]
Yokoyama M. Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors. J Exp Clin Med 2011; 3(4): 151-8.
[http://dx.doi.org/10.1016/j.jecm.2011.06.002]
[123]
Fan D, Yu J, Yan R, et al. Preparation and evaluation of doxorubicin-loaded micelles based on glycyrrhetinic acid modified gelatin conjugates for targeting hepatocellular carcinoma. J Chin Pharm Sci 2018; 27(8): 530-9.
[http://dx.doi.org/10.5246/jcps.2018.08.054]
[124]
Su Y, Wang K, Li Y, et al. Sorafenib-loaded polymeric micelles as passive targeting therapeutic agents for hepatocellular carcinoma therapy. Nanomedicine (Lond) 2018; 13(9): 1009-23.
[http://dx.doi.org/10.2217/nnm-2018-0046] [PMID: 29630448]
[125]
Ambekar RS, Choudhary M, Kandasubramanian B. Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. Eur Polym J 2020; 126: 109546.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109546]
[126]
Pedziwiatr-Werbicka E, Milowska K, Dzmitruk V, Ionov M, Shcharbin D, Bryszewska M. Dendrimers and hyperbranched structures for biomedical applications. Eur Polym J 2019; 119(April): 61-73.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.07.013]
[127]
Jędrzak A, Grześkowiak BF, Coy E, et al. Dendrimer based theranostic nanostructures for combined chemo- and photothermal therapy of liver cancer cells in vitro. Colloids Surf B Biointerfaces 2019; 173(173): 698-708.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.045] [PMID: 30384266]
[128]
Iacobazzi RM, Porcelli L, Lopedota AA, et al. Targeting human liver cancer cells with lactobionic acid-G(4)-PAMAM-FITC sorafenib loaded dendrimers. Int J Pharm 2017; 528(1-2): 485-97.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.049] [PMID: 28624661]
[129]
Kuruvilla SP, Tiruchinapally G, Crouch AC, El Sayed MEH, Greve JM. Dendrimer-doxorubicin conjugates exhibit improved anticancer activity and reduce doxorubicin-induced cardiotoxicity in a murine hepatocellular carcinoma model. PLoS One 2017; 12(8): 1-24.
[http://dx.doi.org/10.1371/journal.pone.0181944]
[130]
Ikeda M, Morizane C, Ueno M, Okusaka T, Ishii H, Furuse J. Chemotherapy for hepatocellular carcinoma: current status and future perspectives. Jpn J Clin Oncol 2018; 48(2): 103-14.
[http://dx.doi.org/10.1093/jjco/hyx180] [PMID: 29253194]
[131]
Baidoo SA, Wang Z, Sarkodie EK, Kesse S. Nanomedicinal delivery systems for intelligent treatment of hepatocellular carcinoma. J Drug Deliv Sci Technol 2019; 53: 101152.
[http://dx.doi.org/10.1016/j.jddst.2019.101152]
[132]
Liu X, Qin S. Immune checkpoint inhibitors in hepatocellular carcinoma:opportunities and challenges. Oncologist 2019; 24(1)(Suppl. 1): S3-S10.
[http://dx.doi.org/10.1634/theoncologist.2019-io-s1-s01] [PMID: 30819826]
[133]
Deng GL, Zeng S, Shen H. Chemotherapy and target therapy for hepatocellular carcinoma: New advances and challenges. World J Hepatol 2015; 7(5): 787-98.
[http://dx.doi.org/10.4254/wjh.v7.i5.787] [PMID: 25914779]
[134]
Rimassa L. [135] Lorenza Rimassa. Drugs in development for hepatocellular carcinoma. Gastroenterol Hepatol (N Y) 2018; 14(9): 542-4.
[PMID: 30364332]
[135]
Tak WY, Ryoo BY, Lim HY, et al. Phase I/II study of first-line combination therapy with sorafenib plus resminostat, an oral HDAC inhibitor, versus sorafenib monotherapy for advanced hepatocellular carcinoma in east Asian patients. Invest New Drugs 2018; 36(6): 1072-84.
[http://dx.doi.org/10.1007/s10637-018-0658-x] [PMID: 30198057]
[136]
Abou-Alfa GK, Meyer T, Cheng AL, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 2018; 379(1): 54-63.
[http://dx.doi.org/10.1056/NEJMoa1717002] [PMID: 29972759]
[137]
Pelosof L, Lemery S, Casak S, et al. Benefit‐risk summary of regorafenib for the treatment of patients with advanced hepatocellular carcinoma that has progressed on sorafenib. Oncologist 2018; 23(4): 496-500.
[http://dx.doi.org/10.1634/theoncologist.2017-0422] [PMID: 29386313]
[138]
Finn RS, Merle P, Granito A, et al. Outcomes of sequential treatment with sorafenib followed by regorafenib for HCC: Additional analyses from the phase III RESORCE trial. J Hepatol 2018; 69(2): 353-8.
[http://dx.doi.org/10.1016/j.jhep.2018.04.010] [PMID: 29704513]
[139]
Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018; 391(10126): 1163-73.
[http://dx.doi.org/10.1016/S0140-6736(18)30207-1] [PMID: 29433850]
[140]
Chau I, Peck-Radosavljevic M, Borg C, et al. Ramucirumab as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib: Patient-focused outcome results from the randomised phase III REACH study. Eur J Cancer 2017; 81: 17-25.
[http://dx.doi.org/10.1016/j.ejca.2017.05.001] [PMID: 28591675]
[141]
Scognamiglio G, De Chiara A, Parafioriti A, et al. Patient-derived organoids as a potential model to predict response to PD-1/PD-L1 checkpoint inhibitors. Br J Cancer 2019; 121(11): 979-82.
[http://dx.doi.org/10.1038/s41416-019-0616-1] [PMID: 31666667]
[142]
Chiew Woon L, Joycelyn Jie Xin L, Su Pin C. Nivolumab for the treatment of hepatocellular carcinoma. Expert Opin Biol Ther 2020; 20(7): 687-93.
[http://dx.doi.org/10.1080/14712598.2020.1749593] [PMID: 32249635]
[143]
Zhu AX, Finn RS, Edeline J, et al. KEYNOTE-224 investigators. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018; 19(7): 940-52.
[http://dx.doi.org/10.1016/S1470-2045(18)30351-6] [PMID: 29875066]
[144]
Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol 2019; 12(1): 92.
[http://dx.doi.org/10.1186/s13045-019-0779-5] [PMID: 31488176]
[145]
Duffy AG, Ulahannan SV, Makorova-Rusher O, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 2017; 66(3): 545-51.
[http://dx.doi.org/10.1016/j.jhep.2016.10.029] [PMID: 27816492]
[146]
Karamchandani DM, Chetty R. Immune checkpoint inhibitor-induced gastrointestinal and hepatic injury: pathologists’ perspective. J Clin Pathol 2018; 71(8): 665-71.
[http://dx.doi.org/10.1136/jclinpath-2018-205143] [PMID: 29703758]
[147]
Mawalla B, Yuan X, Luo X, Chalya PL. Treatment outcome of anti-angiogenesis through VEGF-pathway in the management of gastric cancer: a systematic review of phase II and III clinical trials. BMC Res Notes 2018; 11(1): 21.
[http://dx.doi.org/10.1186/s13104-018-3137-8] [PMID: 29329598]
[148]
Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res 2019; 144(March): 19-50.
[http://dx.doi.org/10.1016/j.phrs.2019.03.006] [PMID: 30877063]
[149]
Rimassa L, Assenat E, Peck-Radosavljevic M, et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol 2018; 19(5): 682-93.
[http://dx.doi.org/10.1016/S1470-2045(18)30146-3] [PMID: 29625879]
[150]
Rahman M, Al-Ghamdi SA, Alharbi KS, et al. Ganoderic acid loaded nano-lipidic carriers improvise treatment of hepatocellular carcinoma. Drug Deliv 2019; 26(1): 782-93.
[http://dx.doi.org/10.1080/10717544.2019.1606865] [PMID: 31357897]
[151]
Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2018; 15: 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[152]
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 2019; 6(1): 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[153]
Jiang W, Kim BYS, Rutka JT, Chan WCW. Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin Drug Deliv 2007; 4(6): 621-33.
[http://dx.doi.org/10.1517/17425247.4.6.621] [PMID: 17970665]
[154]
Rahman M, Beg S. Hitting the target – refining anticancer nanomedicine development. Eur Pharm Rev 2019; 24(4): 1-4.
[155]
Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ. Nanocarrier-based therapeutics and theranostics drug delivery systems for next generation of liver cancer nanodrug modalities. Int J Nanomedicine 2020; 15: 1437-56.
[http://dx.doi.org/10.2147/IJN.S236927] [PMID: 32184597]
[156]
Chen S, Cao Q, Wen W, Wang H. Targeted therapy for hepatocellular carcinoma: Challenges and opportunities. Cancer Lett 2019; 460: 1-9.
[http://dx.doi.org/10.1016/j.canlet.2019.114428] [PMID: 31207320]
[157]
Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev 2017; 108: 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[158]
Chen C, Wang G. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J Hepatol 2015; 7(15): 1964-70.
[http://dx.doi.org/10.4254/wjh.v7.i15.1964] [PMID: 26244070]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy