Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Application of Machine Learning Techniques in Drug-target Interactions Prediction

Author(s): Shengli Zhang*, Jiesheng Wang, Zhenhui Lin and Yunyun Liang

Volume 27, Issue 17, 2021

Published on: 25 November, 2020

Page: [2076 - 2087] Pages: 12

DOI: 10.2174/1381612826666201125105730

Price: $65

Abstract

Background: Drug-Target interactions are vital for drug design and drug repositioning. However, traditional lab experiments are both expensive and time-consuming. Various computational methods which applied machine learning techniques performed efficiently and effectively in the field.

Results: The machine learning methods can be divided into three categories basically: Supervised methods, Semi-Supervised methods and Unsupervised methods. We reviewed recent representative methods applying machine learning techniques of each category in DTIs and summarized a brief list of databases frequently used in drug discovery. In addition, we compared the advantages and limitations of these methods in each category.

Conclusion: Every prediction model has both strengths and weaknesses and should be adopted in proper ways. Three major problems in DTIs prediction including the lack of nonreactive drug-target pairs data sets, over optimistic results due to the biases and the exploiting of regression models on DTIs prediction should be seriously considered.

Keywords: Drug-target interactions prediction, drug discovery, machine learning, computational methods, supervised learning, semisupervised learning, unsupervised learning.

[1]
Masoudi-Nejad A, Mousavian Z, Bozorgmehr JH. Drug-target and disease networks: polypharmacology in the post-genomic era. In Silico Pharmacol 2013; 1: 17.
[http://dx.doi.org/10.1186/2193-9616-1-17] [PMID: 25505661]
[2]
Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 2014; 57(19): 7874-87.
[http://dx.doi.org/10.1021/jm5006463] [PMID: 24946140]
[3]
Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006; 5(12): 993-6.
[http://dx.doi.org/10.1038/nrd2199] [PMID: 17139284]
[4]
Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 2007; 6: 126-6.
[http://dx.doi.org/10.1038/nrd2261] [PMID: 17016423]
[5]
Ricke DO, Wang S, Cai R, Cohen D. Genomic approaches to drug discovery. Curr Opin Chem Biol 2006; 10(4): 303-8.
[http://dx.doi.org/10.1016/j.cbpa.2006.06.024] [PMID: 16822705]
[6]
Zhu Z, Cuozzo J. Review article: high-throughput affinity-based technologies for small-molecule drug discovery. J Biomol Screen 2009; 14(10): 1157-64.
[http://dx.doi.org/10.1177/1087057109350114] [PMID: 19822881]
[7]
Sittampalam GS, Kahl SD, Janzen WP. High-throughput screening: advances in assay technologies. Curr Opin Chem Biol 1997; 1(3): 384-91.
[http://dx.doi.org/10.1016/S1367-5931(97)80078-6] [PMID: 9667878]
[8]
Xu C, Jackson SA. Machine learning and complex biological data. Genome Biol 2019; 20(1): 76.
[http://dx.doi.org/10.1186/s13059-019-1689-0] [PMID: 30992073]
[9]
Angermueller C, Pärnamaa T, Parts L, Stegle O. Deep learning for computational biology. Mol Syst Biol 2016; 12(7): 878.
[http://dx.doi.org/10.15252/msb.20156651] [PMID: 27474269]
[10]
Baldi P. Deep Learning in Biomedical Data Science. Annual Review of Biomedical Data Science 2018; 1: 181-205.
[http://dx.doi.org/10.1146/annurev-biodatasci-080917-013343]
[11]
Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 2019; 18(6): 463-77.
[http://dx.doi.org/10.1038/s41573-019-0024-5] [PMID: 30976107]
[12]
Coi A, Massarelli I, Saraceno M, et al. Quantitative structure-activity relationship models for predicting biological properties, developed by combining structure- and ligand-based approaches: an application to the human ether-a-go-go-related gene potassium channel inhibition. Chem Biol Drug Des 2009; 74(4): 416-33.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00873.x] [PMID: 19751420]
[13]
DesJarlais RL, Sheridan RP, Dixon JS, Kuntz ID, Venkataraghavan R. Docking flexible ligands to macromolecular receptors by molecular shape. J Med Chem 1986; 29(11): 2149-53.
[http://dx.doi.org/10.1021/jm00161a004] [PMID: 3783576]
[14]
Bortolato A, Fanton M, Mason JS, Moro S. Molecular docking methodologies. Methods Mol Biol 2013; 924: 339-60.
[http://dx.doi.org/10.1007/978-1-62703-017-5_13] [PMID: 23034755]
[15]
Wishart DS. Discovering drug targets through the web. Comp Biochem Physiol Part D Genomics Proteomics 2007; 2(1): 9-17.
[http://dx.doi.org/10.1016/j.cbd.2006.01.003] [PMID: 20483274]
[16]
Cheng Q, Mehta S, Schurer S. A gene family-led meta-analysis of drug-target interactions. Proceedings 2018 Ieee International Conference on Bioinformatics and Biomedicine. 1618-23.
[http://dx.doi.org/10.1109/BIBM.2018.8621087]
[17]
Tian K, Shao M, Wang Y, Guan J, Zhou S. Boosting compound-protein interaction prediction by deep learning. Methods 2016; 110: 64-72.
[http://dx.doi.org/10.1016/j.ymeth.2016.06.024] [PMID: 27378654]
[18]
Mousavian Z, Masoudi-Nejad A. Drug-target interaction prediction via chemogenomic space: learning-based methods. Expert Opin Drug Metab Toxicol 2014; 10(9): 1273-87.
[http://dx.doi.org/10.1517/17425255.2014.950222] [PMID: 25112457]
[19]
Chen X, Yan CC, Zhang X, et al. Drug-target interaction prediction: databases, web servers and computational models. Brief Bioinform 2016; 17(4): 696-712.
[http://dx.doi.org/10.1093/bib/bbv066] [PMID: 26283676]
[20]
Kuhn M, Campillos M, González P, Jensen LJ, Bork P. Large-scale prediction of drug-target relationships. FEBS Lett 2008; 582(8): 1283-90.
[http://dx.doi.org/10.1016/j.febslet.2008.02.024] [PMID: 18291108]
[21]
Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006; 34(Database issue): D354-7.
[http://dx.doi.org/10.1093/nar/gkj102] [PMID: 16381885]
[22]
Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008; 36(Database issue): D901-6.
[http://dx.doi.org/10.1093/nar/gkm958] [PMID: 18048412]
[23]
Schomburg I, Chang A, Ebeling C, et al. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 2004; 32(Database issue): D431-3.
[http://dx.doi.org/10.1093/nar/gkh081] [PMID: 14681450]
[24]
Günther S, Kuhn M, Dunkel M, et al. SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res 2008; 36(Database issue): D919-22.
[PMID: 17942422]
[25]
Liu Y, Hu B, Fu C, Chen X. DCDB: drug combination database. Bioinformatics 2010; 26(4): 587-8.
[http://dx.doi.org/10.1093/bioinformatics/btp697] [PMID: 20031966]
[26]
Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012; 40(Database issue): D1100-7.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[27]
Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 2016; 44(D1): D380-4.
[http://dx.doi.org/10.1093/nar/gkv1277] [PMID: 26590256]
[28]
Harding SD, Sharman JL, Faccenda E, et al. NC-IUPHAR. The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res 2018; 46(D1): D1091-106.
[http://dx.doi.org/10.1093/nar/gkx1121] [PMID: 29149325]
[29]
Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007; 35(Database issue): D198-201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[30]
Chen X, Ren B, Chen M, et al. ASDCD: antifungal synergistic drug combination database. PLoS One 2014; 9(1)
[http://dx.doi.org/10.1371/journal.pone.0086499] [PMID: 24475134]
[31]
Ahmed A, Smith RD, Clark JJ, Dunbar JB Jr, Carlson HA. Recent improvements to Binding MOAD: a resource for protein-ligand binding affinities and structures. Nucleic Acids Res 2015; 43(Database issue): D465-9.
[http://dx.doi.org/10.1093/nar/gku1088] [PMID: 25378330]
[32]
Ursu O, Holmes J, Knockel J, et al. DrugCentral: online drug compendium. Nucleic Acids Res 2017; 45(D1): D932-9.
[http://dx.doi.org/10.1093/nar/gkw993] [PMID: 27789690]
[33]
Liu Z, Li Y, Han L, et al. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 2015; 31(3): 405-12.
[http://dx.doi.org/10.1093/bioinformatics/btu626] [PMID: 25301850]
[34]
Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 2009. 37(Web Server issue)
[http://dx.doi.org/ 10.1093/nar/gkp456 ] [PMID: 19498078]
[35]
Bateman A, Martin M-J, Orchard S, et al. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47(D1): D506-15.
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[36]
Kuhn M, Letunic I, Jensen LJ, Bork P. The SIDER database of drugs and side effects. Nucleic Acids Res 2016; 44(D1): D1075-9.
[http://dx.doi.org/10.1093/nar/gkv1075] [PMID: 26481350]
[37]
Qin C, Zhang C, Zhu F, et al. Therapeutic target database update 2014: a resource for targeted therapeutics. Nucleic Acids Res 2014; 42(Database issue): D1118-23.
[http://dx.doi.org/10.1093/nar/gkt1129] [PMID: 24265219]
[38]
Gao Z, Li H, Zhang H, et al. PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics 2008; 9: 104.
[http://dx.doi.org/10.1186/1471-2105-9-104] [PMID: 18282303]
[39]
Chen R, Liu X, Jin S, Lin J, Liu J. Machine learning for drug-target interaction prediction. Molecules 2018; 23(9): 23.
[http://dx.doi.org/10.3390/molecules24010023] [PMID: 30200333]
[40]
Ding H, Takigawa I, Mamitsuka H, Zhu S. Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief Bioinform 2014; 15(5): 734-47.
[http://dx.doi.org/10.1093/bib/bbt056] [PMID: 23933754]
[41]
Bleakley K, Yamanishi Y. Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 2009; 25(18): 2397-403.
[http://dx.doi.org/10.1093/bioinformatics/btp433] [PMID: 19605421]
[42]
Jiang J, Wang N, Chen P, Zhang J, Wang B. DrugECs: An ensemble system with feature subspaces for accurate drug-target interaction prediction. BioMed Res Int 2017; 2017.
[http://dx.doi.org/10.1155/2017/6340316] [PMID: 28744468]
[43]
Abu Alfeilat HA, Hassanat ABA, Lasassmeh O, et al. Effects of distance measure choice on k-nearest neighbor classifier performance: a review. Big Data 2019; 7(4): 221-48.
[http://dx.doi.org/10.1089/big.2018.0175] [PMID: 31411491]
[44]
Peng Y, Chee-Keong K, Mei JP. Neighbor-based bipartite learning model for small molecule-target interaction identification. J Med Imaging Health Inform 2012; 2: 425-9.
[http://dx.doi.org/10.1166/jmihi.2012.1117]
[45]
Suzuki SD, Ohue M, Akiyama Y. PKRank: a novel learning-to-rank method for ligand-based virtual screening using pairwise kernel and RankSVM. Artif Life Robot 2017; 23: 205-12.
[http://dx.doi.org/10.1007/s10015-017-0416-8]
[46]
Gönen M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 2012; 28(18): 2304-10.
[http://dx.doi.org/10.1093/bioinformatics/bts360] [PMID: 22730431]
[47]
Cobanoglu MC, Liu C, Hu F, Oltvai ZN, Bahar I. Predicting drug-target interactions using probabilistic matrix factorization. J Chem Inf Model 2013; 53(12): 3399-409.
[http://dx.doi.org/10.1021/ci400219z] [PMID: 24289468]
[48]
Zhang S. Accurate prediction of protein structural classes by incorporating PSSS and PSSM into Chou’s general PseAAC. Chemom Intell Lab Syst 2015; 142: 28-35.
[http://dx.doi.org/10.1016/j.chemolab.2015.01.004]
[49]
Lin H, Liang ZY, Tang H, Chen W. Identifying Sigma70 Promoters with Novel Pseudo Nucleotide Composition. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(4): 1316-21.
[http://dx.doi.org/10.1109/TCBB.2017.2666141] [PMID: 28186907]
[50]
Zhang Z-Y, Yang Y-H, Ding H, Wang D, Chen W, Lin H. Design powerful predictor for mRNA subcellular location prediction in Homo sapiens. Brief Bioinform 2020.
[http://dx.doi.org/10.1093/bib/bbz177] [PMID: 31994694]
[51]
Huang C, Zhang R, Chen Z, et al. Predict potential drug targets from the ion channel proteins based on SVM. J Theor Biol 2010; 262(4): 750-6.
[http://dx.doi.org/10.1016/j.jtbi.2009.11.002] [PMID: 19903486]
[52]
Hyun BR, Jung H, Jang W-H, Jung SH, Han D-S. Weighted feature value based Drug Target Protein prediction. Int J Comput Biol Drug Des 2008; 1(4): 422-33.
[http://dx.doi.org/10.1504/IJCBDD.2008.022211] [PMID: 20063466]
[53]
Chen X, Fang Y, Yao L, Chen Y, Xu H. Does drug-target have a likeness? Methods Inf Med 2007; 46(3): 360-6.
[http://dx.doi.org/10.1160/ME0425] [PMID: 17492123]
[54]
Shi H, Liu S, Chen J, Li X, Ma Q, Yu B. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure. Genomics 2019; 111(6): 1839-52.
[http://dx.doi.org/10.1016/j.ygeno.2018.12.007] [PMID: 30550813]
[55]
Lü L, Medo M, Yeung CH, et al. Recommender systems. Phys Rep 2012; 519: 1-49.
[http://dx.doi.org/10.1016/j.physrep.2012.02.006]
[56]
Lu LY, Zhou T. Link prediction in complex networks: A survey Physica a-Statistical Mechanics and Its Applications 2011; 390:1150-70..
[57]
Luo Y, Zhao X, Zhou J, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun 2017; 8(1): 573.
[http://dx.doi.org/10.1038/s41467-017-00680-8] [PMID: 28924171]
[58]
Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput Biol 2012; 8(5)
[http://dx.doi.org/10.1371/journal.pcbi.1002503] [PMID: 22589709]
[59]
Zhou T, Kuscsik Z, Liu J-G, Medo M, Wakeling JR, Zhang YC. Solving the apparent diversity-accuracy dilemma of recommender systems. Proc Natl Acad Sci USA 2010; 107(10): 4511-5.
[http://dx.doi.org/10.1073/pnas.1000488107] [PMID: 20176968]
[60]
Zhou T, Su RQ, Liu RR, et al. Accurate and diverse recommendations via eliminating redundant correlations. New J Phys 2009; 11.
[http://dx.doi.org/10.1088/1367-2630/11/12/123008]
[61]
Cheng F, Zhou Y, Li W, Liu G, Tang Y. Prediction of chemical-protein interactions network with weighted network-based inference method. PLoS One 2012; 7(7)
[http://dx.doi.org/10.1371/journal.pone.0041064] [PMID: 22815915]
[62]
Wu Z, Cheng F, Li J, Li W, Liu G, Tang Y. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning. Brief Bioinform 2017; 18(2): 333-47.
[PMID: 26944082]
[63]
Wu Z, Lu W, Wu D, et al. In silico prediction of chemical mechanism of action via an improved network-based inference method. Br J Pharmacol 2016; 173(23): 3372-85.
[http://dx.doi.org/10.1111/bph.13629] [PMID: 27646592]
[64]
Liu H, Sun J, Guan J, Zheng J, Zhou SJB. Improving compound-protein interaction prediction by building up highly credible negative samples 2015..; 31: 221-9..
[http://dx.doi.org/10.1093/bioinformatics/btv256]
[65]
Chen H. A semi-supervised method for drug-target interaction prediction with consistency in networks. Plos one 2013; 8.
[66]
Li X-L, Yu PS, Liu B, Ng S-K. Positive unlabeled learning for data stream classification. Proceedings of the 2009 SIAM International Conference on Data Mining. 259-70.
[http://dx.doi.org/10.1137/1.9781611972795.23]
[67]
Ren Y, Ji D, Zhang H. Positive unlabeled learning for deceptive reviews detection. Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 488-98..
[http://dx.doi.org/10.3115/v1/D14-1055]
[68]
Xiao Y, Liu B, Yin J, et al. Similarity-based approach for positive and unlabelled learning. Twenty-second international joint conference on artificial intelligence. 2011..
[69]
Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 2006; 7: 2399-434.
[70]
Xia Z, Wu L-Y, Zhou X, Wong STC. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst Biol 2010; 4(Suppl. 2): S6.
[http://dx.doi.org/10.1186/1752-0509-4-S2-S6] [PMID: 20840733]
[71]
Chen X, Ren B, Chen M, Wang Q, Zhang L, Yan G. NLLSS: predicting synergistic drug combinations based on semi-supervised learning. PLOS Comput Biol 2016; 12(7)
[http://dx.doi.org/10.1371/journal.pcbi.1004975] [PMID: 27415801]
[72]
Wen M, Zhang Z, Niu S, et al. Deep-learning-based drug-target interaction prediction. J Proteome Res 2017; 16(4): 1401-9.
[http://dx.doi.org/10.1021/acs.jproteome.6b00618] [PMID: 28264154]
[73]
Lan W, Wang J, Li M, et al. Predicting drug-target interaction using positive-unlabeled learning. Neurocomputing 2016; 206: 50-7.
[http://dx.doi.org/10.1016/j.neucom.2016.03.080]
[74]
Peng L, Zhu W, Liao B, et al. Screening drug-target interactions with positive-unlabeled learning. Sci Rep 2017; 7(1): 8087.
[http://dx.doi.org/10.1038/s41598-017-08079-7] [PMID: 28808275]
[75]
Hinton GE. A practical guide to training restricted Boltzmann machines, Neural networks: Tricks of the trade. Springer 2012; pp. 599-619.
[http://dx.doi.org/10.1007/978-3-642-35289-8_32]
[76]
Vapnik V. Statistical learning theory Wiley. New York 1998; p. 1.
[77]
Pearson K. The problem of the random walk. Nat Chem Biol 1905; 72: 342-2.
[78]
Gray KA, Yates B, Seal RL, Wright MW. Bruford EAJNar . Genenames. org: the HGNC resources in 2015 2015; 43: D1079-85..
[79]
Ma H, Yang H, Lyu MR, King I. Mining social networks using heat diffusion processes for marketing candidates selection. Proceedings of the 17th ACM conference on Information and knowledge management. 233-42.
[http://dx.doi.org/ 10.1145/1458082.1458115]
[80]
Lan W, Wang JX, Li M, Peng W, Wu FX. Computational Approaches for Prioritizing Candidate Disease Genes Based on PPI Networks. Tsinghua Sci Technol 2015; 20: 500-12.
[http://dx.doi.org/10.1109/TST.2015.7297749]
[81]
Li M, Li Q, Ganegoda GU, Wang J, Wu F, Pan Y. Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks. Sci China Life Sci 2014; 57(11): 1064-71.
[http://dx.doi.org/10.1007/s11427-014-4747-6] [PMID: 25326068]
[82]
Yap CWJJocc. PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints. 2011; 32: 1466- 74..
[83]
Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database. Nucleic Acids Res 2014; 42(Database issue): D222-30.
[http://dx.doi.org/10.1093/nar/gkt1223] [PMID: 24288371]
[84]
Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001; 43(3): 246-55.
[http://dx.doi.org/10.1002/prot.1035] [PMID: 11288174]
[85]
Gribskov M, McLachlan AD, Eisenberg D. Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci USA 1987; 84(13): 4355-8.
[http://dx.doi.org/10.1073/pnas.84.13.4355] [PMID: 3474607]
[86]
Liu B, Lee WS, Yu PS, Li X. Partially supervised classification of text documents ICML. Citeseer 2002; pp. 387-94.
[87]
Li X, Liu B. Learning to classify texts using positive and unlabeled data. IJCAI (U S) 2003; 587-92.
[88]
Daminelli S, Thomas JM, Duran C, Cannistraci CV. Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks. New J Phys 2015; 17.
[http://dx.doi.org/10.1088/1367-2630/17/11/113037]
[89]
Breese H, Heckerman D. Kadie.. Empirical analysis of predictive algorithms for collaborative filtering. Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence. Madison, WI. 1998; pp. 1998; 43-52..
[90]
Zhou T, Lu LY, Zhang YC. Predicting missing links via local information. Eur Phys J B 2009; 71: 623-30.
[http://dx.doi.org/10.1140/epjb/e2009-00335-8]
[91]
Yildirim MA. Coscia MJPo Using random walks to generate associations between objects. 2014; 9.
[92]
Durán C, Daminelli S, Thomas JM, Haupt VJ, Schroeder M, Cannistraci CV. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory. Brief Bioinform 2018; 19(6): 1183-202.
[http://dx.doi.org/10.1093/bib/bbx041] [PMID: 28453640]
[93]
Newman ME. Clustering and preferential attachment in growing networks. Phys Rev E Stat Nonlin Soft Matter Phys 2001; 64(2 Pt 2)
[http://dx.doi.org/10.1103/PhysRevE.64.025102] [PMID: 11497639]
[94]
Jaccard P. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bull Soc Vaud Sci Nat 1901; 37: 241-72.
[95]
Taguchi YH. Identification of candidate drugs using tensor-decomposition-based unsupervised feature extraction in integrated analysis of gene expression between diseases and DrugMatrix datasets. Sci Rep 2017; 7(1): 13733.
[http://dx.doi.org/10.1038/s41598-017-13003-0] [PMID: 29062063]
[96]
Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today 2013; 18(9-10): 495-501.
[http://dx.doi.org/10.1016/j.drudis.2013.01.008] [PMID: 23340113]
[97]
Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008; 4(11): 682-90.
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[98]
Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug-target interaction predictions. Brief Bioinform 2015; 16(2): 325-37.
[http://dx.doi.org/10.1093/bib/bbu010] [PMID: 24723570]
[99]
Park Y, Marcotte EM. Flaws in evaluation schemes for pair-input computational predictions. Nat Methods 2012; 9(12): 1134-6.
[http://dx.doi.org/10.1038/nmeth.2259] [PMID: 23223166]
[100]
Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol 2011; 7: 496.
[http://dx.doi.org/10.1038/msb.2011.26] [PMID: 21654673]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy