Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Vitamins and Cognition: A Nutrigenomics Perspective

Author(s): Ayyappan Anitha*, Vijitha Viswambharan, Ismail Thanseem, Mary Iype, Rahna Parakkal, Sumitha P. Surendran and Mahesh V. Mundalil

Volume 17, Issue 4, 2021

Published on: 01 September, 2020

Page: [348 - 362] Pages: 15

DOI: 10.2174/1573401316999200901180443

Price: $65

Abstract

The rise in the prevalence of neurodegenerative and neurodevelopmental cognitive disorders combined with a lack of efficient therapeutic strategies has necessitated the need to develop alternate approaches. Dietary supplements are now being considered as a complementary and alternative medicine for cognitive impairments. Considerable evidence suggests the role of vitamins in modulating the genetic and epigenetic factors implicated in neuropsychiatric, neurodevelopmental and neurodegenerative disorders. In this review, we provide an overview of the implications of nutrigenomics with reference to vitamins that are suggested to boost cognitive functions (nootropic vitamins). Several vitamins have been found to possess antioxidant and anti-inflammatory properties which make them potential candidates in preventing or delaying age-related neurodegeneration and cognitive decline. Well-designed longitudinal studies are essential to examine the association between vitamins and cognitive functions. Future studies linking nutrition with advances in neuroscience, genomics and epigenomics would provide novel approaches to managing cognitive disorders.

Keywords: Brain, cognition, nutrigenomics, nootropic, vitamins, genetic.

Graphical Abstract
[1]
Ordovas JM, Corella D. Nutritional genomics. Annu Rev Genomics Hum Genet 2004; 5: 71-118.
[http://dx.doi.org/10.1146/annurev.genom.5.061903.180008] [PMID: 15485344]
[2]
Mead MN. Nutrigenomics: the genome--food interface. Environ Health Perspect 2007; 115(12): A582-9.
[http://dx.doi.org/10.1289/ehp.115-a582] [PMID: 18087577]
[3]
Fenech M, Baghurst P, Luderer W, et al. Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, beta-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability--results from a dietary intake and micronucleus index survey in South Australia. Carcinogenesis 2005; 26(5): 991-9.
[http://dx.doi.org/10.1093/carcin/bgi042] [PMID: 15705599]
[4]
Peregrin T. The new frontier of nutrition science: nutrigenomics. J Am Diet Assoc 2001; 101(11): 1306.
[http://dx.doi.org/10.1016/S0002-8223(01)00309-1] [PMID: 11716306]
[5]
Eagappan K, Sasikumar S. Nutrient–gene interactions in pathological conditions. Int J Pharma Bio Sci 2013; 3(4): 193-7.
[6]
Rana S, Kumar S, Rathore N, Padwad Y, Bhushana S. Nutrigenomics and its impact on life style associated metabolic diseases. Curr Genomics 2016; 17(3): 261-78.
[http://dx.doi.org/10.2174/1389202917666160202220422] [PMID: 27252592]
[7]
Gupta S. Brain food: Clever eating. Nature 2016; 531(7592): S12-3.
[http://dx.doi.org/10.1038/531S12a] [PMID: 26934519]
[8]
Cherny RA, Atwood CS, Xilinas ME, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 2001; 30(3): 665-76.
[http://dx.doi.org/10.1016/S0896-6273(01)00317-8] [PMID: 11430801]
[9]
Lee LK, Shahar S, Rajab N. Serum folate concentration, cognitive impairment, and DNA damage among elderly individuals in Malaysia. Nutr Res 2009; 29(5): 327-34.
[http://dx.doi.org/10.1016/j.nutres.2009.05.006] [PMID: 19555814]
[10]
Dauncey MJ. Recent advances in nutrition, genes and brain health. Proc Nutr Soc 2012; 71(4): 581-91.
[http://dx.doi.org/10.1017/S0029665112000237] [PMID: 22716958]
[11]
Shearer KD, Stoney PN, Morgan PJ, McCaffery PJ. A vitamin for the brain. Trends Neurosci 2012; 35(12): 733-41.
[http://dx.doi.org/10.1016/j.tins.2012.08.005] [PMID: 22959670]
[12]
Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Prog Neurobiol 2005; 75(4): 275-93.
[http://dx.doi.org/10.1016/j.pneurobio.2005.03.002] [PMID: 15882777]
[13]
Olson CR, Mello CV. Significance of vitamin A to brain function, behavior and learning. Mol Nutr Food Res 2010; 54(4): 489-95.
[http://dx.doi.org/10.1002/mnfr.200900246] [PMID: 20077419]
[14]
Cocco S, Diaz G, Stancampiano R, et al. Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience 2002; 115(2): 475-82.
[http://dx.doi.org/10.1016/S0306-4522(02)00423-2] [PMID: 12421614]
[15]
Misner DL, Jacobs S, Shimizu Y, et al. Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proc Natl Acad Sci USA 2001; 98(20): 11714-9.
[http://dx.doi.org/10.1073/pnas.191369798] [PMID: 11553775]
[16]
Bonnet E, Touyarot K, Alfos S, Pallet V, Higueret P, Abrous DN. Retinoic acid restores adult hippocampal neurogenesis and reverses spatial memory deficit in vitamin A deprived rats. PLoS One 2008; 3(10): e3487.
[http://dx.doi.org/10.1371/journal.pone.0003487] [PMID: 18941534]
[17]
Etchamendy N, Enderlin V, Marighetto A, Pallet V, Higueret P, Jaffard R. Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav Brain Res 2003; 145(1-2): 37-49.
[http://dx.doi.org/10.1016/S0166-4328(03)00099-8] [PMID: 14529804]
[18]
Craft NE, Haitema TB, Garnett KM, Fitch KA, Dorey CK. Carotenoid, tocopherol, and retinol concentrations in elderly human brain. J Nutr Health Aging 2004; 8(3): 156-62.
[PMID: 15129301]
[19]
Ono K, Yamada M. Vitamin A and Alzheimer’s disease. Geriatr Gerontol Int 2012; 12(2): 180-8.
[http://dx.doi.org/10.1111/j.1447-0594.2011.00786.x] [PMID: 22221326]
[20]
Corcoran JPT, So PL, Maden M. Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur J Neurosci 2004; 20(4): 896-902.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03563.x] [PMID: 15305858]
[21]
Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Vitamin A exhibits potent antiamyloidogenic and fibril-destabilizing effects in vitro. Exp Neurol 2004; 189(2): 380-92.
[http://dx.doi.org/10.1016/j.expneurol.2004.05.035] [PMID: 15380488]
[22]
Obulesu M, Dowlathabad MR, Bramhachari PV. Carotenoids and Alzheimer’s disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int 2011; 59(5): 535-41.
[http://dx.doi.org/10.1016/j.neuint.2011.04.004] [PMID: 21672580]
[23]
Oliveira MR. The neurotoxic effects of vitamin A and retinoids. An Acad Bras Cienc 2015; 87(2)(Suppl.): 1361-73.
[http://dx.doi.org/10.1590/0001-3765201520140677] [PMID: 26247148]
[24]
Borel P, Desmarchelier C. Genetic variations associated with vitamin A status and vitamin A bioavailability. Nutrients 2017; 9(3): E246.
[http://dx.doi.org/10.3390/nu9030246] [PMID: 28282870]
[25]
Goodman AB. Retinoid receptors, transporters, and metabolizers as therapeutic targets in late onset Alzheimer disease. J Cell Physiol 2006; 209(3): 598-603.
[http://dx.doi.org/10.1002/jcp.20784] [PMID: 17001693]
[26]
Enderlin V, Pallet V, Alfos S, et al. Age-related decreases in mRNA for brain nuclear receptors and target genes are reversed by retinoic acid treatment. Neurosci Lett 1997; 229(2): 125-9.
[http://dx.doi.org/10.1016/S0304-3940(97)00424-2] [PMID: 9223607]
[27]
Fonzo LSN, Golini RS, Delgado SM, et al. Temporal patterns of lipoperoxidation and antioxidant enzymes are modified in the hippocampus of vitamin A-deficient rats. Hippocampus 2009; 19(9): 869-80.
[http://dx.doi.org/10.1002/hipo.20571] [PMID: 19308957]
[28]
Golini RS, Delgado SM, Navigatore Fonzo LS, Ponce IT, Lacoste MG, Anzulovich AC. Daily patterns of clock and cognition-related factors are modified in the hippocampus of vitamin A-deficient rats. Hippocampus 2012; 22(8): 1720-32.
[http://dx.doi.org/10.1002/hipo.22007] [PMID: 22434687]
[29]
Bonhomme D, Minni AM, Alfos S, et al. Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis? Front Behav Neurosci 2014; 8: 20.
[http://dx.doi.org/10.3389/fnbeh.2014.00020] [PMID: 24550796]
[30]
Pallet V, Touyarot K. Vitamin A and cognitive processes. Nutr Aging (Amst) 2015; 3(1): 21-31.
[http://dx.doi.org/10.3233/NUA-150048]
[31]
Hodges JK, Tan L, Green MH, Ross AC. Vitamin A supplementation increases the uptake of chylomicron retinyl esters into the brain of neonatal rats raised under vitamin A-marginal conditions. J Nutr 2016; 146(9): 1677-83.
[http://dx.doi.org/10.3945/jn.116.233692] [PMID: 27511933]
[32]
Hughes CF, Ward M, Tracey F, et al. B-vitamin intake and biomarker status in relation to cognitive decline in healthy older adults in a 4-year follow-up study. Nutrients 2017; 9(1): E53.
[http://dx.doi.org/10.3390/nu9010053] [PMID: 28075382]
[33]
Basheer MP, Soopy K, Pradeep Kumar KM, Edakkot S, Ramakrishna T. Vitamin B complex and homocysteine status and cognitive impairment in the elderly among Indian population. J Neurosci Behav Health 2016; 8(4): 20-6.
[http://dx.doi.org/10.5897/JNBH2015.0130]
[34]
Jannusch K, Jockwitz C, Bidmon H-J, Moebus S, Amunts K, Caspers S. A complex interplay of vitamin B1 and B6 metabolism with cognition, brain structure, and functional connectivity in older adults. Front Neurosci 2017; 11: 596.
[http://dx.doi.org/10.3389/fnins.2017.00596] [PMID: 29163003]
[35]
Ulstein I, Bøhmer T. Normal vitamin levels and nutritional indices in Alzheimer’s disease patients with mild cognitive impairment or dementia with normal body mass indexes. J Alzheimers Dis 2017; 55(2): 717-25.
[http://dx.doi.org/10.3233/JAD-160393] [PMID: 27716664]
[36]
Zhang DM, Ye JX, Mu JS, Cui XP. Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases. J Geriatr Psychiatry Neurol 2017; 30(1): 50-9.
[http://dx.doi.org/10.1177/0891988716673466] [PMID: 28248558]
[37]
Tanaka T, Scheet P, Giusti B, et al. Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am J Hum Genet 2009; 84(4): 477-82.
[http://dx.doi.org/10.1016/j.ajhg.2009.02.011] [PMID: 19303062]
[38]
Percudani R, Peracchi A. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics 2009; 10: 273.
[http://dx.doi.org/10.1186/1471-2105-10-273] [PMID: 19723314]
[39]
Dakshinamurti S, Dakshinamurti K. Vitamin B6 Handbook of vitamins (5th ed), Boca Raton, FL, USA: CRC Press. 2013.
[40]
Kennedy DOB. Vitamins and the brain: mechanisms, dose and efficacy--a review. Nutrients 2016; 8(2): 68.
[http://dx.doi.org/10.3390/nu8020068] [PMID: 26828517]
[41]
Sakakeeny L, Roubenoff R, Obin M, et al. Plasma pyridoxal-5-phosphate is inversely associated with systemic markers of inflammation in a population of U.S. adults. J Nutr 2012; 142(7): 1280-5.
[http://dx.doi.org/10.3945/jn.111.153056] [PMID: 22623384]
[42]
Wiens D, DeSoto MC. Is high folic acid intake a risk factor for autism?-a review. Brain Sci 2017; 7(11): E149.
[http://dx.doi.org/10.3390/brainsci7110149] [PMID: 29125540]
[43]
Okuda H, Miyata S, Mori Y, Tohyama M. Mouse Prickle1 and Prickle2 are expressed in postmitotic neurons and promote neurite outgrowth. FEBS Lett 2007; 581(24): 4754-60.
[http://dx.doi.org/10.1016/j.febslet.2007.08.075] [PMID: 17868671]
[44]
Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 2003; 26(3): 137-46.
[http://dx.doi.org/10.1016/S0166-2236(03)00032-8] [PMID: 12591216]
[45]
Ramos MI, Allen LH, Mungas DM, et al. Low folate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on aging. Am J Clin Nutr 2005; 82(6): 1346-52.
[http://dx.doi.org/10.1093/ajcn/82.6.1346] [PMID: 16332669]
[46]
Zhang X, Huang G, Liu H, Chang H, Wilson JX. Folic acid enhances Notch signaling, hippocampal neurogenesis, and cognitive function in a rat model of cerebral ischemia. Nutr Neurosci 2012; 15(2): 55-61.
[http://dx.doi.org/10.1179/1476830511Y.0000000025] [PMID: 22334042]
[47]
Ars CL, Nijs IM, Marroun HE, et al. Prenatal folate, homocysteine and vitamin B12 levels and child brain volumes, cognitive development and psychological functioning: the Generation R Study. Br J Nutr 2019; 122(s1): S1-9.
[http://dx.doi.org/10.1017/S0007114515002081] [PMID: 31638501]
[48]
Roth C, Magnus P, Schjølberg S, et al. Folic acid supplements in pregnancy and severe language delay in children. JAMA 2011; 306(14): 1566-73.
[http://dx.doi.org/10.1001/jama.2011.1433] [PMID: 21990300]
[49]
Wehby GL, Murray JC. The effects of prenatal use of folic acid and other dietary supplements on early child development. Matern Child Health J 2008; 12(2): 180-7.
[http://dx.doi.org/10.1007/s10995-007-0230-3] [PMID: 17554612]
[50]
Roza SJ, van Batenburg-Eddes T, Steegers EAP, et al. Maternal folic acid supplement use in early pregnancy and child behavioural problems: The Generation R Study. Br J Nutr 2010; 103(3): 445-52.
[http://dx.doi.org/10.1017/S0007114509991954] [PMID: 19772683]
[51]
Schlotz W, Jones A, Phillips DIW, Gale CR, Robinson SM, Godfrey KM. Lower maternal folate status in early pregnancy is associated with childhood hyperactivity and peer problems in offspring. J Child Psychol Psychiatry 2010; 51(5): 594-602.
[http://dx.doi.org/10.1111/j.1469-7610.2009.02182.x] [PMID: 19874428]
[52]
Veena SR, Krishnaveni GV, Srinivasan K, et al. Higher maternal plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9- to 10- year-old children in South India. J Nutr 2010; 140(5): 1014-22.
[http://dx.doi.org/10.3945/jn.109.118075] [PMID: 20335637]
[53]
Gao Y, Sheng C, Xie RH, et al. New perspective on impact of folic acid supplementation during pregnancy on neurodevelopment/autism in the offspring children - a systematic review. PLoS One 2016; 11(11): e0165626.
[http://dx.doi.org/10.1371/journal.pone.0165626] [PMID: 27875541]
[54]
Valera-Gran D, García de la Hera M, Navarrete-Muñoz EM, et al. Folic acid supplements during pregnancy and child psychomotor development after the first year of life. JAMA Pediatr 2014; 168(11): e142611.
[http://dx.doi.org/10.1001/jamapediatrics.2014.2611] [PMID: 25365251]
[55]
Nilsson K, Gustafson L, Hultberg B. Improvement of cognitive functions after cobalamin/folate supplementation in elderly patients with dementia and elevated plasma homocysteine. Int J Geriatr Psychiatry 2001; 16(6): 609-14.
[http://dx.doi.org/10.1002/gps.388] [PMID: 11424170]
[56]
Joubert BR, den Dekker HT, Felix JF, et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun 2016; 7: 10577.
[http://dx.doi.org/10.1038/ncomms10577] [PMID: 26861414]
[57]
Grarup N, Sulem P, Sandholt CH, et al. Genetic architecture of vitamin B12 and folate levels uncovered applying deeply sequenced large datasets. PLoS Genet 2013; 9(6): e1003530.
[http://dx.doi.org/10.1371/journal.pgen.1003530] [PMID: 23754956]
[58]
Corrada MM, Kawas CH, Hallfrisch J, Muller D, Brookmeyer R. Reduced risk of Alzheimer’s disease with high folate intake: the Baltimore Longitudinal Study of Aging. Alzheimers Dement 2005; 1(1): 11-8.
[http://dx.doi.org/10.1016/j.jalz.2005.06.001] [PMID: 19595811]
[59]
Durga J, van Boxtel MPJ, Schouten EG, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 2007; 369(9557): 208-16.
[http://dx.doi.org/10.1016/S0140-6736(07)60109-3] [PMID: 17240287]
[60]
Kruman II, Mouton PR, Emokpae R Jr, Cutler RG, Mattson MP. Folate deficiency inhibits proliferation of adult hippocampal progenitors. Neuroreport 2005; 16(10): 1055-9.
[http://dx.doi.org/10.1097/00001756-200507130-00005] [PMID: 15973147]
[61]
Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 2007; 85(2): 614S-20S.
[PMID: 17284765]
[62]
Kronenberg G, Harms C, Sobol RW, et al. Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase. J Neurosci 2008; 28(28): 7219-30.
[http://dx.doi.org/10.1523/JNEUROSCI.0940-08.2008] [PMID: 18614692]
[63]
Bailey LB. Folic acidHandbook of vitamins (4th ed), Boca Raton, FL, USA: CRC Press . 2007.
[64]
Miller AL. The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern Med Rev 2008; 13(3): 216-26.
[PMID: 18950248]
[65]
Scalabrino G, Buccellato FR, Veber D, Mutti E. New basis of the neurotrophic action of vitamin B12. Clin Chem Lab Med 2003; 41(11): 1435-7.
[http://dx.doi.org/10.1515/CCLM.2003.220] [PMID: 14656022]
[66]
Matsumoto A, Shiga Y, Shimizu H, Kimura I, Hisanaga K. [Encephalomyelopathy due to vitamin B12 deficiency with seizures as a predominant symptom]. Rinsho Shinkeigaku 2009; 49(4): 179-85. [Encephalomyelopathy due to vitamin B12 deficiency with seizures as a predominant symptom].
[http://dx.doi.org/10.5692/clinicalneurol.49.179] [PMID: 19462816]
[67]
Miller A, Korem M, Almog R, Galboiz Y. Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J Neurol Sci 2005; 233(1-2): 93-7.
[http://dx.doi.org/10.1016/j.jns.2005.03.009] [PMID: 15896807]
[68]
Torsvik I, Ueland PM, Markestad T, Bjørke-Monsen A-L. Cobalamin supplementation improves motor development and regurgitations in infants: results from a randomized intervention study. Am J Clin Nutr 2013; 98(5): 1233-40.
[http://dx.doi.org/10.3945/ajcn.113.061549] [PMID: 24025626]
[69]
Kvestad I, Taneja S, Kumar T, et al. Vitamin B12 and folic acid improve gross motor and problem-solving skills in young north Indian children: a randomized placebo-controlled trial. PLoS One 2015; 10(6): e0129915.
[http://dx.doi.org/10.1371/journal.pone.0129915] [PMID: 26098427]
[70]
Schneede J, Dagnelie PC, van Staveren WA, Vollset SE, Refsum H, Ueland PM. Methylmalonic acid and homocysteine in plasma as indicators of functional cobalamin deficiency in infants on macrobiotic diets. Pediatr Res 1994; 36(2): 194-201.
[http://dx.doi.org/10.1203/00006450-199408000-00010] [PMID: 7970934]
[71]
Louwman MW, van Dusseldorp M, van de Vijver FJ, et al. Signs of impaired cognitive function in adolescents with marginal cobalamin status. Am J Clin Nutr 2000; 72(3): 762-9.
[http://dx.doi.org/10.1093/ajcn/72.3.762] [PMID: 10966896]
[72]
Kvestad I, Hysing M, Shrestha M, et al. Vitamin B-12 status in infancy is positively associated with development and cognitive functioning 5 y later in Nepalese children. Am J Clin Nutr 2017; 105(5): 1122-31.
[http://dx.doi.org/10.3945/ajcn.116.144931] [PMID: 28330909]
[73]
Zhang Y, Hodgson NW, Trivedi MS, et al. Decreased brain levels of vitamin B12 in aging, autism and schizophrenia. PLoS One 2016; 11(1): e0146797.
[http://dx.doi.org/10.1371/journal.pone.0146797] [PMID: 26799654]
[74]
Weir DG, Scott JM. Brain function in the elderly: role of vitamin B12 and folate. Br Med Bull 1999; 55(3): 669-82.
[http://dx.doi.org/10.1258/0007142991902547] [PMID: 10746355]
[75]
Tucker KL, Qiao N, Scott T, Rosenberg I, Spiro A III. High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study. Am J Clin Nutr 2005; 82(3): 627-35.
[http://dx.doi.org/10.1093/ajcn/82.3.627] [PMID: 16155277]
[76]
Vogiatzoglou A, Refsum H, Johnston C, et al. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology 2008; 71(11): 826-32.
[http://dx.doi.org/10.1212/01.wnl.0000325581.26991.f2] [PMID: 18779510]
[77]
Hooshmand B, Mangialasche F, Kalpouzos G, et al. Association of vitamin B12, folate, and sulfur amino acids with brain magnetic resonance imaging measures in older adults: a longitudinal population-based study. JAMA Psychiatry 2016; 73(6): 606-13.
[http://dx.doi.org/10.1001/jamapsychiatry.2016.0274] [PMID: 27120188]
[78]
Kuznetsova AY, Deth RC. A model for modulation of neuronal synchronization by D4 dopamine receptor-mediated phospholipid methylation. J Comput Neurosci 2008; 24(3): 314-29.
[http://dx.doi.org/10.1007/s10827-007-0057-3] [PMID: 17929154]
[79]
Malouf R, Areosa Sastre A. Vitamin B12 for cognition. Cochrane Database Syst Rev 2003; (3): CD004326.
[PMID: 12918012]
[80]
Balk EM, Raman G, Tatsioni A, Chung M, Lau J, Rosenberg IH. Vitamin B6, B12, and folic acid supplementation and cognitive function: a systematic review of randomized trials. Arch Intern Med 2007; 167(1): 21-30.
[http://dx.doi.org/10.1001/archinte.167.1.21] [PMID: 17210874]
[81]
Moore E, Mander A, Ames D, Carne R, Sanders K, Watters D. Cognitive impairment and vitamin B12: a review. Int Psychogeriatr 2012; 24(4): 541-56.
[http://dx.doi.org/10.1017/S1041610211002511] [PMID: 22221769]
[82]
Smith AD, Smith SM, de Jager CA, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One 2010; 5(9): e12244.
[http://dx.doi.org/10.1371/journal.pone.0012244] [PMID: 20838622]
[83]
Douaud G, Refsum H, de Jager CA, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci USA 2013; 110(23): 9523-8.
[http://dx.doi.org/10.1073/pnas.1301816110] [PMID: 23690582]
[84]
Rice ME, Russo-Menna I. Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience 1998; 82(4): 1213-23.
[http://dx.doi.org/10.1016/S0306-4522(97)00347-3] [PMID: 9466441]
[85]
Venkataraman P, Muthuvel R, Krishnamoorthy G, et al. PCB (Aroclor 1254) enhances oxidative damage in rat brain regions: protective role of ascorbic acid. Neurotoxicology 2007; 28(3): 490-8.
[http://dx.doi.org/10.1016/j.neuro.2006.11.002] [PMID: 17141323]
[86]
Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 2009; 46(6): 719-30.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.12.018] [PMID: 19162177]
[87]
Tveden-Nyborg P, Lykkesfeldt J. Does vitamin C deficiency result in impaired brain development in infants? Redox Rep 2009; 14(1): 2-6.
[http://dx.doi.org/10.1179/135100009X392412] [PMID: 19161672]
[88]
Harrison FE, Dawes SM, Meredith ME, Babaev VR, Li L, May JM. Low vitamin C and increased oxidative stress and cell death in mice that lack the sodium-dependent vitamin C transporter SVCT2. Free Radic Biol Med 2010; 49(5): 821-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.06.008] [PMID: 20541602]
[89]
Tveden-Nyborg P, Johansen LK, Raida Z, Villumsen CK, Larsen JO, Lykkesfeldt J. Vitamin C deficiency in early postnatal life impairs spatial memory and reduces the number of hippocampal neurons in guinea pigs. Am J Clin Nutr 2009; 90(3): 540-6.
[http://dx.doi.org/10.3945/ajcn.2009.27954] [PMID: 19640959]
[90]
Agus DB, Gambhir SS, Pardridge WM, et al. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest 1997; 100(11): 2842-8.
[http://dx.doi.org/10.1172/JCI119832] [PMID: 9389750]
[91]
Foy CJ, Passmore AP, Vahidassr MD, Young IS, Lawson JT. Plasma chain-breaking antioxidants in Alzheimer’s disease, vascular dementia and Parkinson’s disease. QJM 1999; 92(1): 39-45.
[http://dx.doi.org/10.1093/qjmed/92.1.39] [PMID: 10209671]
[92]
Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002; 287(24): 3223-9.
[http://dx.doi.org/10.1001/jama.287.24.3223] [PMID: 12076218]
[93]
Dixit S, Bernardo A, Walker JM, et al. Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice. ACS Chem Neurosci 2015; 6(4): 570-81.
[http://dx.doi.org/10.1021/cn500308h] [PMID: 25642732]
[94]
Rebec GV, Barton SJ, Marseilles AM, Collins K. Ascorbate treatment attenuates the Huntington behavioral phenotype in mice. Neuroreport 2003; 14(9): 1263-5.
[http://dx.doi.org/10.1097/00001756-200307010-00015] [PMID: 12824772]
[95]
Grodstein F, Chen J, Willett WC. High-dose antioxidant supplements and cognitive function in community-dwelling elderly women. Am J Clin Nutr 2003; 77(4): 975-84.
[http://dx.doi.org/10.1093/ajcn/77.4.975] [PMID: 12663300]
[96]
Bowman GL. Ascorbic acid, cognitive function, and Alzheimer’s disease: a current review and future direction. Biofactors 2012; 38(2): 114-22.
[http://dx.doi.org/10.1002/biof.1002] [PMID: 22419527]
[97]
Hansen SN, Tveden-Nyborg P, Lykkesfeldt J. Does vitamin C deficiency affect cognitive development and function? Nutrients 2014; 6(9): 3818-46.
[http://dx.doi.org/10.3390/nu6093818] [PMID: 25244370]
[98]
Cahill LE, El-Sohemy A. Vitamin C transporter gene polymorphisms, dietary vitamin C and serum ascorbic acid. J Nutrigenet Nutrigenomics 2009; 2(6): 292-301.
[http://dx.doi.org/10.1159/000314597] [PMID: 20588054]
[99]
Timpson NJ, Forouhi NG, Brion M-J, et al. Genetic variation at the SLC23A1 locus is associated with circulating concentrations of L-ascorbic acid (vitamin C): evidence from 5 independent studies with >15,000 participants. Am J Clin Nutr 2010; 92(2): 375-82.
[http://dx.doi.org/10.3945/ajcn.2010.29438] [PMID: 20519558]
[100]
Diliberto EJ Jr, Allen PL. Semidehydroascorbate as a product of the enzymic conversion of dopamine to norepinephrine. Coupling of semidehydroascorbate reductase to dopamine-beta-hydroxylase. Mol Pharmacol 1980; 17(3): 421-6.
[PMID: 7393218]
[101]
Kuo CH, Hata F, Yoshida H, Yamatodani A, Wada H. Effect of ascorbic acid on release of acetylcholine from synaptic vesicles prepared from different species of animals and release of noradrenaline from synaptic vesicles of rat brain. Life Sci 1979; 24(10): 911-5.
[http://dx.doi.org/10.1016/0024-3205(79)90341-2] [PMID: 109717]
[102]
Rebec GV, Pierce RC. A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol 1994; 43(6): 537-65.
[http://dx.doi.org/10.1016/0301-0082(94)90052-3] [PMID: 7816935]
[103]
Lee J-Y, Chang M-Y, Park C-H, et al. Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. J Neurosci Res 2003; 73(2): 156-65.
[http://dx.doi.org/10.1002/jnr.10647] [PMID: 12836158]
[104]
Eldridge CF, Bunge MB, Bunge RP, Wood PM. Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol 1987; 105(2): 1023-34.
[http://dx.doi.org/10.1083/jcb.105.2.1023] [PMID: 3624305]
[105]
Grant MM, Barber VS, Griffiths HR. The presence of ascorbate induces expression of brain derived neurotrophic factor in SH-SY5Y neuroblastoma cells after peroxide insult, which is associated with increased survival. Proteomics 2005; 5(2): 534-40.
[http://dx.doi.org/10.1002/pmic.200300924] [PMID: 15627972]
[106]
Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000; 18(6): 675-9.
[http://dx.doi.org/10.1038/76536] [PMID: 10835609]
[107]
Shin DM, Ahn JI, Lee KH, Lee YS, Lee YS. Ascorbic acid responsive genes during neuronal differentiation of embryonic stem cells. Neuroreport 2004; 15(12): 1959-63.
[http://dx.doi.org/10.1097/00001756-200408260-00025] [PMID: 15305145]
[108]
Jackson TS, Xu A, Vita JA, Keaney JF Jr. Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ Res 1998; 83(9): 916-22.
[http://dx.doi.org/10.1161/01.RES.83.9.916] [PMID: 9797340]
[109]
Seregi A, Schaefer A, Komlós M. Protective role of brain ascorbic acid content against lipid peroxidation. Experientia 1978; 34(8): 1056-7.
[http://dx.doi.org/10.1007/BF01915344] [PMID: 700025]
[110]
Wacker M, Holick MF. Vitamin D - effects on skeletal and extraskeletal health and the need for supplementation. Nutrients 2013; 5(1): 111-48.
[http://dx.doi.org/10.3390/nu5010111] [PMID: 23306192]
[111]
Eyles D, Burne T, McGrath J. Vitamin D in fetal brain development. Semin Cell Dev Biol 2011; 22(6): 629-36.
[http://dx.doi.org/10.1016/j.semcdb.2011.05.004] [PMID: 21664981]
[112]
Mazahery H, Camargo CA Jr, Conlon C, Beck KL, Kruger MC, von Hurst PR. Vitamin D and autism spectrum disorder: a literature review. Nutrients 2016; 8(4): 236.
[http://dx.doi.org/10.3390/nu8040236] [PMID: 27110819]
[113]
McGrath JJ, Eyles DW, Pedersen CB, et al. Neonatal vitamin D status and risk of schizophrenia: a population-based case-control study. Arch Gen Psychiatry 2010; 67(9): 889-94.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.110] [PMID: 20819982]
[114]
van der Schaft J, Koek HL, Dijkstra E, Verhaar HJJ, van der Schouw YT, Emmelot-Vonk MH. The association between vitamin D and cognition: a systematic review. Ageing Res Rev 2013; 12(4): 1013-23.
[http://dx.doi.org/10.1016/j.arr.2013.05.004] [PMID: 23727408]
[115]
Miller JW, Harvey DJ, Beckett LA, et al. Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurol 2015; 72(11): 1295-303.
[http://dx.doi.org/10.1001/jamaneurol.2015.2115] [PMID: 26366714]
[116]
Maddock J, Zhou A, Cavadino A, et al. Vitamin D and cognitive function: A Mendelian randomisation study. Sci Rep 2017; 7(1): 13230.
[http://dx.doi.org/10.1038/s41598-017-13189-3] [PMID: 29038561]
[117]
Olsson E, Byberg L, Karlström B, et al. Vitamin D is not associated with incident dementia or cognitive impairment: an 18-y follow-up study in community-living old men. Am J Clin Nutr 2017; 105(4): 936-43.
[http://dx.doi.org/10.3945/ajcn.116.141531] [PMID: 28202477]
[118]
Goodwill AM, Szoeke C. A systematic review and meta-analysis of the effect of low vitamin D on cognition. J Am Geriatr Soc 2017; 65(10): 2161-8.
[http://dx.doi.org/10.1111/jgs.15012] [PMID: 28758188]
[119]
Cui X, Gooch H, Petty A, McGrath JJ, Eyles D. Vitamin D and the brain: Genomic and non-genomic actions. Mol Cell Endocrinol 2017; 453: 131-43.
[http://dx.doi.org/10.1016/j.mce.2017.05.035] [PMID: 28579120]
[120]
Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 2005; 29(1): 21-30.
[http://dx.doi.org/10.1016/j.jchemneu.2004.08.006] [PMID: 15589699]
[121]
Pardridge WM, Sakiyama R, Coty WA. Restricted transport of vitamin D and A derivatives through the rat blood-brain barrier. J Neurochem 1985; 44(4): 1138-41.
[http://dx.doi.org/10.1111/j.1471-4159.1985.tb08735.x] [PMID: 3838342]
[122]
Jiang X, Kiel DP, Kraft P. The genetics of vitamin D. Bone 2019; 126: 59-77.
[http://dx.doi.org/10.1016/j.bone.2018.10.006] [PMID: 30316967]
[123]
Bahrami A, Sadeghnia HR, Tabatabaeizadeh S-A, et al. Genetic and epigenetic factors influencing vitamin D status. J Cell Physiol 2018; 233(5): 4033-43.
[http://dx.doi.org/10.1002/jcp.26216] [PMID: 29030989]
[124]
Halicka HD, Zhao H, Li J, Traganos F, Studzinski GP, Darzynkiewicz Z. Attenuation of constitutive DNA damage signaling by 1,25-dihydroxyvitamin D3. Aging (Albany NY) 2012; 4(4): 270-8.
[http://dx.doi.org/10.18632/aging.100450] [PMID: 22498490]
[125]
Eyles D, Brown J, Mackay-Sim A, McGrath J, Feron F. Vitamin D3 and brain development. Neuroscience 2003; 118(3): 641-53.
[http://dx.doi.org/10.1016/S0306-4522(03)00040-X] [PMID: 12710973]
[126]
DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC. Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol 2013; 39(5): 458-84.
[http://dx.doi.org/10.1111/nan.12020] [PMID: 23336971]
[127]
Brown J, Bianco JI, McGrath JJ, Eyles DW. 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett 2003; 343(2): 139-43.
[http://dx.doi.org/10.1016/S0304-3940(03)00303-3] [PMID: 12759183]
[128]
Taniura H, Ito M, Sanada N, et al. Chronic vitamin D3 treatment protects against neurotoxicity by glutamate in association with upregulation of vitamin D receptor mRNA expression in cultured rat cortical neurons. J Neurosci Res 2006; 83(7): 1179-89.
[http://dx.doi.org/10.1002/jnr.20824] [PMID: 16521124]
[129]
Baksi SN, Hughes MJ. Chronic vitamin D deficiency in the weanling rat alters catecholamine metabolism in the cortex. Brain Res 1982; 242(2): 387-90.
[http://dx.doi.org/10.1016/0006-8993(82)90331-6] [PMID: 6288172]
[130]
Puchacz E, Stumpf WE, Stachowiak EK, Stachowiak MK. Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells. Brain Res Mol Brain Res 1996; 36(1): 193-6.
[http://dx.doi.org/10.1016/0169-328X(95)00314-I] [PMID: 9011759]
[131]
Brewer LD, Thibault V, Chen KC, Langub MC, Landfield PW, Porter NM. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 2001; 21(1): 98-108.
[http://dx.doi.org/10.1523/JNEUROSCI.21-01-00098.2001] [PMID: 11150325]
[132]
Brigelius-Flohé R. Vitamin E: the shrew waiting to be tamed. Free Radic Biol Med 2009; 46(5): 543-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.12.007] [PMID: 19133328]
[133]
Ambrogini P, Betti M, Galati C, et al. α-tocopherol and hippocampal neural plasticity in physiological and pathological conditions. Int J Mol Sci 2016; 17(12): 2107.
[http://dx.doi.org/10.3390/ijms17122107] [PMID: 27983697]
[134]
Tanyel MC, Mancano LD. Neurologic findings in vitamin E deficiency. Am Fam Physician 1997; 55(1): 197-201.
[PMID: 9012278]
[135]
Kłapcińska B, Derejczyk J, Wieczorowska-Tobis K, Sobczak A, Sadowska-Krepa E, Danch A. Antioxidant defense in centenarians (a preliminary study). Acta Biochim Pol 2000; 47(2): 281-92.
[http://dx.doi.org/10.18388/abp.2000_4008] [PMID: 11051193]
[136]
Ortega RM, Requejo AM, López-Sobaler AM, et al. Cognitive function in elderly people is influenced by vitamin E status. J Nutr 2002; 132(7): 2065-8.
[http://dx.doi.org/10.1093/jn/132.7.2065] [PMID: 12097694]
[137]
Boccardi V, Baroni M, Mangialasche F, Mecocci P. Vitamin E family: role in the pathogenesis and treatment of Alzheimer’s disease. Alzheimers Dement (N Y) 2016; 2(3): 182-91.
[http://dx.doi.org/10.1016/j.trci.2016.08.002] [PMID: 29067305]
[138]
Mangialasche F, Kivipelto M, Mecocci P, et al. High plasma levels of vitamin E forms and reduced Alzheimer’s disease risk in advanced age. J Alzheimers Dis 2010; 20(4): 1029-37.
[http://dx.doi.org/10.3233/JAD-2010-091450] [PMID: 20413888]
[139]
Mangialasche F, Xu W, Kivipelto M, et al. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol Aging 2012; 33(10): 2282-90.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.11.019] [PMID: 22192241]
[140]
Grimm MOW, Mett J, Hartmann T. The impact of vitamin E and other fat-soluble vitamins on alzheimer’s disease. Int J Mol Sci 2016; 17(11)
[http://dx.doi.org/10.3390/ijms17111785]
[141]
Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 2005; 352(23): 2379-88.
[http://dx.doi.org/10.1056/NEJMoa050151] [PMID: 15829527]
[142]
Borel P, Desmarchelier C. Genetic variations involved in vitamin E status. Int J Mol Sci 2016; 17(12): 2094.
[http://dx.doi.org/10.3390/ijms17122094] [PMID: 27983595]
[143]
Zingg J-M. Vitamin E: a role in signal transduction. Annu Rev Nutr 2015; 35: 135-73.
[http://dx.doi.org/10.1146/annurev-nutr-071714-034347] [PMID: 26185977]
[144]
Azzi A, Gysin R, Kempná P, et al. Vitamin E mediates cell signaling and regulation of gene expression. Ann N Y Acad Sci 2004; 1031: 86-95.
[http://dx.doi.org/10.1196/annals.1331.009] [PMID: 15753136]
[145]
Pereira I, Dessai SN, Pinto A. Vitamin E-induced changes in glutamate and GABA metabolizing enzymes of chick embryo cerebrum. ISRN Neurol 2013; 2013: 851235.
[http://dx.doi.org/10.1155/2013/851235] [PMID: 23984094]
[146]
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014; 11(1): 52.
[http://dx.doi.org/10.1186/1743-7075-11-52] [PMID: 25435896]
[147]
Gohil K, Schock BC, Chakraborty AA, et al. Gene expression profile of oxidant stress and neurodegeneration in transgenic mice deficient in alpha-tocopherol transfer protein. Free Radic Biol Med 2003; 35(11): 1343-54.
[http://dx.doi.org/10.1016/S0891-5849(03)00509-4] [PMID: 14642382]
[148]
Rota C, Rimbach G, Minihane A-M, Stoecklin E, Barella L. Dietary vitamin E modulates differential gene expression in the rat hippocampus: potential implications for its neuroprotective properties. Nutr Neurosci 2005; 8(1): 21-9.
[http://dx.doi.org/10.1080/10284150400027123] [PMID: 15909764]
[149]
Giraldo E, Lloret A, Fuchsberger T, Viña J. Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol 2014; 2: 873-7.
[http://dx.doi.org/10.1016/j.redox.2014.03.002] [PMID: 25061569]
[150]
McDougall MQ, Choi J, Stevens JF, Truong L, Tanguay RL, Traber MG. Lipidomics and H2(18)O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos. Redox Biol 2016; 8: 165-74.
[http://dx.doi.org/10.1016/j.redox.2016.01.004] [PMID: 26774753]
[151]
Boscoboinik D, Szewczyk A, Hensey C, Azzi A. Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C. J Biol Chem 1991; 266(10): 6188-94.
[PMID: 2007576]
[152]
Ricciarelli R, Tasinato A, Clément S, Ozer NK, Boscoboinik D, Azzi A. alpha-Tocopherol specifically inactivates cellular protein kinase C alpha by changing its phosphorylation state. Biochem J 1998; 334(Pt 1): 243-9.
[http://dx.doi.org/10.1042/bj3340243] [PMID: 9693126]
[153]
Voronkov M, Braithwaite SP, Stock JB. Phosphoprotein phosphatase 2A: a novel druggable target for Alzheimer’s disease. Future Med Chem 2011; 3(7): 821-33.
[http://dx.doi.org/10.4155/fmc.11.47] [PMID: 21644827]
[154]
La Fata G, Weber P, Mohajeri MH. Effects of vitamin E on cognitive performance during ageing and in Alzheimer’s disease. Nutrients 2014; 6(12): 5453-72.
[http://dx.doi.org/10.3390/nu6125453] [PMID: 25460513]
[155]
Coupland KG, Mellick GD, Silburn PA, et al. DNA methylation of the MAPT gene in Parkinson’s disease cohorts and modulation by vitamin E in vitro. Mov Disord 2014; 29(13): 1606-14.
[http://dx.doi.org/10.1002/mds.25784] [PMID: 24375821]
[156]
Adaikalakoteswari A, Finer S, Voyias PD, et al. Vitamin B12 insufficiency induces cholesterol biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR genes. Clin Epigenetics 2015; 7: 14.
[http://dx.doi.org/10.1186/s13148-015-0046-8] [PMID: 25763114]
[157]
Marcato P, Dean CA, Liu R-Z, et al. Aldehyde dehydrogenase 1A3 influences breast cancer progression via differential retinoic acid signaling. Mol Oncol 2015; 9(1): 17-31.
[http://dx.doi.org/10.1016/j.molonc.2014.07.010] [PMID: 25106087]
[158]
Ly A, Ishiguro L, Kim D, et al. Maternal folic acid supplementation modulates DNA methylation and gene expression in the rat offspring in a gestation period-dependent and organ-specific manner. J Nutr Biochem 2016; 33: 103-10.
[http://dx.doi.org/10.1016/j.jnutbio.2016.03.018] [PMID: 27152636]
[159]
Zhu H, Bhagatwala J, Huang Y, et al. Race/ethnicity-specific association of vitamin D and global DNA methylation: cross-sectional and interventional findings. PLoS One 2016; 11(4): e0152849.
[http://dx.doi.org/10.1371/journal.pone.0152849] [PMID: 27049643]
[160]
Wulansari N, Kim EH, Sulistio YA, Rhee YH, Song JJ, Lee SH. Vitamin C-induced epigenetic modifications in donor NSCs establish midbrain marker expressions critical for cell-based therapy in Parkinson’s disease. Stem Cell Reports 2017; 9(4): 1192-206.
[http://dx.doi.org/10.1016/j.stemcr.2017.08.017] [PMID: 28943252]
[161]
Fu B, Wang H, Wang J, et al. Epigenetic regulation of BMP2 by 1,25-dihydroxyvitamin D3 through DNA methylation and histone modification. PLoS One 2013; 8(4): e61423.
[http://dx.doi.org/10.1371/journal.pone.0061423] [PMID: 23620751]
[162]
Kumar P, Periyasamy R, Das S, Neerukonda S, Mani I, Pandey KN. All-trans retinoic acid and sodium butyrate enhance natriuretic peptide receptor a gene transcription: role of histone modification. Mol Pharmacol 2014; 85(6): 946-57.
[http://dx.doi.org/10.1124/mol.114.092221] [PMID: 24714214]
[163]
He XB, Kim M, Kim SY, et al. Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner. Stem Cells 2015; 33(4): 1320-32.
[http://dx.doi.org/10.1002/stem.1932] [PMID: 25535150]
[164]
Howe CG, Liu X, Hall MN, et al. Sex-specific associations between one-carbon metabolism indices and posttranslational histone modifications in arsenic-exposed Bangladeshi adults. Cancer Epidemiol Biomarkers Prev 2017; 26(2): 261-9.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0202] [PMID: 27765800]
[165]
Huang Y, Wu R, Su Z-Y, et al. A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27. J Nutr Biochem 2017; 40: 155-63.
[http://dx.doi.org/10.1016/j.jnutbio.2016.10.019] [PMID: 27889685]
[166]
Xie Q, Li C, Song X, et al. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription. Nucleic Acids Res 2017; 45(5): 2472-89.
[http://dx.doi.org/10.1093/nar/gkw1208] [PMID: 27924000]
[167]
Zitman-Gal T, Green J, Pasmanik-Chor M, Golan E, Bernheim J, Benchetrit S. Vitamin D manipulates miR-181c, miR-20b and miR-15a in human umbilical vein endothelial cells exposed to a diabetic-like environment. Cardiovasc Diabetol 2014; 13: 8.
[http://dx.doi.org/10.1186/1475-2840-13-8] [PMID: 24397367]
[168]
Kim SM, Lim SM, Yoo JA, Woo MJ, Cho KH. Consumption of high-dose vitamin C (1250 mg per day) enhances functional and structural properties of serum lipoprotein to improve anti-oxidant, anti-atherosclerotic, and anti-aging effects via regulation of anti-inflammatory microRNA. Food Funct 2015; 6(11): 3604-12.
[http://dx.doi.org/10.1039/C5FO00738K] [PMID: 26333284]
[169]
Liu H, Tian T, Qin S, et al. Folic acid deficiency enhances abeta accumulation in APP/PS1 mice brain and decreases amyloid-associated miRNAs expression. J Nutr Biochem 2015; 26(12): 1502-8.
[http://dx.doi.org/10.1016/j.jnutbio.2015.07.020] [PMID: 26345540]
[170]
Takizawa T, Nakashima K, Namihira M, et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 2001; 1(6): 749-58.
[http://dx.doi.org/10.1016/S1534-5807(01)00101-0] [PMID: 11740937]
[171]
Levenson JM, Roth TL, Lubin FD, et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 2006; 281(23): 15763-73.
[http://dx.doi.org/10.1074/jbc.M511767200] [PMID: 16606618]
[172]
Day JJ, Sweatt JD. Epigenetic mechanisms in cognition. Neuron 2011; 70(5): 813-29.
[http://dx.doi.org/10.1016/j.neuron.2011.05.019] [PMID: 21658577]
[173]
Hendren RL, James SJ, Widjaja F, Lawton B, Rosenblatt A, Bent S. Randomized, placebo-controlled trial of methyl B12 for children with autism. J Child Adolesc Psychopharmacol 2016; 26(9): 774-83.
[http://dx.doi.org/10.1089/cap.2015.0159] [PMID: 26889605]
[174]
James SJ, Melnyk S, Fuchs G, et al. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr 2009; 89(1): 425-30.
[http://dx.doi.org/10.3945/ajcn.2008.26615] [PMID: 19056591]
[175]
Adams JB, Audhya T, McDonough-Means S, et al. Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr 2011; 11: 111.
[http://dx.doi.org/10.1186/1471-2431-11-111] [PMID: 22151477]
[176]
Blehaut H, Mircher C, Ravel A, et al. Effect of leucovorin (folinic acid) on the developmental quotient of children with Down’s syndrome (trisomy 21) and influence of thyroid status. PLoS One 2010; 5(1): e8394.
[http://dx.doi.org/10.1371/journal.pone.0008394] [PMID: 20084109]
[177]
Mircher C, Sacco S, Bouis C, et al. Thyroid hormone and folinic acid in young children with Down syndrome: the phase 3 ACTHYF trial. Genet Med 2020; 22(1): 44-52.
[http://dx.doi.org/10.1038/s41436-019-0597-8] [PMID: 31281181]
[178]
Bird LM, Tan W-H, Bacino CA, et al. A therapeutic trial of pro-methylation dietary supplements in Angelman syndrome. Am J Med Genet A 2011; 155A(12): 2956-63.
[http://dx.doi.org/10.1002/ajmg.a.34297] [PMID: 22002941]
[179]
Ellis JM, Tan HK, Gilbert RE, et al. Supplementation with antioxidants and folinic acid for children with Down’s syndrome: randomised controlled trial. BMJ 2008; 336(7644): 594-7.
[http://dx.doi.org/10.1136/bmj.39465.544028.AE] [PMID: 18296460]
[180]
Dysken MW, Sano M, Asthana S, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA 2014; 311(1): 33-44.
[http://dx.doi.org/10.1001/jama.2013.282834] [PMID: 24381967]
[181]
Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 1997; 336(17): 1216-22.
[http://dx.doi.org/10.1056/NEJM199704243361704] [PMID: 9110909]
[182]
Kryscio RJ, Abner EL, Caban-Holt A, et al. Association of antioxidant supplement use and dementia in the prevention of Alzheimer’s Disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol 2017; 74(5): 567-73.
[http://dx.doi.org/10.1001/jamaneurol.2016.5778] [PMID: 28319243]
[183]
Remington R, Bechtel C, Larsen D, et al. maintenance of cognitive performance and mood for individuals with Alzheimer’s disease following consumption of a nutraceutical formulation: a one-year, open-label study. J Alzheimers Dis 2016; 51(4): 991-5.
[http://dx.doi.org/10.3233/JAD-151098] [PMID: 26967219]
[184]
Aisen PS, Schneider LS, Sano M, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA 2008; 300(15): 1774-83.
[http://dx.doi.org/10.1001/jama.300.15.1774] [PMID: 18854539]
[185]
Hiller AL, Murchison CF, Lobb BM, O’Connor S, O’Connor M, Quinn JF. A randomized, controlled pilot study of the effects of vitamin D supplementation on balance in Parkinson’s disease: Does age matter? PLoS One 2018; 13(9): e0203637.
[http://dx.doi.org/10.1371/journal.pone.0203637] [PMID: 30256811]
[186]
Kwok T, Lee J, Ma RC, et al. A randomized placebo controlled trial of vitamin B12 supplementation to prevent cognitive decline in older diabetic people with borderline low serum vitamin B12. Clin Nutr 2017; 36(6): 1509-15.
[http://dx.doi.org/10.1016/j.clnu.2016.10.018] [PMID: 27823800]
[187]
Hor CP, Fung WY, Ang HA, et al. Efficacy of oral mixed tocotrienols in diabetic peripheral neuropathy: a randomized clinical trial. JAMA Neurol 2018; 75(4): 444-52.
[http://dx.doi.org/10.1001/jamaneurol.2017.4609] [PMID: 29379943]
[188]
Walker JG, Batterham PJ, Mackinnon AJ, et al. Oral folic acid and vitamin B-12 supplementation to prevent cognitive decline in community-dwelling older adults with depressive symptoms--the Beyond Ageing Project: a randomized controlled trial. Am J Clin Nutr 2012; 95(1): 194-203.
[http://dx.doi.org/10.3945/ajcn.110.007799] [PMID: 22170358]
[189]
Walker JG, Mackinnon AJ, Batterham P, et al. Mental health literacy, folic acid and vitamin B12, and physical activity for the prevention of depression in older adults: randomised controlled trial. Br J Psychiatry 2010; 197(1): 45-54.
[http://dx.doi.org/10.1192/bjp.bp.109.075291] [PMID: 20592433]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy