Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Mini-Review Article

Metal Nanocomposites Based Electrochemical Sensor Platform for Few Emerging Biomarkers

Author(s): Govindhan Maduraiveeran*

Volume 18, Issue 5, 2022

Published on: 17 November, 2020

Page: [509 - 517] Pages: 9

DOI: 10.2174/1573411016999201117094213

Price: $65

Open Access Journals Promotions 2
Abstract

The design of high-performance electrochemical sensor and biosensor platforms has attracted much interest for the sensitive and selective detection of emergent biomarkers. The electrochemical sensor offers numerous advantageous features including cost-effectiveness and ease of miniaturization, rapid and online monitoring, simultaneous detection ability, etc., which have captivated the potential interdisciplinary research. In this review, the advances and challenges towards the electrochemical detection of emergent biomarkers such as hydrogen peroxide, nitric oxide, β- nicotinamide adenine acetaminophen, dinucleotide (NADH) in biofluids are highlighted based on the recent research outcomes. In fact, the effective utility and benefits of transition metal nanocomposites without the utilization of biological materials, including enzymes, antibodies, etc., as electrode materials towards the detection of selected biomarkers in practical biofluids, monitoring early-stage and diagnosis of disease related biomarkers, are also described. These promising metal nanomaterials based electrochemical sensor platforms concrete the tactic for a new generation of sensing devices.

Keywords: Biomarkers Detection, Electrochemical Sensor, Nanomaterials, Modified Electrode, Biomedical Application, hydrogen peroxide.

Graphical Abstract
[1]
Mohammed, M.I.; Desmulliez, M.P.Y. Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: A review. Lab Chip, 2011, 11(4), 569-595.
[http://dx.doi.org/10.1039/C0LC00204F] [PMID: 21180774]
[2]
Wu, L.; Qu, X. Cancer biomarker detection: Recent achievements and challenges. Chem. Soc. Rev., 2015, 44(10), 2963-2997.
[http://dx.doi.org/10.1039/C4CS00370E] [PMID: 25739971]
[3]
Cathcart, N.; Chen, J.I.L. Sensing biomarkers with plasmonics. Anal. Chem., 2020, 92(11), 7373-7381.
[http://dx.doi.org/10.1021/acs.analchem.0c00711] [PMID: 32369338]
[4]
Maduraiveeran, G.; Sasidharan, M.; Jin, W. Earth-Abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Prog. Mater. Sci., 2017, 2019(106)100574
[http://dx.doi.org/10.1016/j.pmatsci.2019.100574]
[5]
Manikandan, V.S.; Adhikari, B.; Chen, A. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst (Lond.), 2018, 143(19), 4537-4554.
[http://dx.doi.org/10.1039/C8AN00497H] [PMID: 30113611]
[6]
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103, 113-129.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[7]
Schultz, J.; Uddin, Z.; Singh, G.; Howlader, M.M.R. Glutamate sensing in biofluids: Recent advances and research challenges of electrochemical sensors. Analyst (Lond.), 2020, 145(2), 321-347.
[http://dx.doi.org/10.1039/C9AN01609K] [PMID: 31755483]
[8]
Xu, C.; Wu, F.; Yu, P.; Mao, L. In vivo Electrochemical sensors for neurochemicals: Recent update. ACS Sens., 2019, 4(12), 3102-3118.
[http://dx.doi.org/10.1021/acssensors.9b01713] [PMID: 31718157]
[9]
Valentine, C.J.; Takagishi, K.; Umezu, S.; Daly, R.; De Volder, M. Paper-based electrochemical sensors using paper as a scaffold to create porous carbon nanotube electrodes. ACS Appl. Mater. Interfaces, 2020, 12(27), 30680-30685.
[http://dx.doi.org/10.1021/acsami.0c04896] [PMID: 32519833]
[10]
Joshi, V.S.; Kreth, J.; Koley, D. Pt-Decorated MWCNTs-Ionic liquid composite-based hydrogen peroxide sensor to study microbial metabolism using scanning electrochemical microscopy. Anal. Chem., 2017, 89(14), 7709-7718.
[http://dx.doi.org/10.1021/acs.analchem.7b01677] [PMID: 28613833]
[11]
Anichini, C.; Czepa, W.; Pakulski, D.; Aliprandi, A.; Ciesielski, A.; Samorì, P. Chemical sensing with 2D materials. Chem. Soc. Rev., 2018, 47(13), 4860-4908.
[http://dx.doi.org/10.1039/C8CS00417J] [PMID: 29938255]
[12]
Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev., 2013, 42(12), 5425-5438.
[http://dx.doi.org/10.1039/c3cs35518g] [PMID: 23508125]
[13]
Mai, L.N.T.; Bui, Q.B.; Bach, L.G.; Nhac-Vu, H.T. A novel nanohybrid of cobalt oxide-sulfide nanosheets deposited three-dimensional foam as efficient sensor for hydrogen peroxide detection. J. Electroanal. Chem. (Lausanne Switz.), 2020, 857113757
[http://dx.doi.org/10.1016/j.jelechem.2019.113757]
[14]
Niu, Q.; Bao, C.; Cao, X.; Liu, C.; Wang, H.; Lu, W. Ni-Fe PBA hollow nanocubes as efficient electrode materials for highly sensitive detection of guanine and hydrogen peroxide in human whole saliva. Biosens. Bioelectron., 2019, 141111445
[http://dx.doi.org/10.1016/j.bios.2019.111445] [PMID: 31272059]
[15]
Maduraiveeran, G.; Ramaraj, R. Gold nanoparticles embedded in silica sol-gel matrix as an amperometric sensor for hydrogen peroxide. J. Electroanal. Chem. (Lausanne Switz.), 2007, 608, 52-58.
[http://dx.doi.org/10.1016/j.jelechem.2007.05.009]
[16]
Maduraiveeran, G.; Kundu, M.; Sasidharan, M. Electrochemical detection of hydrogen peroxide based on silver nanoparticles via amplified electron transfer process. J. Mater. Sci., 2018, 53, 8328-8338.
[http://dx.doi.org/10.1007/s10853-018-2141-7]
[17]
Xue, Y.; Maduraiveeran, G.; Wang, M.; Zheng, S.; Zhang, Y.; Jin, W. Hierarchical oxygen-implanted MoS2 nanoparticle decorated graphene for the non-enzymatic electrochemical sensing of hydrogen peroxide in alkaline media. Talanta, 2018, 176, 397-405.
[http://dx.doi.org/10.1016/j.talanta.2017.08.060] [PMID: 28917767]
[18]
Xiao, T.; Wu, F.; Hao, J.; Zhang, M.; Yu, P.; Mao, L. In vivo analysis with electrochemical sensors and biosensors. Anal. Chem., 2017, 89(1), 300-313.
[http://dx.doi.org/10.1021/acs.analchem.6b04308] [PMID: 28105815]
[19]
Privett, B.J.; Shin, J.H.; Schoenfisch, M.H. Electrochemical nitric oxide sensors for physiological measurements. Chem. Soc. Rev., 2010, 39(6), 1925-1935.
[http://dx.doi.org/10.1039/b701906h] [PMID: 20502795]
[20]
Brown, M.D.; Schoenfisch, M.H. Electrochemical nitric oxide sensors: Principles of design and characterization. Chem. Rev., 2019, 119(22), 11551-11575.
[http://dx.doi.org/10.1021/acs.chemrev.8b00797] [PMID: 31553169]
[21]
Tse, J.K.Y. Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem. Neurosci., 2017, 8(7), 1438-1447.
[http://dx.doi.org/10.1021/acschemneuro.7b00176] [PMID: 28640632]
[22]
Deng, X.; Wang, F.; Chen, Z. A novel electrochemical sensor based on nano-structured film electrode for monitoring nitric oxide in living tissues. Talanta, 2010, 82(4), 1218-1224.
[http://dx.doi.org/10.1016/j.talanta.2010.06.035] [PMID: 20801321]
[23]
Jayabal, S.; Viswanathan, P.; Ramaraj, R. Reduced graphene oxide-gold nanorod composite material stabilized in silicate sol-gel matrix for nitric oxide sensor. RSC Adv, 2014, 63, 33541-33548.
[http://dx.doi.org/10.1039/C4RA04859H]
[24]
Gomes, F.O.; Maia, L.B.; Loureiro, J.A.; Pereira, M.C.; Delerue-Matos, C.; Moura, I.; Moura, J.J.G.; Morais, S. Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite. Bioelectrochemistry, 2019, 127, 76-86.
[http://dx.doi.org/10.1016/j.bioelechem.2019.01.010] [PMID: 30745281]
[25]
Govindhan, M.; Liu, Z.; Chen, A. Design and electrochemical study of platinum-based nanomaterials for sensitive detection of nitric oxide in biomedical applications. Nanomaterials (Basel), 2016, 6(11)E211
[http://dx.doi.org/10.3390/nano6110211] [PMID: 28335341]
[26]
Adhikari, B.R.; Govindhan, M.; Chen, A. Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors (Basel), 2015, 15(9), 22490-22508.
[http://dx.doi.org/10.3390/s150922490] [PMID: 26404304]
[27]
Wang, J. Electroanalysis and biosensors. Anal. Chem., 1993, 65, 450-453.
[http://dx.doi.org/10.1021/ac00060a615] [PMID: 10384789]
[28]
Govindhan, M.; Chen, A. Enhanced electrochemical sensing of nitric oxide using a nanocomposite consisting of platinum-tungsten nanoparticles, reduced graphene oxide and an ionic liquid. Mikrochim. Acta, 2016, 1831(11), 2879-2887.
[29]
Liu, Z.; Nemec-Bakk, A.; Khaper, N.; Chen, A. Sensitive electrochemical detection of nitric oxide release from cardiac and cancer cells via a hierarchical nanoporous gold microelectrode. Anal. Chem., 2017, 89(15), 8036-8043.
[http://dx.doi.org/10.1021/acs.analchem.7b01430] [PMID: 28691482]
[30]
Bedner, M.; MacCrehan, W.A. Transformation of acetaminophen by chlorination produces the toxicants 1,4-benzoquinone and N-acetyl-p-benzoquinone imine. Environ. Sci. Technol., 2006, 40(2), 516-522.
[http://dx.doi.org/10.1021/es0509073] [PMID: 16468397]
[31]
Cernat, A.; Tertiş, M.; Săndulescu, R.; Bedioui, F.; Cristea, A.; Cristea, C. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Anal. Chim. Acta, 2015, 886, 16-28.
[http://dx.doi.org/10.1016/j.aca.2015.05.044] [PMID: 26320632]
[32]
Karikalan, N.; Karthik, R.; Chen, S.M.; Velmurugan, M.; Karuppiah, C. Electrochemical properties of the acetaminophen on the screen printed carbon electrode towards the high performance practical sensor applications. J. Colloid Interface Sci., 2016, 483, 109-117.
[http://dx.doi.org/10.1016/j.jcis.2016.08.028] [PMID: 27552419]
[33]
Sohouli, E.; Shahdost-Fard, F.; Rahimi-Nasrabadi, M.; Plonska-Brzezinska, M.E.; Ahmadi, F. Introducing a novel nanocomposite consisting of nitrogen-doped carbon nano-onions and gold nanoparticles for the electrochemical sensor to measure acetaminophen. J. Electroanal. Chem. (Lausanne Switz.), 2020, 871114309
[http://dx.doi.org/10.1016/j.jelechem.2020.114309]
[34]
Zhang, X.; Wang, K.P.; Zhang, L.N.; Zhang, Y.C.; Shen, L. Phosphorus-doped graphene-based electrochemical sensor for sensitive detection of acetaminophen. Anal. Chim. Acta, 2018, 1036, 26-32.
[http://dx.doi.org/10.1016/j.aca.2018.06.079] [PMID: 30253834]
[35]
Si, W.; Lei, W.; Han, Z.; Zhang, Y.; Hao, Q.; Xia, M. Electrochemical sensing of acetaminophen based on Poly(3,4- Ethylenedioxythiophene)/graphene oxide composites. Sens. Actuators B Chem., 2014, 193, 823-829.
[http://dx.doi.org/10.1016/j.snb.2013.12.052]
[36]
Adhikari, B.R.; Govindhan, M.; Schraft, H.; Chen, A. Simultaneous and sensitive detection of acetaminophen and valacyclovir based on two dimensional graphene nanosheets. J. Electroanal. Chem. (Lausanne Switz.), 2016, 780, 241-248.
[http://dx.doi.org/10.1016/j.jelechem.2016.09.023]
[37]
Jiang, H.L.; Xu, Q. Recent progress in synergistic catalysis over heterometallic nanoparticles. J. Mater. Chem., 2011, 36, 13705-13725.
[http://dx.doi.org/10.1039/c1jm12020d]
[38]
Zaleska-Medynska, A.; Marchelek, M.; Diak, M.; Grabowska, E. Noble metal-based bimetallic nanoparticles: The effect of the structure on the optical, catalytic and photocatalytic properties. Adv. Colloid Interface Sci., 2016, 229, 80-107.
[http://dx.doi.org/10.1016/j.cis.2015.12.008] [PMID: 26805520]
[39]
Singh, A.K.; Xu, Q. Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem, 2013, 5(3), 652-676.
[http://dx.doi.org/10.1002/cctc.201200591]
[40]
Maduraiveeran, G.; Rasik, R.; Sasidharan, M.; Jin, W. Bimetallic gold-nickel nanoparticles as a sensitive amperometric sensing platform for acetaminophen in human serum. J. Electroanal. Chem. (Lausanne Switz.), 2018, 808, 259-265.
[http://dx.doi.org/10.1016/j.jelechem.2017.12.027]
[41]
Zhou, Y.; Xu, Z.; Yoon, J. Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH: Highlighted research during 2004-2010. Chem. Soc. Rev., 2011, 40(5), 2222-2235.
[http://dx.doi.org/10.1039/c0cs00169d] [PMID: 21336366]
[42]
Zhou, M.; Zhai, Y.; Dong, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem., 2009, 81(14), 5603-5613.
[http://dx.doi.org/10.1021/ac900136z] [PMID: 19522529]
[43]
Freeman, R.; Willner, I. NAD(+)/NADH-sensitive quantum dots: Applications to probe NAD(+)-dependent enzymes and to sense the RDX explosive. Nano Lett., 2009, 9(1), 322-326.
[http://dx.doi.org/10.1021/nl8030532] [PMID: 19053786]
[44]
Banks, C.E.; Compton, R.G. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: An edge plane pyrolytic graphite electrode study. Analyst (Lond.), 2005, 130(9), 1232-1239.
[http://dx.doi.org/10.1039/b508702c] [PMID: 16096667]
[45]
Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L. Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens. Bioelectron., 2010, 25(6), 1504-1508.
[http://dx.doi.org/10.1016/j.bios.2009.11.009] [PMID: 20007014]
[46]
Zhang, L.; Li, Y.; Zhang, L.; Li, D.W.; Karpuzov, D.; Long, Y.T. Electrocatalytic oxidation of NADH on graphene oxide and reduced graphene oxide modified screen-printed electrode. Int. J. Electrochem. Sci., 2011, 6, 819-829.
[47]
Omar, F.S.; Duraisamy, N.; Ramesh, K.; Ramesh, S. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH). Biosens. Bioelectron., 2016, 79, 763-775.
[http://dx.doi.org/10.1016/j.bios.2016.01.013] [PMID: 26774092]
[48]
Riedel, M.; Hölzel, S.; Hille, P.; Schörmann, J.; Eickhoff, M.; Lisdat, F. InGaN/GaN nanowires as a new platform for photoelectrochemical sensors - detection of NADH. Biosens. Bioelectron., 2017, 94, 298-304.
[http://dx.doi.org/10.1016/j.bios.2017.03.022] [PMID: 28315593]
[49]
Rębiś, T.; Sobczak, A.; Wierzchowski, M.; Frankiewicz, A.; Teżyk, A.; Milczarek, G. An approach for electrochemical functionalization of carbon Nanotubes/1-Amino-9,10-anthraquinone electrode with catechol derivatives for the development of NADH sensors. Electrochim. Acta, 2018.
[http://dx.doi.org/10.1016/j.electacta.2017.12.022]
[50]
Hamidi, H.; Haghighi, B. Fabrication of a sensitive amperometric sensor for NADH and H2O2 using palladium nanoparticles-multiwalled carbon nanotube nanohybrid. Mater. Sci. Eng. C, 2016, 62, 423-428.
[http://dx.doi.org/10.1016/j.msec.2016.01.058] [PMID: 26952442]
[51]
Govindhan, M.; Amiri, M.; Chen, A. Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosens. Bioelectron., 2015, 66, 474-480.
[http://dx.doi.org/10.1016/j.bios.2014.12.012] [PMID: 25499660]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy