Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Comparison of Isolation, Expansion and Cryopreservation Techniques to Produce Stem Cells from Human Exfoliated Deciduous Teeth (SHED) with Better Regenerative Potential

Author(s): Sau H. Lee*, Chung Y. Looi, Pei P. Chong, Jhi B. Foo, Qi H. Looi, Chu X. Ng and Zaidah Ibrahim

Volume 16, Issue 5, 2021

Published on: 28 September, 2020

Page: [551 - 562] Pages: 12

DOI: 10.2174/1574888X15666200928110923

Price: $65

Open Access Journals Promotions 2
Abstract

Mesenchymal Stem Cells (MSCs) are adult stem cells that are gaining worldwide attention for their multi-potential use in tissue engineering-based regenerative medicine. They can be obtained from numerous sources and one of the excellent sources is the dental tissue, such as Stem cells that are extracted from the Human Exfoliated Deciduous teeth (SHED). SHED are considered ideal due to their inherent characteristics, including the capability to proliferate quickly with minimal oncogenesis risk, multipotency capacity and their ability to suppress the immune system. On top of these positive cell traits, SHED are easily accessible with the patient’s safety assured, posing less ethical issues and could also provide a sufficient number of cells for prospective clinical uses. This is primarily attributed to their ability to differentiate into multiple cell linages, including osteoblasts, odontoblasts, neuronal cells, adipocytes, as well as endothelial cells. Albeit SHED having a bright future, there still remains an obstacle to develop reliable experimental techniques to retain the long-term regeneration potential of the stem cells for prospective research and clinical applications. Therefore, this review aims to describe the various isolation, expansion and cryopreservation techniques used by researchers in this stem cell field. Optimization of these techniques is crucial to obtain distinct SHED culture with preserved stem cell properties, which enable more reproducible results that will be the key for further stem cell therapy development.

Keywords: Human Exfoliated Deciduous teeth (SHED), isolation technique, expansion technique, cryopreservation technique, Mesenchymal Stem Cells (MSCs), regenerative potential.

[1]
Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81(8): 531-5.
[http://dx.doi.org/10.1177/154405910208100806] [PMID: 12147742]
[2]
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97(25): 13625-30.
[http://dx.doi.org/10.1073/pnas.240309797] [PMID: 11087820]
[3]
Annibali S, Cristalli MP, Tonoli F, Polimeni A. Stem cells derived from human exfoliated deciduous teeth: a narrative synthesis of literature. Eur Rev Med Pharmacol Sci 2014; 18(19): 2863-81.
[PMID: 25339481]
[4]
Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807-12.
[http://dx.doi.org/10.1073/pnas.0937635100] [PMID: 12716973]
[5]
Li J, Xu SQ, Zhao YM, Yu S, Ge LH, Xu BH. Comparison of the biological characteristics of human mesenchymal stem cells derived from exfoliated deciduous teeth, bone marrow, gingival tissue, and umbilical cord. Mol Med Rep 2018; 18(6): 4969-77.
[http://dx.doi.org/10.3892/mmr.2018.9501] [PMID: 30272340]
[6]
Yamaza T, Kentaro A, Chen C, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 2010; 1(1): 5.
[http://dx.doi.org/10.1186/scrt5] [PMID: 20504286]
[7]
Akpinar G, Kasap M, Aksoy A, Duruksu G, Gacar G, Karaoz E. Phenotypic and proteomic characteristics of human dental pulp derived mesenchymal stem cells from a natal, an exfoliated deciduous, and an impacted third molar tooth. Stem Cells Int 2014; 2014: 457059.
[http://dx.doi.org/10.1155/2014/457059] [PMID: 25379041]
[8]
LaBonne C, Bronner-Fraser M. Molecular mechanisms of neural crest formation. Annu Rev Cell Dev Biol 1999; 15: 81-112.
[http://dx.doi.org/10.1146/annurev.cellbio.15.1.81] [PMID: 10611958]
[9]
Seo BM, Sonoyama W, Yamaza T, et al. SHED repair critical- size calvarial defects in mice. Oral Dis 2008; 14(5): 428-34.
[http://dx.doi.org/10.1111/j.1601-0825.2007.01396.x] [PMID: 18938268]
[10]
Zheng Y, Liu Y, Zhang CM, et al. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 2009; 88(3): 249-54.
[http://dx.doi.org/10.1177/0022034509333804] [PMID: 19329459]
[11]
Zheng C, Chen J, Liu S, Jin Y. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci 2019; 11(3): 23.
[http://dx.doi.org/10.1038/s41368-019-0060-3] [PMID: 31423011]
[12]
Pereira LV, Bento RF, Cruz DB, et al. Stem cells from human exfoliated deciduous teeth (SHED) differentiate in vivo and promote facial nerve regeneration. Cell Transplant 2019; 28(1): 55-64.
[http://dx.doi.org/10.1177/0963689718809090] [PMID: 30380914]
[13]
Sakai K, Yamamoto A, Matsubara K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 2012; 122(1): 80-90.
[PMID: 22133879]
[14]
Yamagata M, Yamamoto A, Kako E, et al. Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 2013; 44(2): 551-4.
[http://dx.doi.org/10.1161/STROKEAHA.112.676759] [PMID: 23238858]
[15]
Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 2013; 19(1-2): 24-9.
[http://dx.doi.org/10.1089/ten.tea.2011.0385] [PMID: 22839964]
[16]
Wang J, Wang X, Sun Z, et al. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 2010; 19(9): 1375-83.
[http://dx.doi.org/10.1089/scd.2009.0258] [PMID: 20131979]
[17]
Mita T, Furukawa-Hibi Y, Takeuchi H, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 2015; 293: 189-97.
[http://dx.doi.org/10.1016/j.bbr.2015.07.043] [PMID: 26210934]
[18]
Kanafi MM, Rajeshwari YB, Gupta S, et al. Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy 2013; 15(10): 1228-36.
[http://dx.doi.org/10.1016/j.jcyt.2013.05.008] [PMID: 23845187]
[19]
Takahashi Y, Yuniartha R, Yamaza T, et al. Therapeutic potential of spheroids of stem cells from human exfoliated deciduous teeth for chronic liver fibrosis and hemophilia A. Pediatr Surg Int 2019; 35(12): 1379-88.
[http://dx.doi.org/10.1007/s00383-019-04564-4] [PMID: 31552493]
[20]
Hattori Y, Kim H, Tsuboi N, et al. Correction: Therapeutic potential of stem cells from human exfoliated deciduous teeth in models of acute kidney injury. PLoS One 2015; 10(11): e0143561.
[http://dx.doi.org/10.1371/journal.pone.0143561] [PMID: 26571127]
[21]
Wakayama H, Hashimoto N, Matsushita Y, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy 2015; 17(8): 1119-29.
[http://dx.doi.org/10.1016/j.jcyt.2015.04.009] [PMID: 26031744]
[22]
Yamaguchi S, Shibata R, Yamamoto N, et al. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Sci Rep 2015; 5: 16295.
[http://dx.doi.org/10.1038/srep16295] [PMID: 26542315]
[23]
Shimojima C, Takeuchi H, Jin S, et al. Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. J Immunol 2016; 196(10): 4164-71.
[http://dx.doi.org/10.4049/jimmunol.1501457] [PMID: 27053763]
[24]
Ishikawa J, Takahashi N, Matsumoto T, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis. Bone 2016; 83: 210-9.
[http://dx.doi.org/10.1016/j.bone.2015.11.012] [PMID: 26603475]
[25]
Perry BC, Zhou D, Wu X, et al. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 2008; 14(2): 149-56.
[http://dx.doi.org/10.1089/ten.tec.2008.0031] [PMID: 18489245]
[26]
Suchánek J, Soukup T, Ivancaková R, et al. Human dental pulp stem cells-isolation and long term cultivation. Acta Med (Hradec Kralove) 2007; 50(3): 195-201.
[http://dx.doi.org/10.14712/18059694.2017.82] [PMID: 18254273]
[27]
Lindemann D, Werle SB, Steffens D, Garcia-Godoy F, Pranke P, Casagrande L. Effects of cryopreservation on the characteristics of dental pulp stem cells of intact deciduous teeth. Arch Oral Biol 2014; 59(9): 970-6.
[http://dx.doi.org/10.1016/j.archoralbio.2014.04.008] [PMID: 24949827]
[28]
Woods EJ, Perry BC, Hockema JJ, Larson L, Zhou D, Goebel WS. Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology 2009; 59(2): 150-7.
[http://dx.doi.org/10.1016/j.cryobiol.2009.06.005] [PMID: 19538953]
[29]
Ko CS, Chen JH, Su WT. Stem cells from human exfoliated deciduous teeth: A concise review. Curr Stem Cell Res Ther 2020; 15(1): 61-76.
[http://dx.doi.org/10.2174/1574888X14666191018122109] [PMID: 31648649]
[30]
Mauth C, Huwig A, Graf-Hausner U, et al. Restorative applications for dental pulp therapy Topics in tissue engineering 2007; 3(3): 1-32.
[31]
Kashyap R. SHED-basic structure for stem cell research. J Clin Diagn Res 2015; 9(3): ZE07-9.
[http://dx.doi.org/10.7860/JCDR/2015/9871.5636] [PMID: 25954717]
[32]
Raoof M, Yaghoobi MM, Derakhshani A, et al. A modified efficient method for dental pulp stem cell isolation. Dent Res J (Isfahan) 2014; 11(2): 244-50.
[PMID: 24932197]
[33]
Werle SB, Lindemann D, Steffens D, et al. Carious deciduous teeth are a potential source for dental pulp stem cells. Clin Oral Investig 2016; 20(1): 75-81.
[http://dx.doi.org/10.1007/s00784-015-1477-5] [PMID: 25898896]
[34]
Kumar SB. Chlorhexidine mouthwash-a review. J Pharm Sci Res 2017; 9(9): 1450.
[35]
Yu J, He H, Tang C, et al. Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol 2010; 11: 32.
[http://dx.doi.org/10.1186/1471-2121-11-32] [PMID: 20459680]
[36]
Hoang T, Jorgensen MG, Keim RG, Pattison AM, Slots J. Povidone-iodine as a periodontal pocket disinfectant. J Periodontal Res 2003; 38(3): 311-7.
[http://dx.doi.org/10.1034/j.1600-0765.2003.02016.x] [PMID: 12753370]
[37]
Zainuri M, Putri RR, Bachtiar EW. Establishing methods for isolation of stem cells from human exfoliated deciduous from carious deciduous teeth. Interv Med Appl Sci 2018; 10(1): 33-7.
[http://dx.doi.org/10.1556/1646.10.2018.06] [PMID: 30363356]
[38]
Karbalaie K, Tanhaei S, Rabiei F, et al. Stem cells from human exfoliated deciduous tooth exhibit stromal-derived inducing activity and lead to generation of neural crest cells from human embryonic stem cells. Cell J 2015; 17(1): 37-48.
[PMID: 25870833]
[39]
Kunimatsu R, Nakajima K, Awada T, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2018; 501(1): 193-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.213] [PMID: 29730288]
[40]
Murakami T, Saitoh I, Sato M, et al. Isolation and characterization of lymphoid enhancer factor-1-positive deciduous dental pulp stem-like cells after transfection with a piggyBac vector containing LEF1 promoter-driven selection markers. Arch Oral Biol 2017; 81: 110-20.
[http://dx.doi.org/10.1016/j.archoralbio.2017.04.033] [PMID: 28500952]
[41]
Nourbakhsh N, Soleimani M, Taghipour Z, et al. Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 2011; 55(2): 189-95.
[http://dx.doi.org/10.1387/ijdb.103090nn] [PMID: 21671222]
[42]
Paduano F, Marrelli M, White LJ, Shakesheff KM, Tatullo M. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS One 2016; 11(2): e0148225.
[http://dx.doi.org/10.1371/journal.pone.0148225] [PMID: 26882351]
[43]
Lockhart R, Hakakian C, Aronowitz J. Tissue dissociation enzymes for adipose stromal vascular fraction cell isolation: A review. J Stem Cell Res Ther 2015; 5(8)
[http://dx.doi.org/10.4172/2157-7633.1000321]
[44]
Feng X, Liu L, Yu BQ, Huang JM, Gu LD, Xu DF. Effect of optimized collagenase digestion on isolated and cultured nucleus pulposus cells in degenerated intervertebral discs. Medicine (Baltimore) 2018; 97(44): e12977.
[http://dx.doi.org/10.1097/MD.0000000000012977] [PMID: 30383649]
[45]
Bakopoulou A, Leyhausen G, Volk J, et al. Assessment of the impact of two different isolation methods on the osteo/odontogenic differentiation potential of human dental stem cells derived from deciduous teeth. Calcif Tissue Int 2011; 88(2): 130-41.
[http://dx.doi.org/10.1007/s00223-010-9438-0] [PMID: 21153807]
[46]
Jeon M, Song JS, Choi BJ, et al. in vitro and in vivo characteristics of stem cells from human exfoliated deciduous teeth obtained by enzymatic disaggregation and outgrowth. Arch Oral Biol 2014; 59(10): 1013-23.
[http://dx.doi.org/10.1016/j.archoralbio.2014.06.002] [PMID: 24960116]
[47]
Huang GT-J, Sonoyama W, Chen J, Park SH. in vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res 2006; 324(2): 225-36.
[http://dx.doi.org/10.1007/s00441-005-0117-9] [PMID: 16440193]
[48]
Zhang N, Chen B, Wang W, et al. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep 2016; 14(1): 95-102.
[http://dx.doi.org/10.3892/mmr.2016.5214] [PMID: 27151462]
[49]
Winning L, El Karim IA, Lundy FT. A comparative analysis of the osteogenic potential of dental mesenchymal stem cells. Stem Cells Dev 2019; 28(15): 1050-8.
[http://dx.doi.org/10.1089/scd.2019.0023] [PMID: 31169063]
[50]
Nakajima K, Kunimatsu R, Ando K, et al. Success rates in isolating mesenchymal stem cells from permanent and deciduous teeth. Sci Rep 2019; 9(1): 16764.
[http://dx.doi.org/10.1038/s41598-019-53265-4] [PMID: 31728068]
[51]
Verma K, Bains R, Bains VK, Rawtiya M, Loomba K, Srivastava SC. Therapeutic potential of dental pulp stem cells in regenerative medicine: An overview. Dent Res J 2014; 11(3): 302-8.
[PMID: 25097638]
[52]
Govindasamy V, Ronald VS, Totey S, et al. Micromanipulation of culture niche permits long-term expansion of dental pulp stem cells-an economic and commercial angle. in vitro Cell Dev Biol Anim 2010; 46(9): 764-73.
[http://dx.doi.org/10.1007/s11626-010-9332-0] [PMID: 20725801]
[53]
Dakshinamurti K, Tarrago-Litvak L, Hong HC. Biotin and glucose metabolism. Can J Biochem 1970; 48(4): 493-500.
[http://dx.doi.org/10.1139/o70-079] [PMID: 4246111]
[54]
Brunner D, Frank J, Appl H, Schöffl H, Pfaller W, Gstraunthaler G. Serum-free cell culture: the serum-free media interactive online database. ALTEX 2010; 27(1): 53-62.
[http://dx.doi.org/10.14573/altex.2010.1.53] [PMID: 20390239]
[55]
Ferro F, Spelat R, Baheney CS. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods Mol Biol 2014; 1210: 91-115.
[http://dx.doi.org/10.1007/978-1-4939-1435-7_8] [PMID: 25173163]
[56]
Saeed MA, El-Rahman MA, Helal ME, Zaher AR, Grawish ME. Efficacy of human platelet rich fibrin exudate vs. fetal bovine serum on proliferation and differentiation of dental pulp stem cells. Int J Stem Cells 2017; 10(1): 38-47.
[http://dx.doi.org/10.15283/ijsc16067] [PMID: 28215057]
[57]
Hilkens P, Bronckaers A, Ratajczak J, Gervois P, Wolfs E, Lambrichts I. The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration. Stem Cells Int 2017; 2017: 2582080.
[http://dx.doi.org/10.1155/2017/2582080] [PMID: 29018483]
[58]
Karaöz E, Demircan PC, Sağlam O, Aksoy A, Kaymaz F, Duruksu G. Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 2011; 136(4): 455-73.
[http://dx.doi.org/10.1007/s00418-011-0858-3] [PMID: 21879347]
[59]
d’Aquino R, Graziano A, Sampaolesi M, et al. Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: A pivotal synergy leading to adult bone tissue formation. Cell Death Differ 2007; 14(6): 1162-71.
[http://dx.doi.org/10.1038/sj.cdd.4402121] [PMID: 17347663]
[60]
Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J Dent Res 2009; 88(9): 792-806.
[http://dx.doi.org/10.1177/0022034509340867] [PMID: 19767575]
[61]
Silva FdeS, Ramos RN, de Almeida DC, et al. Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs) induce immune modulatory profile in monocyte-derived dendritic cells. PLoS One 2014; 9(5): e98050.
[http://dx.doi.org/10.1371/journal.pone.0098050] [PMID: 24846008]
[62]
Molloy T, Wang Y, Murrell G. The roles of growth factors in tendon and ligament healing. Sports Med 2003; 33(5): 381-94.
[http://dx.doi.org/10.2165/00007256-200333050-00004] [PMID: 12696985]
[63]
Osathanon T, Nowwarote N, Pavasant P. Basic fibroblast growth factor inhibits mineralization but induces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCγ signaling pathway. J Cell Biochem 2011; 112(7): 1807-16.
[http://dx.doi.org/10.1002/jcb.23097] [PMID: 21381082]
[64]
Sukarawan W, Nowwarote N, Kerdpon P, Pavasant P, Osathanon T. Effect of basic fibroblast growth factor on pluripotent marker expression and colony forming unit capacity of stem cells isolated from human exfoliated deciduous teeth. Odontology 2014; 102(2): 160-6.
[http://dx.doi.org/10.1007/s10266-013-0124-3] [PMID: 23872868]
[65]
Kim J, Park JC, Kim SH, et al. Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth. Oral Dis 2014; 20(2): 191-204.
[http://dx.doi.org/10.1111/odi.12089] [PMID: 23496287]
[66]
Nowwarote N, Pavasant P, Osathanon T. Role of endogenous basic fibroblast growth factor in stem cells isolated from human exfoliated deciduous teeth. Arch Oral Biol 2015; 60(3): 408-15.
[http://dx.doi.org/10.1016/j.archoralbio.2014.11.017] [PMID: 25526625]
[67]
Bartmann C, Rohde E, Schallmoser K, et al. Two steps to functional mesenchymal stromal cells for clinical application. Transfusion 2007; 47(8): 1426-35.
[http://dx.doi.org/10.1111/j.1537-2995.2007.01219.x] [PMID: 17655587]
[68]
Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 2000; 97(7): 3213-8.
[http://dx.doi.org/10.1073/pnas.97.7.3213] [PMID: 10725391]
[69]
Ahmed M, Ffrench-Constant C. Extracellular matrix regulation of stem cell behavior. Curr Stem Cell Rep 2016; 2: 197-206.
[http://dx.doi.org/10.1007/s40778-016-0056-2] [PMID: 27547708]
[70]
Spath L, Rotilio V, Alessandrini M, et al. Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials. J Cell Mol Med 2010; 14(6B): 1635-44.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00848.x] [PMID: 19602052]
[71]
Chen Y, Zheng YL, Qiu DB, et al. An extracellular matrix culture system for induced pluripotent stem cells derived from human dental pulp cells. Eur Rev Med Pharmacol Sci 2015; 19(21): 4035-46.
[PMID: 26592825]
[72]
Chaytor JL, Tokarew JM, Wu LK, et al. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation. Glycobiology 2012; 22(1): 123-33.
[http://dx.doi.org/10.1093/glycob/cwr115] [PMID: 21852258]
[73]
Hunt CJ. Technical considerations in the freezing, low-temperature storage and thawing of stem cells for cellular therapies. Transfus Med Hemother 2019; 46(3): 134-50.
[http://dx.doi.org/10.1159/000497289] [PMID: 31244583]
[74]
Aghajani F, Kazemnejad S, Hooshmand T, Ghaempanah Z, Zarnani AH. Evaluation of immunophenotyping, proliferation and osteogenic differentiation potential of SSEA-4 positive stem cells derived from pulp of deciduous teeth. Arch Oral Biol 2018; 96: 201-7.
[http://dx.doi.org/10.1016/j.archoralbio.2018.09.014] [PMID: 30296654]
[75]
Gonmanee T, Thonabulsombat C, Vongsavan K, Sritanaudomchai H. Differentiation of stem cells from human deciduous and permanent teeth into spiral ganglion neuron-like cells. Arch Oral Biol 2018; 88: 34-41.
[http://dx.doi.org/10.1016/j.archoralbio.2018.01.011] [PMID: 29407749]
[76]
Huang T-Y, Wang G-S, Ko C-S, Chen XW, Su WT. A study of the differentiation of stem cells from human exfoliated deciduous teeth on 3D silk fibroin scaffolds using static and dynamic culture paradigms. Mater Sci Eng C 2020; 109: 110563.
[http://dx.doi.org/10.1016/j.msec.2019.110563] [PMID: 32228984]
[77]
Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, Venalis A, Pivoriūnas A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy 2015; 17(7): 932-9.
[http://dx.doi.org/10.1016/j.jcyt.2014.07.013] [PMID: 25981557]
[78]
Kerkis I, Kerkis A, Dozortsev D, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs (Print) 2006; 184(3-4): 105-16.
[http://dx.doi.org/10.1159/000099617] [PMID: 17409736]
[79]
Zhang N, Lu X, Wu S, et al. Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats. Cytotherapy 2018; 20(5): 670-86.
[http://dx.doi.org/10.1016/j.jcyt.2018.02.371] [PMID: 29576501]
[80]
Haack-Sørensen M, Kastrup J. Cryopreservation and revival of mesenchymal stromal cells. In: Vemuri M, Chase LG, Rao MS, Eds. Mesenchymal stem cell assays and applications methods in molecular biology. Totowa, NJ: Humana Press 2011; pp. 161-74.
[http://dx.doi.org/10.1007/978-1-60761-999-4_13]
[81]
Sharma RR, Pollock K, Hubel A, McKenna D. Mesenchymal stem or stromal cells: A review of clinical applications and manufacturing practices. Transfusion 2014; 54(5): 1418-37.
[http://dx.doi.org/10.1111/trf.12421] [PMID: 24898458]
[82]
Ginani F, Soares DM, Rabêlo LM, Rocha HAO, de Souza LB, Barboza CAG. Effect of a cryopreservation protocol on the proliferation of stem cells from human exfoliated deciduous teeth. Acta Odontol Scand 2016; 74(8): 598-604.
[http://dx.doi.org/10.1080/00016357.2016.1224919] [PMID: 27576361]
[83]
Ji EH, Song JS, Kim S-O, Jeon M, Choi BJ, Lee JH. Viability of pulp stromal cells in cryopreserved deciduous teeth. Cell Tissue Bank 2014; 15(1): 67-74.
[http://dx.doi.org/10.1007/s10561-013-9375-z] [PMID: 23670172]
[84]
Lizier NF, Kerkis A, Gomes CM, et al. Scaling-up of dental pulp stem cells isolated from multiple niches. PLoS One 2012; 7(6): e39885.
[http://dx.doi.org/10.1371/journal.pone.0039885] [PMID: 22768154]
[85]
Ma L, Makino Y, Yamaza H, et al. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One 2012; 7(12): e51777.
[http://dx.doi.org/10.1371/journal.pone.0051777] [PMID: 23251621]
[86]
Lee HS, Jeon M, Kim SO, et al. Characteristics of stem cells from human exfoliated deciduous teeth (SHED) from intact cryopreserved deciduous teeth. Cryobiology 2015; 71(3): 374-83.
[http://dx.doi.org/10.1016/j.cryobiol.2015.10.146] [PMID: 26506257]
[87]
Lee S-Y, Chiang P-C, Tsai Y-H, et al. Effects of cryopreservation of intact teeth on the isolated dental pulp stem cells. J Endod 2010; 36(8): 1336-40.
[http://dx.doi.org/10.1016/j.joen.2010.04.015] [PMID: 20647092]
[88]
Abedini S, Kaku M, Kawata T, et al. Effects of cryopreservation with a newly-developed magnetic field programmed freezer on periodontal ligament cells and pulp tissues. Cryobiology 2011; 62(3): 181-7.
[http://dx.doi.org/10.1016/j.cryobiol.2011.03.001] [PMID: 21397593]
[89]
Kaku M, Kamada H, Kawata T, et al. Cryopreservation of periodontal ligament cells with magnetic field for tooth banking. Cryobiology 2010; 61(1): 73-8.
[http://dx.doi.org/10.1016/j.cryobiol.2010.05.003] [PMID: 20478291]
[90]
Kamada H, Kaku M, Kawata T, et al. In-vitro and in-vivo study of periodontal ligament cryopreserved with a magnetic field. Am J Orthod Dentofacial Orthop 2011; 140(6): 799-805.
[http://dx.doi.org/10.1016/j.ajodo.2011.04.024] [PMID: 22133944]
[91]
Kawata T, Kaku M, Fujita T, et al. Water molecule movement by a magnetic field in freezing for tooth banking. Biomed Res 2010; 21(4): 351-4.
[92]
Lee S-Y, Huang G-W, Shiung J-N, et al. Magnetic cryopreservation for dental pulp stem cells. Cells Tissues Organs (Print) 2012; 196(1): 23-33.
[http://dx.doi.org/10.1159/000331247] [PMID: 22285908]
[93]
Lin S-L, Chang W-J, Lin C-Y, et al. Static magnetic field increases survival rate of dental pulp stem cells during DMSO-free cryopreservation. Electromagn Biol Med 2015; 34(4): 302-8.
[http://dx.doi.org/10.3109/15368378.2014.919588] [PMID: 24856869]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy