Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Designing Specific HSP70 Substrate Binding Domain Inhibitor for Perturbing Protein Folding Pathways to Inhibit Cancer Mechanism

Author(s): Kübra A. Coşkun, İrfan Koca*, Mehmet Gümüş and Yusuf Tutar

Volume 21, Issue 11, 2021

Published on: 18 September, 2020

Page: [1472 - 1480] Pages: 9

DOI: 10.2174/1871520620666200918103509

Price: $65

Abstract

Background: HSP70 is a survival factor for tumor cells in transformation and in tumor progression as well as in anti-apoptotic response.

Objective: Several inhibitors targeting HSP70 ATPase function displayed off-target effects, but PES, which targets the HSP70 substrate binding domain, prevents tumor cell survival prominently. However, PES may not bind HSP70 in the absence of nucleotide. This research aimed to design a unique inhibitor molecule that works both in the presence and absence of nucleotides to amplify inhibition.

Methods: A set of chimeric coumarine-pyrazole derivatives were determined by in silico techniques and synthesized to elucidate their inhibitory effects. Cell viability experiments displayed KBR1307 as the most efficient inhibitor. A set of characterization experiments were performed, and the results were compared to that of PES agent. Binding constant, ATP hydrolysis rate, and percent aggregation were determined in the presence and absence of inhibitors.

Results: In silico docking experiments showed that only KBR1307 binds the HSP70 substrate binding domain and interacts with cochaperone interface. Binding experiments indicated that KBR1307 binds HSP70 both in the presence and absence of nucleotides, but PES does not. Both inhibitors significantly lower HSP70 ATPase activity and substrate protein disaggregation activity. However, KBR1307 displays a lower IC50 value at the MCF-7 cell line compared to PES. Both inhibitors do not alter HSP70 secondary structure composition and overall stability.

Conclusion: KBR1307 effectively inhibits HSP70 compared to PES and provides a promising template for novel anticancer drug development.

Keywords: Pyrazole, coumarine, HSP70 inhibitor, substrate binding domain, protein folding, PES, nucleotide, ATPase.

« Previous
Graphical Abstract
[1]
Yan, P.; Wang, T.; Guzman, M.L.; Peter, R.I.; Chiosis, G. Chaperome networks - Redundancy and implications for cancer treatment. Adv. Exp. Med. Biol., 2020, 1243, 87-99.
[http://dx.doi.org/10.1007/978-3-030-40204-4_6] [PMID: 32297213]
[2]
Kumar, S.; Stokes, J., III; Singh, U.P.; Scissum Gunn, K.; Acharya, A.; Manne, U.; Mishra, M. Targeting Hsp70: A possible therapy for cancer. Cancer Lett., 2016, 374(1), 156-166.
[http://dx.doi.org/10.1016/j.canlet.2016.01.056] [PMID: 26898980]
[3]
Moradi-Marjaneh, R.; Paseban, M.; Moradi Marjaneh, M. Hsp70 inhibitors: Implications for the treatment of colorectal cancer. IUBMB Life, 2019, 71(12), 1834-1845.
[http://dx.doi.org/10.1002/iub.2157] [PMID: 31441584]
[4]
Rosenzweig, R.; Nillegoda, N.B.; Mayer, M.P.; Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol., 2019, 20(11), 665-680.
[http://dx.doi.org/10.1038/s41580-019-0133-3] [PMID: 31253954]
[5]
Olotu, F.; Adeniji, E.; Agoni, C.; Bjij, I.; Khan, S.; Elrashedy, A.; Soliman, M. An update on the discovery and development of selective heat shock protein inhibitors as anti-cancer therapy. Expert Opin. Drug Discov., 2018, 13(10), 903-918.
[http://dx.doi.org/10.1080/17460441.2018.1516035] [PMID: 30207185]
[6]
Ferraro, M.; D’Annessa, I.; Moroni, E.; Morra, G.; Paladino, A.; Rinaldi, S.; Compostella, F.; Colombo, G. Allosteric modulators of HSP90 and HSP70: Dynamics meets function through structure-based drug design. J. Med. Chem., 2019, 62(1), 60-87.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00825] [PMID: 30048133]
[7]
Shrestha, L.; Patel, H.J.; Chiosis, G. Chemical tools to investigate mechanisms associated with HSP90 and HSP70 in disease. Cell Chem. Biol., 2016, 23(1), 158-172.
[http://dx.doi.org/10.1016/j.chembiol.2015.12.006] [PMID: 26933742]
[8]
Kampinga, H.H.; Hageman, J.; Vos, M.J.; Kubota, H.; Tanguay, R.M.; Bruford, E.A.; Cheetham, M.E.; Chen, B.; Hightower, L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones, 2009, 14(1), 105-111.
[http://dx.doi.org/10.1007/s12192-008-0068-7] [PMID: 18663603]
[9]
Sanchez-Martin, C.; Serapian, S.A.; Colombo, G.; Rasola, A. Dynamically shaping chaperones. Allosteric modulators of HSP90 family as regulatory tools of cell metabolism in neoplastic progression. Front. Oncol., 2020, 10(10), 1177.
[http://dx.doi.org/10.3389/fonc.2020.01177] [PMID: 32766157]
[10]
Costa, T.E.M.M.; Raghavendra, N.M.; Penido, C. Natural heat shock protein 90 inhibitors in cancer and inflammation. Eur. J. Med. Chem., 2020, 189(189), 112063.
[http://dx.doi.org/10.1016/j.ejmech.2020.112063] [PMID: 31972392]
[11]
Ergül, M.; Aktan, F.; Yildiz, M.T.; Tutar, Y. Perturbation of HSP network in MCF-7 breast cancer cell line triggers inducible HSP70 expression and leads to tumor suppression. Anticancer. Agents Med. Chem., 2020, 20(9), 1051-1060.
[http://dx.doi.org/10.2174/1871520620666200213102210] [PMID: 32053081]
[12]
Bickel, D.; Gohlke, H. C-terminal modulators of heat shock protein of 90 kDa (HSP90): State of development and modes of action. Bioorg. Med. Chem., 2019, 27(21), 115080.
[http://dx.doi.org/10.1016/j.bmc.2019.115080] [PMID: 31519378]
[13]
Matts, R.L.; Dixit, A.; Peterson, L.B.; Sun, L.; Voruganti, S.; Kalyanaraman, P.; Hartson, S.D.; Verkhivker, G.M.; Blagg, B.S. Elucidation of the Hsp90 C-terminal inhibitor binding site. ACS Chem. Biol., 2011, 6(8), 800-807.
[http://dx.doi.org/10.1021/cb200052x] [PMID: 21548602]
[14]
Samadi, A.K.; Zhang, X.; Mukerji, R.; Donnelly, A.C.; Blagg, B.S.; Cohen, M.S. A novel C-terminal HSP90 inhibitor KU135 induces apoptosis and cell cycle arrest in melanoma cells. Cancer Lett., 2011, 312(2), 158-167.
[http://dx.doi.org/10.1016/j.canlet.2011.07.031] [PMID: 21924824]
[15]
Laurin, P.; Ferroud, D.; Schio, L.; Klich, M.; Dupuis-Hamelin, C.; Mauvais, P.; Lassaigne, P.; Bonnefoy, A.; Musicki, B. Structure-activity relationship in two series of aminoalkyl substituted coumarin inhibitors of gyrase B. Bioorg. Med. Chem. Lett., 1999, 9(19), 2875-2880.
[http://dx.doi.org/10.1016/S0960-894X(99)00492-8] [PMID: 10522710]
[16]
Cheung, K.M.; Matthews, T.P.; James, K.; Rowlands, M.G.; Boxall, K.J.; Sharp, S.Y.; Maloney, A.; Roe, S.M.; Prodromou, C.; Pearl, L.H.; Aherne, G.W.; McDonald, E.; Workman, P. The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(14), 3338-3343.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.046] [PMID: 15955698]
[17]
Leu, J.I.; Pimkina, J.; Pandey, P.; Murphy, M.E.; George, D.L. HSP70 inhibition by the small-molecule 2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells. Mol. Cancer Res., 2011, 9(7), 936-947.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0019] [PMID: 21636681]
[18]
Leu, J.I.; Pimkina, J.; Frank, A.; Murphy, M.E.; George, D.L. A small molecule inhibitor of inducible heat shock protein 70. Mol. Cell, 2009, 36(1), 15-27.
[http://dx.doi.org/10.1016/j.molcel.2009.09.023] [PMID: 19818706]
[19]
Tutar, Y.; Arslan, D.; Tutar, L. Heat, pH induced aggregation and surface hydrophobicity of S. cerevesiae SSA1 protein. Protein J., 2010, 29(7), 501-508.
[http://dx.doi.org/10.1007/s10930-010-9280-2] [PMID: 20835845]
[20]
Lu, Z.; Cyr, D.M. The conserved carboxyl terminus and zinc finger-like domain of the co-chaperone Ydj1 assist Hsp70 in protein folding. J. Biol. Chem., 1998, 273(10), 5970-5978.
[http://dx.doi.org/10.1074/jbc.273.10.5970] [PMID: 9488737]
[21]
Cyr, D.M. Cooperation of the molecular chaperone Ydj1 with specific Hsp70 homologs to suppress protein aggregation. FEBS Lett., 1995, 359(2-3), 129-132.
[http://dx.doi.org/10.1016/0014-5793(95)00024-4] [PMID: 7867784]
[22]
Huang, R.; Ayine-Tora, D.M.; Muhammad Rosdi, M.N.; Li, Y.; Reynisson, J.; Leung, I.K.H. Virtual screening and biophysical studies lead to HSP90 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(2), 277-281.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.059] [PMID: 27913182]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy