Generic placeholder image

Current Nanotoxicity and Prevention (Discontinued)

Editor-in-Chief

ISSN (Print): 2665-9808
ISSN (Online): 2665-9816

Review Article

Nanofillers for Food Packaging: Antimicrobial Potential of Metal-based Nanoparticles

Author(s): Maricica Stoica* and Dimitrie Stoica

Volume 1, Issue 1, 2021

Published on: 09 July, 2020

Page: [44 - 66] Pages: 23

DOI: 10.2174/2665980801999200709172848

Open Access Journals Promotions 2
Abstract

Background: Recently, numerous studies on the packaging of nanomaterials for foods underline the significant function of nanofillers in the manufacturing of innovative nanocomposites based on polymer or biopolymer matrices. It is evident in the literature that nanofillers exhibit effective characteristics such as antimicrobial potential, barrier, mechanical, and thermal properties. However, the exact mechanisms regulating the occurrence of the antimicrobial activity of nanofillers are only hypothesized, with the literature containing controversies regarding the mechanisms of nanofiller-induced toxicity.

Objective: The objective of this review is to highlight several types of nanofillers, especially inorganic nanofillers that can be used along with different polymers or biopolymers to form innovative food packaging materials. The antimicrobial potential of metal-based nanofillers is also discussed in the second part of the review.

Results: Even though numerous reports on polymer or biopolymer nanomaterial applications in food packaging are available, the purpose described in those reviews has not been aimed in this article, as a smaller number of reviews have approached food packaging nanomaterials in the way as done in this review article.

Conclusion: It is expected that the information contained in this paper will complement previous reports, and open new vistas for explorers to apply nanofillers in the functional food packaging area.

Keywords: Innovative food packaging, nanofillers, reinforcing, metal-based nanofillers, antimicrobials, reactive oxygen species.

Graphical Abstract
[1]
Duncan TV, Pillai K. Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl Mater Interfaces 2015; 7(1): 2-19.
[http://dx.doi.org/10.1021/am5062745] [PMID: 25485689]
[2]
Hemavathi AB, Siddaramaiah H. Food Packaging: Polimers as packaging Materials in Food Supply ChainsEncyclopedia of Polymer Applications. Boca Raton: CRC Press 2018; pp. 1374-97.
[3]
Huang Y, Mei L, Chen X, Wang Q. Recent Developments in Food Packaging Based on Nanomaterials. Nanomaterials (Basel) 2018; 8(10): 830.
[http://dx.doi.org/10.3390/nano8100830] [PMID: 30322162]
[4]
Karmaus AL, Osborn R, Krishan M. Scientific advances and challenges in safety evaluation of food packaging materials: Workshop proceedings. Regul Toxicol Pharm. 98: 80-87.
[5]
Lago MA, Sendón R, Rodríguez-Bernaldo de Quirós A. Analytical methods for determining photoinitiators in food-contact materials. RSC Smart Materials 2015; 13: 290-0.
[6]
Lago MA, Sendón R, Rodríguez-Bernaldo de Quirós A, et al. Preparation and characterization of antimicrobial films based on chitosan for active food packaging applications. Food Bioprocess Technol 2014; 7(10): 2932-41.
[http://dx.doi.org/10.1007/s11947-014-1276-z]
[7]
Lago MA, Rodríguez-Bernaldo de Quirós A, Sendón R, Bustos J, Nieto MT, Paseiro P. Photoinitiators: a food safety review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32(5): 779-98.
[PMID: 25654751]
[8]
Ojha A, Sharma A, Sihang M, Ojha S. Food packaging - materials and sustainability-A review. Agric Rev (Karnal) 2015; 36(3): 241-5.
[http://dx.doi.org/10.5958/0976-0741.2015.00028.8]
[9]
Sanches-Silva A, Ribeiro T, Albuquerque TG, et al. Ultra-high pressure LC for astaxanthin determination in shrimp by-products and active food packaging. Biomed Chromatogr 2013; 27(6): 757-64.
[http://dx.doi.org/10.1002/bmc.2856] [PMID: 23225623]
[10]
Wohner B, Pauer E, Heinrich V, Tacker M. Packaging-Related Food Losses and Waste: An Overview of Drivers and Issues. Sustainability 2019; 11(1): 264.
[http://dx.doi.org/10.3390/su11010264]
[11]
Yin HY, Tsai WC. Advances of Nanomaterials for Food ProcessingHandbook of Food Chemistry. NY: Springer Berlin Heidelberg 2015; pp. 1137-59.
[http://dx.doi.org/10.1007/978-3-642-36605-5_27]
[12]
Boarca B, Lungu I, Holban AM. Bioactive packaging for modern beverage industry. Trends in Beverage Packaging, 1st ed. Duxford: Woodhead Publishing 2019; pp. 51-71.
[http://dx.doi.org/10.1016/B978-0-12-816683-3.00003-7]
[13]
Borah H, Dutta U. Trends in Beverage Packaging. Trends in Beverage Packaging, 1st ed. Duxford: Woodhead Publishing 2019; pp. 1-19.
[http://dx.doi.org/10.1016/B978-0-12-816683-3.00001-3]
[14]
Gheorghe I, Anastasiu P, Mihaescu G, Ditu LM. Advanced biodegradable materials for water and beverages packaging. Bottled and Packaged Water, 1st ed. Duxford: Woodhead Publishing 2019; pp. 227-240.
[http://dx.doi.org/10.1016/B978-0-12-815272-0.00009-X]
[15]
Ghoashal G. Recent development in beverage packaging material and its adaptation strategy 2019. Trends in Beverage Packaging. Trends in Beverage Packaging, 1st ed. Duxford: Woodhead Publishing 2019; pp. 21-50.
[http://dx.doi.org/10.1016/B978-0-12-816683-3.00002-5]
[16]
Rhim JW, Kim YT. Biopolymer-Based Composite Packaging Materials with NanoparticlesInnovations in Food Packaging. 2nd ed. San Diego: Elsevier 2014; pp. 413-42.
[http://dx.doi.org/10.1016/B978-0-12-394601-0.00017-5]
[17]
Bumbudsanpharoke N, Ko S. Nanoclays in Food and Beverage Packaging. J Nanomater 2019; 1-13.
[http://dx.doi.org/10.1155/2019/8927167]
[18]
Filimon V, Borda D, Alexe P, Stoica M. Study of PATP impact on food packaging materials. Mater Plast 2016; 53(1): 48-1.
[19]
Filimon V, Borda D, Gurău G, Butan S, Alexe P, Stoica M. Study on the changes induced by the Pressure-Assisted Thermal Processing (PATP) in polymer films used as packaging by the meat industry. IOP Conf Ser: Mater Sci Eng 2019; 485.. https://iopscience.iop.org/article/10.1088/1757-899X/485/1/012007 Available from:
[20]
Filimon V, Stoica M, Alexe P, Borda D. Microstructural changes of some multilayer polymer films applied in PATP food treatment. J Agroaliment Proc Technol 2013; 19(1): 79-2.
[21]
Filimon V, Stoica M, Borda D, Alexe P. Evaluation of PATP impact on aesthetic qualities of food packaging materials. Glob J Res Anal 2013; 2(7): 59-0.
[22]
Stoica M, Borda D. Flexible Packaging Structures for High-Pressure Thermal Processing (HPTP)Reference Module in Food Science. Melbourne: Elsevier 2017; pp. 1-8.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.21415-7]
[23]
Stoica M, Dima CV, Alexe P. Eco-friendly nanocomposites from bacterial cellulose and biopolyesters as a sustainable alternative for food plastic packaging.Food packaging and preservation techniques applications and technology Nova science publisher. New York 2018; pp. 113-28..
[24]
Abdullah ZW, Dong Y. .Biodegradable and Water Resistant Poly( vinyl) Alcohol (PVA)/Starch (ST)/Glycerol (GL)/Halloysite Nanotube (HNT) Nanocomposite Films for Sustainable Food Packaging. Front Mater 2019; 6: 58.. https://www.frontiersin.org/articles/10.3389/fmats.2019.00058/abstract Available from:
[26]
Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew Chem Int Ed Engl 2019; 58(1): 50-62.
[http://dx.doi.org/10.1002/anie.201805766] [PMID: 29972726]
[27]
Othman SH. Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agric Agric Sci Procedia 2014; 2: 296-3.
[http://dx.doi.org/10.1016/j.aaspro.2014.11.042]
[28]
Díez-Pascual AM. Synthesis and Applications of Biopolymer Composites. Int J Mol Sci 2019; 20(9): 2321.
[http://dx.doi.org/10.3390/ijms20092321] [PMID: 31083389]
[29]
Yadav A, Mangaraj S, Singh R, Kumar Das S, Kumar MN, Arora S. Biopolymers as packaging material in food and allied industry. Int J Chem Stud 2018; 6(2): 2411-8.
[30]
Colica C, Aiello V, Boccuto L, et al. The role of nanotechnology in food safety. Minerva Biotecnol 2018; 30(2): 69-3.
[31]
Rhim JW. Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carb Polym 2011; 86(2): 691-9.
[http://dx.doi.org/10.1016/j.carbpol.2011.05.010]
[32]
Saleh TA, Parthasarathy P, Irfan M. Advanced functional polymer nanocomposites and their use in water ultra-purification. Trends Environ Anal 2019; 24e00067
[http://dx.doi.org/10.1016/j.teac.2019.e00067]
[33]
Tamayo L, Azócar M, Kogan M, Riveros A, Páez M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C 2016; 69: 1391-409.
[http://dx.doi.org/10.1016/j.msec.2016.08.041] [PMID: 27612841]
[34]
Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Yao Wu Shi Pin Fen Xi 2014; 22(1): 64-75.
[http://dx.doi.org/10.1016/j.jfda.2014.01.005] [PMID: 24673904]
[35]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[36]
Jokar M, Pedersen GA, Loeschner K. Six open questions about the migration of engineered nano-objects from polymer-based food-contact materials: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34(3): 434-50.
[http://dx.doi.org/10.1080/19440049.2016.1271462] [PMID: 27998244]
[37]
Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013.2013942916
[http://dx.doi.org/10.1155/2013/942916] [PMID: 24027766]
[38]
Oyarzun-Ampuero F, Guerrero A, Hassan-Lopez N, et al. Organic and Inorganic Nanoparticles for Prevention and Diagnosis of Gastric Cancer. Curr Pharm Des 2015; 21(29): 4145-54.
[http://dx.doi.org/10.2174/1381612821666150901095538] [PMID: 26323433]
[39]
Artiaga G, Ramos K, Ramos L, Cámara C, Gómez-Gómez M. Migration and characterisation of nanosilver from food containers by AF4-ICP-MS. Food Chem 2015; 166: 76-85.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.139] [PMID: 25053031]
[40]
Bott J, Störmer A, Franz R. A model study into the migration potential of nanoparticles from plastics nanocomposites for food contact. Food Packag Shelf Life 2014; 2(2): 73-0.
[http://dx.doi.org/10.1016/j.fpsl.2014.08.001]
[41]
Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. J Agric Food Chem 2014; 62(6): 1403-11.
[http://dx.doi.org/10.1021/jf404038y] [PMID: 24450547]
[42]
Echegoyen Y, Rodríguez S, Nerín C. Nanoclay migration from food packaging materials. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33(3): 530-9.
[http://dx.doi.org/10.1080/19440049.2015.1136844] [PMID: 26751017]
[43]
Ekielski E. Interactions Between Food Ingredients and Nanocomponents Used for Composite PackagingReference Module in Food Science. Elsevier 2019; pp. 669-74.
[44]
Emamifar A. Applications of antimicrobial polymer nanocomposites in food packaging.Advances in Nanocomposite Technology In- TechOpen. Rijeka 2011; pp. 299-318..
[http://dx.doi.org/10.5772/18343]
[45]
Farhoodi M, Mousavi SM, Sotudeh-Gharebagh R, Emam-Djomeh Z, Oromiehie A. Migration of aluminum and silicon from PET/clay nanocomposite bottles into acidic food simulant. Packag Technol Sci 2014; 27(2): 161-8.
[http://dx.doi.org/10.1002/pts.2017]
[46]
Garcia CV, Shin GH, Kim JT. Metal oxide-based nanocomposites in food packaging: applications, migration, and regulations. Trends Food Sci Technol 2018; 82: 21-1.
[http://dx.doi.org/10.1016/j.tifs.2018.09.021]
[47]
Huang Y, Chen S, Bing X, Gao C, Wang T, Yuan B. Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packag Technol Sci 2011; 24(5): 291-7.
[http://dx.doi.org/10.1002/pts.938]
[48]
Huang JY, Chieng YY, Li X, Zhou W. Experimental and mathematical assessment of migration from multilayer food packaging containing a novel clay/polymer nanocomposite. Food Bioprocess Technol 2015; 8(2): 382-3.
[http://dx.doi.org/10.1007/s11947-014-1408-5]
[49]
Huang JY, Li X, Zhou W. Safety assessment of nanocomposite for food packaging application. Trends Food Sci Technol 2015; 45(2): 187-9.
[http://dx.doi.org/10.1016/j.tifs.2015.07.002]
[50]
Metak AM, Nabhani F, Connolly SN. Migration of engineered nanoparticles from packaging into food products. Lebensm Wiss Technol 2015; 64(2): 781-7.
[http://dx.doi.org/10.1016/j.lwt.2015.06.001]
[51]
Ozaki A, Kishi E, Ooshima T, Hase A, Kawamura Y. Contents of Ag and other metals in food-contact plastics with nanosilver or Ag ion and their migration into food simulants. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33(9): 1490-8.
[http://dx.doi.org/10.1080/19440049.2016.1217067] [PMID: 27484099]
[52]
Song H, Li B, Lin QB, Wu HJ, Chen Y. Migration of silver from nanosilver-polyethylene composite packaging into food simulants. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28(12): 1758-62.
[http://dx.doi.org/10.1080/19440049.2011.603705] [PMID: 21985020]
[53]
Stormer A, Bott J, Kemmer D, Franz R. Critical review of the migration potential of nanoparticles in food contact plastics. Trends Food Sci Technol 2017; 63: 39-0.
[http://dx.doi.org/10.1016/j.tifs.2017.01.011]
[54]
Vlastou E, Gazouli M, Ploussi A, Platoni K, Efstathopoulos EP. Nanoparticles: nanotoxicity aspects. IOP Conf Series. Journal of Physics: Conf Series 931 2017 https://iopscience.iop.org/article/10.1088/1742-6596/931/1/012020/pdf [Available from
[http://dx.doi.org/10.1088/1742-6596/931/1/012020]
[55]
von Goetz N, Fabricius L, Glaus R, Weitbrecht V, Günther D, Hungerbühler K. Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30(3): 612-20.
[http://dx.doi.org/10.1080/19440049.2012.762693] [PMID: 23406534]
[56]
Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 2016; 7: 1831.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110546/
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[57]
Chen H, Zhou K, Zhao G. Gold nanoparticles: From synthesis, properties to their potential application as colorimetric sensors in food safety screening. Trends Food Sci Technol 2018; 78: 83-4.
[http://dx.doi.org/10.1016/j.tifs.2018.05.027]
[58]
Vilela C, Kurek M, Hayouka Z, et al. A concise guide to active agents for active food packaging. Trends Food Sci Technol 2018; 80: 212.
[http://dx.doi.org/10.1016/j.tifs.2018.08.006]
[59]
Almasi H, Jafarzadeh P, Mehryar L. Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties. Carbohydr Polym 2018; 186: 273-81.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.067] [PMID: 29455988]
[60]
Beigmohammadi F, Peighambardoust SH, Hesari J, Azadmard-Damirchi S, Peighambardoust SJ, Khosrowshahi NK. Antibacterial properties of LDPE nanocomposite films in packaging of UF cheese. Lebensm Wiss Technol 2016; 65: 106.
[http://dx.doi.org/10.1016/j.lwt.2015.07.059]
[61]
Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Sciences 2019; 1: 607.
[http://dx.doi.org/10.1007/s42452-019-0592-3]
[62]
Ciabocco M, Cancemi P, Saladino ML, Caponetti E, Alduina R, Berrettoni M. Synthesis and antibacterial activity of iron-hexacyanocobaltate nanoparticles. J Biol Inorg Chem 2018; 23(3): 385-98.
[http://dx.doi.org/10.1007/s00775-018-1544-x] [PMID: 29478176]
[63]
Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals (Basel) 2016; 9(4): 75.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198050/
[http://dx.doi.org/10.3390/ph9040075] [PMID: 27916867]
[64]
Shariatinia Z, Fazli M. Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocoll 2015; 46: 112-4.
[http://dx.doi.org/10.1016/j.foodhyd.2014.12.026]
[65]
Swaroop C, Shukla M. Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. Int J Biol Macromol 2018; 113: 729-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.156] [PMID: 29499267]
[66]
Petronella F, Truppi A, Dell’Edera M, Agostiano A, Curri ML, Comparelli R. Scalable Synthesis of Mesoporous TiO2 for Environmental Photocatalytic Applications. Materials (Basel) 2019; 12(11): 1853.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601002/
[http://dx.doi.org/10.3390/ma12111853] [PMID: 31181637]
[67]
Sathyanarayanan MB, Balachandranath R, Genji Srinivasulu Y, Kannaiyan SK, Subbiahdoss G. The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens ISRN Microbiol2013; 2013272086. https://www.ncbi.nlm.nih.gov/pubmed/24187645
[http://dx.doi.org/10.1155/2013/272086] [PMID: 24187645]
[68]
Nenavathu BP, Sharma A, Dutta RJ. Se doped ZnO nanoparticles with improved catalytic activity in degradation of Cholesterol. J Water Environ Nanotechnol 2018; 3(4): 289-00.
[69]
Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 2018; 8(1): 2082.https://www.nature.com/articles/s41598-018-19628-z
[http://dx.doi.org/10.1038/s41598-018-19628-z] [PMID: 29391477]
[70]
Gabrielyan L, Hovhannisyan A, Gevorgyan V, Ananyan M, Trchounian A. Antibacterial effects of iron oxide (Fe3O4) nanoparticles: distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms. Appl Microbiol Biotechnol 2019; 103(6): 2773-82.
[http://dx.doi.org/10.1007/s00253-019-09653-x] [PMID: 30706116]
[71]
Mittag A, Schneider T, Westermann M, Glei M. Toxicological assessment of magnesium oxide nanoparticles in HT29 intestinal cells. Arch Toxicol 2019; 93(6): 1491-500.
[http://dx.doi.org/10.1007/s00204-019-02451-4] [PMID: 30989313]
[72]
Patil RM, Thorat ND, Shete PB, et al. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem Biophys Rep 2018; 13: 63-72.
[http://dx.doi.org/10.1016/j.bbrep.2017.12.002] [PMID: 29349357]
[73]
Ramírez L. Magnetite (Fe3O4) nanoparticles: Are they really safe? La Granja. Rev Cienc Vida 2015; 21(1): 77-3.
[74]
Ma P, Luo Q, Chen J, et al. Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine 2012; 7: 4809-18.
[PMID: 22973100]
[75]
Vasile C. Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review. Materials (Basel) 2018; 11(10): 1834.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213312/
[http://dx.doi.org/10.3390/ma11101834] [PMID: 30261658]
[76]
Azeredo HMC. Antimicrobial nanostructures in food packaging Trends Food Scie Tech 2013; 30: 56-9.; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213312/Available from:.
[http://dx.doi.org/10.1016/j.tifs.2012.11.006]
[77]
Pradhan N, Singh S, Ojha N, et al. Facets of Nanotechnology as Seen in Food Processing, Packaging, and Preservation Industry. BioMed Res Int 2015.2015365672
[http://dx.doi.org/10.1155/2015/365672] [PMID: 26613082]
[78]
Nerín C, Aznar M, Carrizo D. Food contamination during food process. Trends Food Sci Technol 2016; 48: 63-8.
[http://dx.doi.org/10.1016/j.tifs.2015.12.004]
[79]
Silvestre C, Duraccio D, Cimmino S. Food packaging based on polymer nanomaterials. Prog Polym Sci 2011; 36(12): 1766-82.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.003]
[80]
Frounchi M, Dourbash A. Oxygen barrier properties of poly (ethylene terephthalate) nanocomposite films. Macromol Mater Eng 2009; 294(1): 68-4.
[http://dx.doi.org/10.1002/mame.200800238]
[81]
Bach C, Dauchy X, Chagnon MC, Etienne S. Chemical migration in drinking water stored in polyethylene terephthalate (PET) bottles: a source of controversy. Water Res 2012; 46(3): 571-3.
[http://dx.doi.org/10.1016/j.watres.2011.11.062] [PMID: 22196043]
[82]
Joo M, Lewandowski N, Auras R, Harte J, Almenar E. Comparative shelf life study of blackberry fruit in bio-based and petroleum-based containers under retail storage conditions. Food Chem 2011; 126(4): 1734-40.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.071] [PMID: 25213952]
[83]
Zare Y. Recent progress on preparation and properties of nanocomposites from recycled polymers: a review. Waste Manag 2013; 33(3): 598-604.
[http://dx.doi.org/10.1016/j.wasman.2012.07.031] [PMID: 22951496]
[84]
Meena PL, Vinay Goel A, Rai V, Rao SE, Barwa MS. Packaging material and need of biodegradable polymers: A review. Int J Appl Res 2017; 3(7): 886-6.
[85]
Vaireanu DI, Cojocaru A, Maior I, Ciobotaru IA. Food Packaging Interactions in Metal CansReference Module in Food Science. Elsevier 2018.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.22398-6]
[86]
de Oliveira AD, Beatrice CAG. Polymer Nanocomposites with Different Types of NanofillerNanocomposites - Recent Evolutions. London: IntechOpen 2019; pp. 103-28.
[http://dx.doi.org/10.5772/intechopen.81329]
[87]
Abdul Khalil HPS, Tye YY, Leh CP. Cellulose Reinforced Biodegradable Polymer Composite Film for Packaging ApplicationsBionanocomposites for Packaging Applications Odisha. Springer International Publishing 2018; pp. 49-69.
[http://dx.doi.org/10.1007/978-3-319-67319-6_3]
[88]
Ferreira ARV, Alves VD, Coelhoso IM. Polysaccharide-Based Membranes in Food Packaging Applications. Membranes (Basel) 2016; 6(2): 22.https://www.ncbi.nlm.nih.gov/pubmed/27089372
[http://dx.doi.org/10.3390/membranes6020022] [PMID: 27089372]
[89]
Jose AJ, Alagar M. Nanotechnology for smart and inteligent food packagingBiopolymers and Biomaterials. 1st ed. Toronto: Apple Academic Press 2018; pp. 329-48.
[90]
Shivam P. Recent Developments on biodegradable polymers and their future trends. International Research Journal of Science and Engineering 2016; 4(1): 17-6.
[91]
Rhim JW, Park HM, Ha CS. Bio-Nanocomposites for Food Packaging Applications. Prog Polym Sci 2013; 38(10-11): 1629-52.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008]
[92]
Barrett A. This Completely Biodegradable Single-Use Water Bottle Could Change the Game [Online] ; 2019.https://bioplasticsnews.com/2019/02/14/this-completely-biodegradable-single-use-water-bottle-could-change-the-game/[cited 2019].Available at:.
[93]
Khosravi-Darani K, Bucci DZ. Application of poly(hydroxy-alkanoate) in food packaging: improvements by nanotechnology. Chem Biochem Eng Q 2015; 29(2): 275-5.
[http://dx.doi.org/10.15255/CABEQ.2014.2260]
[94]
Koller M. Poly(hydroxyalkanoates) for Food Packaging: Application and Attempts towards Implementation. Appl Food Biotechnol 2014; 1(1): 1-13.
[95]
Arrieta MP, Samper MD, Aldas M, López J. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials (Basel) 2017; 10(9): 1008.https://www.ncbi.nlm.nih.gov/pubmed/28850102
[http://dx.doi.org/10.3390/ma10091008] [PMID: 28850102]
[96]
Markl E, Grünbichler H, Lackner M. PHB - Bio Based and Biodegradable Replacement for PP: A Review. Novel Tech Nutr Food Sci 2018; 2(4): 206-9.
[http://dx.doi.org/10.31031/NTNF.2018.02.000546]
[97]
Sangroniz A, Gonzalez A, Iriarte M, Sarasua JR, del Río J, Etxeberria A. Tributyl citrate as an effective plasticizer for biodegradable polymers: effect of plasticizer on free volume and transport and mechanical properties. Polym Int 2019; 68(1): 125-3.
[http://dx.doi.org/10.1002/pi.5705]
[98]
Flores-Sánchez A. del Rocío López-Cuellar Ma, Pérez-Guevara F, López UF, Martín-Bufájer JM, Vergara-Porras B. Synthesis of Poly-(R-hydroxyalkanoates) by Cupriavidus necator ATCC 17699 Using Mexican Avocado (Persea americana) Oil as a Carbon Source. Int J Polym Sci 2017; (3): 1-10.
[http://dx.doi.org/10.1155/2017/6942950]
[99]
Rivera-Briso AL, Serrano-Aroca Á. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers (Basel) 2018; 10(7): 732.
[http://dx.doi.org/10.3390/polym10070732] [PMID: 30960657]
[100]
Fornabaios L, Poto MP, Fornabaio M, Sordo F. Law and science make a common effort to enact a zero waste strategy for beverages Duxford. Woodhead Publishing 2018; pp. 495-516.
[101]
Kumar N, Kaur P, Bhatia S. Advances in bio-nanocomposite materials for food packaging: a review. Food Sci Nutr 2017; 47(4)https://www.emerald.com/insight/content/doi/10.1108/NFS-11-2016-0176/full/html
[102]
Tawakkal ISMA, Cran MJ, Miltz J, Bigger SW. A review of poly(lactic acid)-based materials for antimicrobial packaging. J Food Sci 2014; 79(8): R1477-90.https://www.ncbi.nlm.nih.gov/pubmed/25039867
[http://dx.doi.org/10.1111/1750-3841.12534] [PMID: 25039867]
[103]
Therias S, Murariu M, Dubois P. Bionanocomposites based on PLA and halloysite nanotubes: From key properties to photooxidative degradation. Polym Degrad Stabil 2017; 145: 60-9.
[http://dx.doi.org/10.1016/j.polymdegradstab.2017.06.008]
[104]
Ghasemi S, Behrooz R, Ghasemi I, Yassar RS, Long F. Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA). J Thermoplast Compos Mater 2018; 31(8)
[http://dx.doi.org/10.1177/0892705717734600]
[105]
Mishra RK, Ha SK, Verma K, Tiwari SK. Recent progress in selected bio-nanomaterials and their engineering applications: An overview. Journal of Science: Advanced Materials and Devices 2018; 3(3): 263-8.
[106]
Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G. Nanocellulose: Extraction and application. Carbon Resour Convers 2018; 1(1): 32-3.
[http://dx.doi.org/10.1016/j.crcon.2018.05.004]
[107]
Mishra S, Kharkar PS, Pethe AM. Biomass and waste materials as potential sources of nanocrystalline cellulose: Comparative review of preparation methods (2016 - Till date). Carbohydr Polym 2019; 207: 418-27.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.004] [PMID: 30600024]
[108]
Abol-Fotouh D, Hassan MA, Shokry H, Roig A, Azab MS, Kashyout AEB. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci Rep 2020; 10(1): 3491.
[http://dx.doi.org/10.1038/s41598-020-60315-9] [PMID: 32103077]
[109]
Oun AA, Rhim JW. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydr Polym 2016; 150: 187-200.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.020] [PMID: 27312629]
[110]
Niamsap T, Lam NT, Sukyai P. Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals. Carbohydr Polym 2019; 205: 159-66.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.034] [PMID: 30446091]
[111]
Gutiérrez TJ, Toro-Márquez LA, Merino D, Mendieta JR. Hydrogen-bonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract. Food Hydrocoll 2019; 89: 283-93.
[http://dx.doi.org/10.1016/j.foodhyd.2018.10.058]
[112]
Guo F, Aryana S, Han Y, Jiao Y. Review of the Synthesis and Applications of Polymer-Nanoclay Composites. Appl Sci (Basel) 2018; 8(9): 1696.
[http://dx.doi.org/10.3390/app8091696]
[113]
Tan B, Thomas NL. A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. J Membr Sci 2016; 514: 595-2.
[http://dx.doi.org/10.1016/j.memsci.2016.05.026]
[114]
Sharma H, Kumar K, Choudhary C, Mishra PK, Vaidya B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif Cells Nanomed Biotechnol 2016; 44(2): 672-9.
[http://dx.doi.org/10.3109/21691401.2014.978980] [PMID: 25406734]
[115]
Penders J, Stolzoff M, Hickey DJ, Andersson M, Webster TJ. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int J Nanomedicine 2017; 12: 2457-68.
[http://dx.doi.org/10.2147/IJN.S124442] [PMID: 28408817]
[116]
Tao C. Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects. Lett Appl Microbiol 2018; 67(6): 537-43.
[http://dx.doi.org/10.1111/lam.13082] [PMID: 30269338]
[117]
Hoseinnejad M, Jafari SM, Katouzian I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 2018; 44(2): 161-81.
[http://dx.doi.org/10.1080/1040841X.2017.1332001] [PMID: 28578640]
[118]
Pagno CH, Costa TMH, de Menezes EW, et al. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chem 2015; 173: 755-62.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.068] [PMID: 25466086]
[119]
Syed B, Prasad NMN, Satish S. Endogenic mediated synthesis of gold nanoparticles bearing bactericidal activity. J Microsc Ultrastruct 2016; 4(3): 162-6.
[http://dx.doi.org/10.1016/j.jmau.2016.01.004] [PMID: 30023223]
[120]
Zhang Y, Shareena Dasari TP, Deng H, Yu H. Antimicrobial activity of gold nanoparticles and ionic gold. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2015; 33(3): 286-327.
[http://dx.doi.org/10.1080/10590501.2015.1055161] [PMID: 26072980]
[121]
Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep 2016; 6: 26667.
[http://dx.doi.org/10.1038/srep26667] [PMID: 27220400]
[122]
Al-Naamani L, Dobretsov S, Dutta J. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol 2016; 38: 231-7.
[http://dx.doi.org/10.1016/j.ifset.2016.10.010]
[123]
Bodaghi H, Mostofi Y, Oromiehie A, et al. Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. Lebensm Wiss Technol 2013; 50(2): 702-6.
[http://dx.doi.org/10.1016/j.lwt.2012.07.027]
[124]
Goudarzi V, Shahabi-Ghahfarrokhi I, Babaei-Ghazvini A. Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: Characterization. Int J Biol Macromol 2017; 95: 306-13.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.065] [PMID: 27884670]
[125]
Kaewklin P, Siripatrawan U, Suwanagul A, Lee YS. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. Int J Biol Macromol 2018; 112: 523-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.124] [PMID: 29410369]
[126]
Krehula LK, Papic A, Krehula S, Gilja V, Foglar L, Hrnjak-Murgi Z. Properties of UV protective films of poly(vinyl-chloride)/TiO2 nanocomposites for food packaging. Polym Bull 2017; 74(4): 1387-04.
[http://dx.doi.org/10.1007/s00289-016-1782-4]
[127]
Kustiningsih I, Ridwan A, Abriyani D, et al. Development of Chitosan-TiO2 Nanocomposite for Packaging Film and its Ability to Inactive Staphylococcus Aureus. Orient J Chem 2019; 35(3): 1132-7.
[http://dx.doi.org/10.13005/ojc/350329]
[128]
Marcous A, Rasouli S, Ardestani F. Low-density polyethylene films loaded by titanium dioxide and zinc oxide nanoparticles as a new active packaging system against escherichia coli O157:H7 in fresh calf minced meat. Packag Technol Sci 2017; 30(11): 693-1.
[http://dx.doi.org/10.1002/pts.2312]
[129]
Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M. Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO nps nanocomposite for increasing the shelf life of bread. Food Packag Shelf Life 2017; 11: 106-4.
[http://dx.doi.org/10.1016/j.fpsl.2017.01.010]
[130]
Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M, Coma V. Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. Int J Biol Macromol 2017; 99: 530-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.007] [PMID: 28267614]
[131]
Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 2016; 89: 256-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.078] [PMID: 27132884]
[132]
Rescek A, Krehula LK, Katancic Z, Hrnjak-Murgic Z. Active bilayer PE/PCL films for food packaging modified with zinc oxide and casein. Croat Chem Acta 2015; 88(4): 461-3.
[http://dx.doi.org/10.5562/cca2768]
[133]
Shaili T, Abdorreza MN, Fariborz N. Functional, thermal, and antimicrobial properties of soluble soybean polysaccharide biocomposites reinforced by nano TiO2. Carbohydr Polym 2015; 134: 726-31.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.073] [PMID: 26428178]
[134]
Zhang X, Xiao G, Wang Y, Zhao Y, Su H, Tan T. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym 2017; 169: 101-7.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.073] [PMID: 28504125]
[135]
Dehghani S, Peighambardoust SH, Peighambardoust SJ. Preparation and Chraracterization of LDPE-Metallic Nanoparticles (Ag, ZnO and CuO) Nanocomposite Films for Food Packaging Applications. 3rd International Conference on Nanotechnology (ICN2015). 2015.https://www.researchgate.net/publication/319314534 Aug 27- 28
[136]
De Silva RT, Mantilaka MMMGPG, Ratnayake SP, Amaratunga GAJ, de Silva KMN. Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydr Polym 2017; 157: 739-47.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.038] [PMID: 27987986]
[137]
Peighambardoust SJ, Peighambardoust SH, Pournasir N, Mohammadzadeh Pakdel P. Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packag Shelf Life 2019.22100420
[http://dx.doi.org/10.1016/j.fpsl.2019.100420]
[138]
Shrifian-Esfahni A, Salehi MT, Nasr-Esfahni M, Ekramian E. Chitosan-modified superparamgnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. Chemik 2015; 69(1): 19-2.
[139]
Braga NF, da Silva AP, Arantes TM, Lemes AP, Cristovan FH. Physical-chemical properties of nanocomposites based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and titanium dioxide nanoparticles. Mater Res Express 2018; 5(1)https://iopscience.iop.org/article/10.1088/2053-1591/aa9f7a/meta
[http://dx.doi.org/10.1088/2053-1591/aa9f7a]
[140]
Castro-Mayorga JL, Fabra MJ, Pourrahimi A, Olsson RT, Lagaron JM. The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food Bioprod Process 2017; 101: 32-4.
[http://dx.doi.org/10.1016/j.fbp.2016.10.007]
[141]
Castro-Mayorga JL, Fabra Rovira MJ, Mas LC, Moragas GS, Lagaron JM. Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. J Appl Polym Sci 2018; 135: 45673.
[http://dx.doi.org/10.1002/app.45673]
[142]
Castro-Mayorga JL, Freitas F, Reis MAM, Prieto MA, Lagaron JM. Biosynthesis of silver nanoparticles and polyhydroxybutyrate nanocomposites of interest in antimicrobial applications. Int J Biol Macromol 2018; 108: 426-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.007] [PMID: 29217186]
[143]
Cherpinski A, Gozutok M, Sasmazel HT, Torres-Giner S, Lagaron JM. Electrospun oxygen scavenging films of poly(3-hydroxybutyrate) containing palladium nanoparticles for active packaging applications. Nanomaterials (Basel) 2018; 8(7): 469.
[http://dx.doi.org/10.3390/nano8070469] [PMID: 29954085]
[144]
Díez-Pascual AM, Díez-Vicente AL. Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. Int J Mol Sci 2014; 15(6): 10950-73.
[http://dx.doi.org/10.3390/ijms150610950] [PMID: 24941255]
[145]
Díez-Pascual AM, Díez-Vicente AL. ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. ACS Appl Mater Interfaces 2014; 6(12): 9822-34.
[http://dx.doi.org/10.1021/am502261e] [PMID: 24846876]
[146]
Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 2017; 15(1): 65.https://www.ncbi.nlm.nih.gov/pubmed/28974225
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[147]
Jafarizadeh-Malmiri H, Sayyar Z, Anarjan N, Berenjian A. Nanobiotechnology in Food: Concepts, Applications and Perspectives. 1st ed. Cham: Springer 2019; pp. 19-25.
[http://dx.doi.org/10.1007/978-3-030-05846-3_2]
[148]
Fonseca C, Ochoa A, Ulloa MT, Alvarez E, Canales D, Zapata PA. Poly(lactic acid)/TiO2 nanocomposites as alternative biocidal and antifungal materials. Mater Sci Eng C 2015; 57: 314-20.
[http://dx.doi.org/10.1016/j.msec.2015.07.069] [PMID: 26354270]
[149]
Luo YB, Cao YZ, Guo G. Effects of TiO2 nanoparticles on the photodegradation of poly (lactic acid). J Appl Polym Sci 2018; 135: 46509.
[http://dx.doi.org/10.1002/app.46509]
[150]
Luo Y, Lin Z, Guo G. Biodegradation Assessment of Poly (Lactic Acid) Filled with Functionalized Titania Nanoparticles (PLA/TiO2) under Compost Conditions. Nanoscale Res Lett 2019; 14(1): 56.
[http://dx.doi.org/10.1186/s11671-019-2891-4] [PMID: 30767099]
[151]
Luo YB, Wang XL, Wang YZ. Effect of TiO2 nanoparticles on the longterm hydrolytic degradation behavior of PLA. Polym Degrad Stabil 2012; 97(5): 721-8.
[http://dx.doi.org/10.1016/j.polymdegradstab.2012.02.011]
[152]
Radzig M, Koksharova O, Khmel I, et al. Femtosecond Spectroscopy of Au Hot-Electron Injection into TiO2: Evidence for Au/TiO2 Plasmon Photocatalysis by Bactericidal Au Ions and Related Phenomena. Nanomaterials (Basel) 2019; 9(2): 217.
[http://dx.doi.org/10.3390/nano9020217] [PMID: 30736360]
[153]
Zhang H, Huang J, Yang L, et al. Preparation, characterization and properties of PLA/TiO2 nanocomposites based on a novel vane extruder. RSC Advances 2015; 5(6): 4639-47.
[http://dx.doi.org/10.1039/C4RA14538K]
[154]
Zhang H, Zhu J, Hu Y, et al. Study on Photocatalytic Antibacterial and Sustained-Release Properties of Cellulose/TiO2/β-CD Composite Hydrogel. J Nanomater 2019.
[http://dx.doi.org/10.1155/2019/2326042]
[156]
Martirosyan A, Schneider YJ. Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 2014; 11(6): 5720-50.
[http://dx.doi.org/10.3390/ijerph110605720] [PMID: 24879486]
[157]
López de Dicastillo C, Patiño C, Galotto MJ, Palma JL, Alburquenque D, Escrig J. Novel antimicrobial titanium dioxide nanotubes obtained through a combination of atomic layer deposition and electrospinning technologies. Nanomaterials (Basel) 2018; 8(2): 128.
[http://dx.doi.org/10.3390/nano8020128] [PMID: 29495318]
[158]
Fanny Chiat Orou S, Hanga KJ, Thien MT, et al. Antibacterial activity by ZnO nanorods and ZnO nanodisks: A model used to illustrate “Nanotoxicity Threshold”. J Ind Eng Chem 2018; 62: 333-0.
[http://dx.doi.org/10.1016/j.jiec.2018.01.013]
[159]
Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today 2017; 22(12): 1825-34.
[http://dx.doi.org/10.1016/j.drudis.2017.08.006] [PMID: 28847758]
[160]
Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today 2015; 20(9): 1143-51.
[http://dx.doi.org/10.1016/j.drudis.2015.05.009] [PMID: 26007605]
[161]
Abdalkarim SYH, Yu HY, Wang D, Yao J. Electrospun poly (3hydroxybutyrate-co-3-hydroxyvalerate)/cellulose reinforced nanofibrous membranes with ZnO nanocrystals for antibacterial wound dressings. Cellulose 2017; 24: 2925-38.
[http://dx.doi.org/10.1007/s10570-017-1303-0]
[162]
Li W, Li L, Cao Y, Lan T, Chen H, Qin Y. Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials (Basel) 2017; 7(8): 207.
[http://dx.doi.org/10.3390/nano7080207] [PMID: 28758980]
[163]
Luzi F, Fortunati E, Jiménez A, Puglia D, Chiralt A, Torre L. PLA Nanocomposites Reinforced with Cellulose Nanocrystals from Posidonia oceanica and ZnO Nanoparticles for Packaging Applicatio. J Renew Mater 2017; 5(2): 103-5.
[http://dx.doi.org/10.7569/JRM.2016.634135]
[164]
Marra A, Silvestre C, Duraccio D, Cimmino S. Polylactic acid/zinc oxide biocomposite films for food packaging application. Int J Biol Macromol 2016; 88: 254-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.039] [PMID: 27012896]
[165]
Panaitescu DM, Ionita ER, Nicolae CA, et al. Poly(3-hydroxybutyrate) Modified by Nanocellulose and Plasma Treatment for Packaging Applications. Polymers (Basel) 2018; 10(11): 1249.
[http://dx.doi.org/10.3390/polym10111249] [PMID: 30961174]
[167]
Dobrucka R. Application of nanotechnology in food packaging. J Microbiol Biotechnol Food Sci 2014; 3(5): 353-9.
[168]
Leung YH, Ng AMC, Xu X, et al. Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 2014; 10(6): 1171-83.
[http://dx.doi.org/10.1002/smll.201302434] [PMID: 24344000]
[169]
Diblan S, Kaya S. Antimicrobials used in active packaging films. Food and Health 2018; 4(1): 63-9.
[http://dx.doi.org/10.3153/JFHS18007]
[170]
Khalid A, Norello R, N Abraham A, et al. Biocompatible and Biodegradable Magnesium Oxide Nanoparticles with In Vitro Photostable Near-Infrared Emission: Short-Term Fluorescent Markers. Nanomaterials (Basel) 2019; 9(10): 1360.
[http://dx.doi.org/10.3390/nano9101360] [PMID: 31547487]
[171]
Sanuja S, Agalya A, Umapathy MJ. Studies on Magnesium Oxide Reinforced Chitosan Bionanocomposite Incorporated with Clove Oil for Active Food Packaging Application. Int J Polym Mater Pol 2014; 63(14): 733-0.
[http://dx.doi.org/10.1080/00914037.2013.879445]
[172]
Tang ZX, Lv BF. MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng 2014; 31(03): 591-1.
[http://dx.doi.org/10.1590/0104-6632.20140313s00002813]
[173]
Kumar R, Subramania A, Sundaram NTK, Kumar GV, Baskaran I. Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte. J Membr Sci 2007; 300(1-2): 104-0.
[http://dx.doi.org/10.1016/j.memsci.2007.05.014]
[174]
Rao KV, Sunandana CS. Structure and microstructure of combustion synthesized MgO nanoparticles and nanocrystalline MgO thin films synthesized by solution growth route. J Mater Sci 2008; 43(1): 146-4.
[http://dx.doi.org/10.1007/s10853-007-2131-7]
[175]
Selvam NCS, Kumar RT, Kennedy LJ, Vijaya JJ. Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J Alloys Compd 2011; 509(41): 9809-15.
[http://dx.doi.org/10.1016/j.jallcom.2011.08.032]
[176]
Balamurugan S, Ashna L, Parthiban P. Synthesis of Nanocrystalline MgO Particles by Combustion Followed by Annealing Method Using Hexamine as a Fuel. J Nanotechnol 2014; 84: 1803.
[http://dx.doi.org/10.1155/2014/841803]
[178]
Eivazihollagh A, Backstrom J, Dahlstrom C, et al. One-pot synthesis of cellulose-templated copper nanoparticles with antibacterial properties. Mater Lett 2017; 187: 170-2.
[http://dx.doi.org/10.1016/j.matlet.2016.10.026]
[179]
Gautam G, Mishra P. .Development and characterization of copper nanocomposite containing bilayer film for coconut oil packaging. J Food Process Preserv 2017; 41e13243.
[http://dx.doi.org/10.1111/jfpp.13243]
[180]
Li K, Jin S, Liu X, Chen H, He J, Li J. Preparation and characterization of chitosan/soy protein isolate nanocomposite film reinforced by Cu nanoclusters. Polymers (Basel) 2017; 9(7): 247.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6432471/
[http://dx.doi.org/10.3390/polym9070247] [PMID: 30970924]
[181]
Lomate GB, Dandi B, Mishra S. Development of antimicrobial LDPE/Cu nanocomposite food packaging film for extended shelf life of peda. Food Packag Shelf Life 2018; 16: 211-9.
[http://dx.doi.org/10.1016/j.fpsl.2018.04.001]
[182]
Shankar S, Wang LF, Rhim JW. Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydr Polym 2017; 169: 264-71.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.025] [PMID: 28504145]
[183]
Temelie M, Popescu RC, Cocioaba D, Vasile BS, Savu D. Biocompatibility study of magnetite nanoparticle synthesized using a green method. Rom J Phys 2018; 63: 703.
[184]
Yu K, Liang B, Zheng Y, et al. PMMA-Fe3O4 for internal mechanical support and magnetic thermal ablation of bone tumors. Theranostics 2019; 9(14): 4192-207.
[http://dx.doi.org/10.7150/thno.34157] [PMID: 31281541]
[185]
Xu JK, Zhang FF, Sun JJ, Sheng J, Wang F, Sun M. Bio and nanomaterials based on Fe3O4. Molecules 2014; 19(12): 21506-28.
[http://dx.doi.org/10.3390/molecules191221506] [PMID: 25532846]
[186]
Bharimall AK, Patil PG, Mukherjee S, Yadav V, Prasad V. Nanocellulose-Polymer Composites: Novel Materials for Food Packaging ApplicationsPolymers for Agri-Food Applications. Cham: Springer 2019; pp. 553-99.
[http://dx.doi.org/10.1007/978-3-030-19416-1_27]
[187]
Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 2012; 90(2): 948-56.
[http://dx.doi.org/10.1016/j.carbpol.2012.06.025] [PMID: 22840025]
[188]
Siddaramaiah GJ. High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr Polym 2012; 87(3): 2031-7.
[http://dx.doi.org/10.1016/j.carbpol.2011.10.019]
[189]
Yu H, Sun B, Zhang D, Chen G, Yang X, Yao J. Reinforcement of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers. J Mater Chem B Mater Biol Med 2014; 2(48): 8479-89.
[http://dx.doi.org/10.1039/C4TB01372G] [PMID: 32262206]
[190]
Arrieta MP, Fortunati E, Dominici F, López J, Kenny JM. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr Polym 2015; 121: 265-75.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.056] [PMID: 25659698]
[191]
Dhar P, Bhardwaj U, Kumar A, Katiyar V. Poly (3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: Barrier and migration studies. Polym Eng Sci 2015; 55(10): 2388-95.
[http://dx.doi.org/10.1002/pen.24127]
[192]
Fortunati E, Luzi F, Puglia D, Petrucci R, Kenny JM, Torre L. Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: Innovative reuse of coastal plant. Ind Crops Prod 2015; 67: 439-7.
[http://dx.doi.org/10.1016/j.indcrop.2015.01.075]
[193]
George M, Shen WZ, Qi Z, Bhatnagar A, Montemagno C. Development and Property Evaluation of Poly (Lactic) Acid and Cellulose Nanocrystals Based Films with Either Silver or Peptide Antimicrobial Agents: Morphological, Permeability, Thermal, and Mechanical Characterization. IOSR J Polym Text Eng 2016; 3(6): 33.
[194]
Salari M, Sowti Khiabani M, Rezaei Mokarram R, Ghanbarzadeh B, Samadi Kafil H. Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll 2018; 84: 414-3.
[http://dx.doi.org/10.1016/j.foodhyd.2018.05.037]
[195]
Marín-Silva DA, Rivero S, Pinotti A. Chitosan-based nanocomposite matrices: Development and characterization. Int J Biol Macromol 2019; 123: 189-200.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.035] [PMID: 30414906]
[196]
Dini M, Mousavand T, Carreau PJ, Kamal MR, Ton-That MT. Microstructure and properties of poly (ethylene terephthalate)/organoclay nanocomposites prepared by water-assisted extrusion: effect of organoclay concentration. Polym Eng Sci 2014; 54(8): 1879-92.
[http://dx.doi.org/10.1002/pen.23736]
[197]
Vidotti SE, Chinellato AC, Hu GH, Pessan LA. Effect of an organo-modified montmorillonite on the barrier properties of PET nanocomposites using a polyester ionomer as a compatibilizing agent. Mater Res 2017; 20(3): 826-4.
[http://dx.doi.org/10.1590/1980-5373-mr-2016-0751]
[198]
Hong SI, Rhim JW. Preparation and properties of melt-intercalated linear low density polyethylene/clay nanocomposite films prepared by blow extrusion LWT -. Food Sci Technol 2012; 48(1): 43-51.
[199]
Khalaj MJ, Ahmadi H, Lesankhosh R, Khalaj G. Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: Nano-clay modified with iron nanoparticles. Trends Food Sci Technol 2016; 51: 41-8.
[http://dx.doi.org/10.1016/j.tifs.2016.03.007]
[200]
Scarfato P, Incarnato I, Di Maio L, Dittrich B, Schartel B. Influence of a novel organo-silylated clay on the morphology, thermal and burning behavior of low density polyethylene composites. Compos, Part B Eng 2016; 98(1): 444-2.
[http://dx.doi.org/10.1016/j.compositesb.2016.05.053]
[201]
Zehetmeyer G, Soares RMD, Brandelli A, Mauler RS, Oliveira RVB. Evaluation of polypropylene/montmorillonite nanocomposites as food packaging material. Polym Bull 2012; 68(8): 2199-17.
[http://dx.doi.org/10.1007/s00289-012-0722-1]
[202]
Xie L, Lv XY, Han ZJ, Ci JH, Fang CQ, Ren PG. Preparation and performance of high-barrier low density polyethylene/organic montmorillonite nanocomposite. Polymer-Plast Technol 2012; 51(12): 1251-7.
[http://dx.doi.org/10.1080/03602559.2012.699131]
[203]
Markarian J. Automotive and packaging offer growth opportunities for nanocomposites. Plast Addit Compd 2005; 7(6): 18-21.
[http://dx.doi.org/10.1016/S1464-391X(05)70485-2]
[204]
B A. Suin S, Khatua BB. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 2014; 110: 430-9.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.024] [PMID: 24906776]
[205]
Dadashi S, Mousavi SM, Emam-Djomeh Z, Oromiehie A. Functional Properties of Biodegradable Nanocomposites from Poly Lactic Acid (PLA). Int J Nanosci Nanotechnol 2014; 10(4): 245-6.
[206]
Molinaro S, Cruz Romero M, Boaro M, et al. Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. J Food Eng 2013; 117(1): 113-3.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.021]
[207]
Bittmann B, Bouza R, Barral L, Diez J, Ramirez C. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/clay nanocomposites for replacement of mineral oil based materials. Polym Compos 2013; 34(7): 1033-40.
[http://dx.doi.org/10.1002/pc.22510]
[208]
Carli LN, Crespo JS, Mauler RS. PHBV nanocomposites based on organomodified montmorillonite and halloysite: The effect of clay type on the morphology and thermal and mechanical properties. Compos, Part A Appl Sci Manuf 2011; 42(11): 1601-8.
[http://dx.doi.org/10.1016/j.compositesa.2011.07.007]
[209]
Zhao H, Cui Z, Wang X, Turng LS, Peng X. Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Compos, Part B Eng 2013; 51: 79-81.
[http://dx.doi.org/10.1016/j.compositesb.2013.02.034]
[210]
García-Quiles L, Cuello AF, Castell P. Sustainable Materials with Enhanced Mechanical Properties Based on Industrial Polyhydroxyalkanoates Reinforced with Organomodified Sepiolite and Montmorillonite. Polymers (Basel) 2019; 11(4): 696.https://www.ncbi.nlm.nih.gov/pubmed/30995817
[http://dx.doi.org/10.3390/polym11040696] [PMID: 30995817]
[211]
Pattarasiriroj K, Kaewprachu P, Rawdkuen S. Properties of rice flourgelatine-nanoclay film with catechin-lysozyme and its use for pork belly wrapping. Food Hydrocoll 2020.107105951
[http://dx.doi.org/10.1016/j.foodhyd.2020.105951]
[212]
Darie RN, Pâslaru E, Sdrobis A, et al. Effect of nanoclay hydrophilicity on the poly (lactic acid)/clay nanocomposites properties. Ind Eng Chem Res 2014; 53(19): 7877-90.
[http://dx.doi.org/10.1021/ie500577m]
[213]
Cesur S, Koroglu C, Yalcin HT. Antimicrobial and biodegradable food packaging applications of polycaprolactone/organo nanoclay/chitosan polymeric composite films. J Vinyl Addit Tech 2018; 24(4): 376-7.
[http://dx.doi.org/10.1002/vnl.21607]
[214]
Gutierrez TJ, Ponce AG, Alvarez VA. Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials. Mater Chem Phys 2017; 194: 283.
[http://dx.doi.org/10.1016/j.matchemphys.2017.03.052]
[215]
Pirsa S, Karimi Sani I, Khodayvandi S. Design and fabrication of starch-nano clay composite films loaded with methyl orange and bromocresol green for determination of spoilage in milk package. Polym Adv Technol 2018; 29(11): 2750-8.
[http://dx.doi.org/10.1002/pat.4397]
[216]
Biddeci G, Cavallaro G, Di Blasi F, et al. Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydr Polym 2016; 152: 548-57.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.041] [PMID: 27516303]
[217]
Shemesh R, Krepker M, Goldman D, et al. Antibacterial and antifungal LDPE films for active packaging. Polym Adv Technol 2015; 26(1): 110-6.
[http://dx.doi.org/10.1002/pat.3434]
[218]
Tornuk F, Sagdic O, Hancer M, Yetim H. Development of LLDPE based active nanocomposite films with nanoclays impregnated with volatile compounds. Food Res Int 2018; 107: 337-45.
[http://dx.doi.org/10.1016/j.foodres.2018.02.036] [PMID: 29580493]
[219]
Cibulková Z, Vykydalová A, Chochulová A, Šimon P, Alexy P, Omaníková L. Thermooxidative stability of polypropylene/TiO2 and polypropylene/layered silicate nanocomposites. J Therm Anal Calorim 2018; 131(2): 1491-7.
[http://dx.doi.org/10.1007/s10973-017-6553-4]
[220]
Mohanty S, Nayak SK. Biodegradable nanocomposites of poly (butylene adipate-co-terephthalate) (PBAT) and organically modified layered silicates. J Polym Environ 2012; 20(1): 195-7.
[http://dx.doi.org/10.1007/s10924-011-0408-z]
[221]
Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T. Impact of nanoclays on the biodegradation of poly (lactic acid) nanocomposites. Polymers (Basel) 2018; 10(2): 202.
[http://dx.doi.org/10.3390/polym10020202] [PMID: 30966238]
[222]
Girdthep S, Worajittiphon P, Leejarkpai T, Punyodom W. Effect of Silver loaded Kaolinite on Real Ageing, Hydrolytic Degradation, and Biodegradation of Composite Blown Films Based on Poly(lactic acid) and Poly(butylene adipate-co-terephthalate). Eur Polym J 2016; 82: 244-9.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.07.020]
[223]
Memiş S, Tornuk F, Bozkurt F, Durak MZ. Production and characterization of a new biodegradable fenugreek seed gum based active nanocomposite film reinforced with nanoclays. Int J Biol Macromol 2017; 103: 669-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.090] [PMID: 28536016]
[224]
Koosha M, Hamedi S. Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Prog Org Coat 2019; 127: 338-7.
[http://dx.doi.org/10.1016/j.porgcoat.2018.11.028]
[225]
Mahdi SS, Vadood R, Nourdahr R. Study on the antimicrobial effect of nanosilver tray packaging of minced beef at refrigerator temperature. Glob Vet 2012; 9(3): 284-9.
[226]
Jokar M, Abdul Rahman R. Study of silver ion migration from melt-blended and layered-deposited silver polyethylene nanocomposite into food simulants and apple juice. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31(4): 734-42.
[http://dx.doi.org/10.1080/19440049.2013.878812] [PMID: 24392748]
[227]
Panea B, Ripoll G, González J, Fernández-Cuello Á, Albertí P. Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. J Food Eng 2014; 123: 104-2.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.09.029]
[228]
Kuuliala L, Pippuri T, Hultman J, et al. Preparation and antimicrobial characterization of silver-containing packaging materials for meat. Food Packag Shelf Life 2015; 6: 53-60.
[http://dx.doi.org/10.1016/j.fpsl.2015.09.004]
[229]
Tavakoli H, Rastegar H, Taherian M, Samadi M, Rostami H. The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model. Ital J Food Saf 2017; 6(4): 6874.https://www.ncbi.nlm.nih.gov/pubmed/29564232
[http://dx.doi.org/10.4081/ijfs.2017.6874] [PMID: 29564232]
[230]
Brito SDC, Bresolin JD, Sivieri K, Ferreira MD. Low-density polyethylene films incorporated with silver nanoparticles to promote antimicrobial efficiency in food packaging Food Sci Technol Int 2019.https://www.ncbi.nlm.nih.gov/pubmed/31870192 Available from:
[http://dx.doi.org/10.1177/1082013219894202]
[231]
Chi H, Song S, Luo M, et al. Effect of PLA nanocomposite films containing bergamot essential oil, TiO2 nanoparticles, and Ag nanoparticles on shelf life of mangoes. Sci Hortic (Amsterdam) 2019; 249: 192-8.
[http://dx.doi.org/10.1016/j.scienta.2019.01.059]
[232]
Mathew S, Snigdha S, Mathew J, Radhakrishna EK. Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag Shelf Life 2019; 19: 155-66.
[http://dx.doi.org/10.1016/j.fpsl.2018.12.009]
[233]
Youssef AM, Abdel-Aziz MS, El-Sayed SM. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. Int J Biol Macromol 2014; 69: 185-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.047] [PMID: 24875320]
[234]
Fortunati E, Armentano I, Zhou Q, et al. Multifunctional bionanocomposite films ofpoly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carb Polym 2012; 87(2): 1596-05.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.066]
[235]
Becaro AA, Puti FC, Panosso AR, Gern JC, Branda˜o HM, Correa DS, et al. Postharvest quality of fresh-cut carrots packaged in plastic films containing silver nanoparticles. Food Bioprocess Technol 2016; 9(4): 637-9.
[http://dx.doi.org/10.1007/s11947-015-1656-z]
[236]
Chowdhury S, Teoh YL, Ong KM, Rafflisman Zaidi NS, Mah S-K. Poly(vinyl) alcohol crosslinked composite packaging film containing gold nanoparticles on shelf life extension of banana. Food Packag Shelf Life 2020.24100463
[http://dx.doi.org/10.1016/j.fpsl.2020.100463]
[237]
Duncan TV. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 2011; 363(1): 1-24.
[http://dx.doi.org/10.1016/j.jcis.2011.07.017] [PMID: 21824625]
[238]
Mao X, Huang J, Leung MF, et al. Novel core-shell nanoparticles and their application in high-capacity immobilization of enzymes. Appl Biochem Biotechnol 2006; 135(3): 229-6.
[http://dx.doi.org/10.1385/ABAB:135:3:229]
[239]
Thirumurugan A, Ramachandran S, Shiamala Gowri A. Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria-an approach for food packaging material preparation. Int Food Res J 2013; 20(4): 1909-12.
[240]
Galstyan V, Bhandari MP, Sberveglieri V, Sberveglieri G, Comini E. Metal Oxide Nanostructures in Food Applications: Quality Control and Packaging. Chemosensors (Basel) 2018; 6(2): 16.
[http://dx.doi.org/10.3390/chemosensors6020016]
[241]
Segura González EA, Olmos D, Lorente MÁ, Vélaz I, González-Benito J. Preparation and characterization of polymer composite materials based on PLA/TiO2 for antibacterial packaging. Polymers (Basel) 2018; 10(12): 1365.
[http://dx.doi.org/10.3390/polym10121365] [PMID: 30961290]
[242]
Yang C, Zhu B, Wang J, Qin Y. Structural changes and nano-TiO2 migration of poly(lactic acid)-based food packaging film contacting with ethanol as food simulant. Int J Biol Macromol 2019; 139: 85-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.151] [PMID: 31369783]
[243]
Mizielińska M, Kowalska U, Jarosz M, Sumińska P, Landercy N, Duquesne E. The effect of UV aging on antimicrobial and mechanical properties of PLA films with incorporated zinc oxide nanoparticles. Int J Environ Res Public Health 2018; 15(4)E794https://www.ncbi.nlm.nih.gov/pubmed/29670066
[http://dx.doi.org/10.3390/ijerph15040794] [PMID: 29670066]
[244]
El Fawal G, Hong H, Song X, et al. Fabrication of antimicrobialfilms based on hydroxyethylcellulose and ZnO for food packaging application. Food Packag Shelf Life 2020.23100462
[http://dx.doi.org/10.1016/j.fpsl.2020.100462]
[245]
Swaroop C, Shukla M. Development of Blown Polylactic acid-MgO Nanocomposite Films for Food Packaging. Compos, Part A Appl Sci Manuf 2019.24105482
[http://dx.doi.org/10.1016/j.compositesa.2019.105482]
[246]
Zhang J, Cao C, Zheng S, et al. Poly (butylene adipate-co-terephthalate)/magnesium oxide/silver ternary composite biofilms for food packaging application. Food Packag Shelf Life 2020.24100487
[http://dx.doi.org/10.1016/j.fpsl.2020.100487]
[247]
Wang Y, Cen C, Chen J, Fu L. MgO/carboxymethyl chitosan nanocomposite improves thermal stability, waterproof and antibacterial performance for food packaging. Carbohydr Polym 2020.236116078
[http://dx.doi.org/10.1016/j.carbpol.2020.116078] [PMID: 32172891]
[248]
Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Xiaowen H, Wang M-H. Physical and bioactivities of biopolymeric films incorporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. Int J Biol Macromol 2020; 153: 207-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.250] [PMID: 32105688]
[249]
Yadav M. Study on thermal and mechanical properties of cellulose/iron oxide bionanocomposites film. Compos Commun 2018; 10: 1-5.
[http://dx.doi.org/10.1016/j.coco.2018.04.010]
[250]
AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009; 3(2): 279-90.
[http://dx.doi.org/10.1021/nn800596w] [PMID: 19236062]
[251]
Darroudi M, Sabouri Z, Kazemi Oskuee R, Kargar H, Hosseini HA. Neuronal toxicity of biopolymer-template synthesized ZnO nanoparticles. Nanomed J 2013; 1(2): 88-93.
[252]
Knaapen AM, Borm PJ, Albrecht C, Schins RP. Inhaled particles and lung cancer. Part A: Mechanisms. Int J Cancer 2004; 109(6): 799-809.https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.11708
[http://dx.doi.org/10.1002/ijc.11708] [PMID: 15027112]
[253]
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7): 823-39.
[http://dx.doi.org/10.1289/ehp.7339] [PMID: 16002369]
[254]
Risom L, Møller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res 2005; 592(1-2): 119-37.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.06.012] [PMID: 16085126]
[255]
Ema M, Okuda H, Gamo M, Honda K. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 2017; 67: 149-64.
[http://dx.doi.org/10.1016/j.reprotox.2017.01.005] [PMID: 28088501]
[256]
Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 2014; 11: 11.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933429/
[http://dx.doi.org/10.1186/1743-8977-11-11] [PMID: 24529161]
[257]
Liu W, Wu Y, Wang C, et al. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 2010; 4(3): 319-30.
[http://dx.doi.org/10.3109/17435390.2010.483745] [PMID: 20795913]
[258]
Shaikh S, Nazam N, Rizvi SMD, et al. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int J Mol Sci 2019; 20(10): 2468.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566786/
[http://dx.doi.org/10.3390/ijms20102468] [PMID: 31109079]
[259]
Hazeem LJ, Kuku G, Dewailly E, et al. Toxicity Effect of Silver Nanoparticles on Photosynthetic Pigment Content, Growth, ROS Production and Ultrastructural Changes of Microalgae Chlorella vulgaris. Nanomaterials (Basel) 2019; 9(7): 914.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669524/
[http://dx.doi.org/10.3390/nano9070914] [PMID: 31247939]
[260]
Hwang ET, Lee JH, Chae YJ, et al. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 2008; 4(6): 746-50.
[http://dx.doi.org/10.1002/smll.200700954] [PMID: 18528852]
[261]
Inoue Y, Hoshino M, Takahashi H, et al. Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. J Inorg Biochem 2002; 92(1): 37-42.
[http://dx.doi.org/10.1016/S0162-0134(02)00489-0] [PMID: 12230986]
[262]
Mendis E, Rajapakse N, Byun HG, Kim SK. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci 2005; 77(17): 2166-78.
[http://dx.doi.org/10.1016/j.lfs.2005.03.016] [PMID: 15916780]
[263]
Vega-Jiménez AL, Vázquez-Olmos AR, Acosta-Gío E, Álvarez-Pérez ME. vitro Antimicrobial Activity Evaluation of Metal Oxide Nanoparticles, Nanoemulsions. In: Koh KS, Wong VL, Eds. Nanoemulsions Properties, Fabrications and Applications . 2019.https://www.intechopen.com/books/nanoemulsions-properties-fabrications-and-applications/-em-in-vitro-em-antimicrobial-activity-evaluation-of-metal-oxide-nanoparticles Available from:
[264]
Yin JJ, Liu J, Ehrenshaft M, et al. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes--generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 2012; 263(1): 81-8.
[http://dx.doi.org/10.1016/j.taap.2012.06.001] [PMID: 22705594]
[265]
Zhang W, Li Y, Niu J, Chen Y. Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir 2013; 29(15): 4647-51.
[http://dx.doi.org/10.1021/la400500t] [PMID: 23544954]
[266]
He D, Miller CJ, Waite TD. Fenton-like zero-valent silver nanoparticle-mediated hydroxyl radical production. J Catal 2014; 317: 198-5.
[http://dx.doi.org/10.1016/j.jcat.2014.06.016]
[267]
He W, Zhou YT, Wamer WG, Boudreau MD, Yin JJ. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 2012; 33(30): 7547-55.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.076] [PMID: 22809647]
[268]
Loutfy H. Madkour Nucleic Acids as Gene Anticancer Drug Delivery Therapy. 1st ed. Academic Press 2019; pp. 425-83.
[269]
Iuga C, Alvarez-Idaboy JR, Vivier-Bunge A. ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments. J Phys Chem B 2011; 115(42): 12234-46.
[http://dx.doi.org/10.1021/jp206347u] [PMID: 21919526]
[270]
Alkawareek MY, Bahlool A, Abulateefeh SR, Alkilany AM. Synergistic antibacterial activity of silver nanoparticles and hydrogen peroxide. PLoS One 2019; 14(8)e0220575https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687290/
[http://dx.doi.org/10.1371/journal.pone.0220575] [PMID: 31393906]
[271]
Onodera A, Nishiumi F, Kakiguchi K, et al. Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle size. Toxicol Rep 2015; 2: 574-9.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598391/
[http://dx.doi.org/10.1016/j.toxrep.2015.03.004] [PMID: 28962392]
[272]
Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 2012; 33(7): 2327-33.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.057] [PMID: 22182745]
[273]
Calixto GM, Bernegossi J, de Freitas LM, Fontana CR, Chorilli M. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules 2016; 21(3): 342.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274468/
[http://dx.doi.org/10.3390/molecules21030342] [PMID: 26978341]
[274]
Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv Drug Deliv Rev 2017; 109: 84-101.
[http://dx.doi.org/10.1016/j.addr.2015.12.012] [PMID: 26712711]
[275]
Ngwa W, Kumar R, Shridhar S, et al. Targeted radiotherapy with gold nanoparticles: Current status and future perspectives. Nanomed (Lond) 2014; 9(7): 1063-82.. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143893/ Available from:
[276]
Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 2006; 90(2): 619-27.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367066/
[http://dx.doi.org/10.1529/biophysj.105.061895] [PMID: 16239330]
[277]
Silvero MJ, Becerra MC. Plasmon-induced oxidative stress and macromolecular damage in pathogenic bacteria. RSC Advances 2016; 6: 100203-8.
[http://dx.doi.org/10.1039/C6RA22233A]
[278]
Barbasz A, Oćwieja M. Gold nanoparticles and ions – friends or foes? As they are seen by human cells U-937 and HL-60. J Exp Nanosci 2016; 11(7): 564-0.
[http://dx.doi.org/10.1080/17458080.2015.1096024]
[279]
Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA. Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B Biointerfaces 2013; 102: 300-6.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.039] [PMID: 23006569]
[280]
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14(1): 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[281]
Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 2010; 30(3): 212-7.
[PMID: 19902477]
[282]
Woźniak A, Malankowska A, Nowaczyk G, et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med 2017; 28(6): 92.https://link.springer.com/article/10.1007%2Fs10856-017-5902-y
[http://dx.doi.org/10.1007/s10856-017-5902-y] [PMID: 28497362]
[283]
Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview. Aquat Toxicol 2016; 170: 162-74.
[http://dx.doi.org/10.1016/j.aquatox.2015.11.019] [PMID: 26655660]
[284]
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 2017; 12: 1227-49.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[285]
Ripolles-Avila C, Martinez-Garcia M, Hascoët AS, Rodríguez-Jerez JJ. Bactericidal efficacy of UV activated TiO2 nanoparticles against Gram-positive and Gram-negative bacteria on suspension. CYTA J Food 2019; 17(1): 408-8.
[http://dx.doi.org/10.1080/19476337.2019.1590461]
[286]
Bhushan M, Kumar Y, Periyasamy L, Viswanath AK. Facile synthesis of Fe/Zn oxide nanocomposites and study of their structural, magnetic, thermal, antibacterial and cytotoxic properties. Mater Chem Phys 2018; 209: 233-8.
[http://dx.doi.org/10.1016/j.matchemphys.2018.02.002]
[287]
Wang AN, Teng Y, Hu XF, et al. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties. Sci Total Environ 2016; 541: 348-55.
[http://dx.doi.org/10.1016/j.scitotenv.2015.09.023] [PMID: 26410709]
[288]
Rtimi S, Pulgarin K, Kiwi J. Recent Developments in Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces under Indoor Visible Light. Coatings 2017; 7(2): 20.
[http://dx.doi.org/10.3390/coatings7020020]
[289]
Kiwi J, Rtimi S. Mechanisms of the Antibacterial Effects of TiO2–FeOx under Solar or Visible Light: Schottky Barriers versus Surface Plasmon Resonance. Coatings 2018; 8(11): 391.
[http://dx.doi.org/10.3390/coatings8110391]
[290]
Mantravadi HB. Effectivity of Titanium Oxide Based Nano Particles on E. coli from Clinical Samples. J Clin Diagn Res 2017; 11(7): DC37-40.
[http://dx.doi.org/10.7860/JCDR/2017/25334.10278] [PMID: 28892895]
[291]
Visai L, De Nardo L, Punta C, et al. Titanium oxide antibacterial surfaces in biomedical devices. Int J Artif Organs 2011; 34(9): 929-46.
[http://dx.doi.org/10.5301/ijao.5000050] [PMID: 22094576]
[292]
Bala W, Zorenko Y, Savchyn V, et al. Optical and Electrical Properties of ZnO Thin Films Grown by Sol-Gel Method. Diffus Defect Data Solid State Data Pt B Solid State Phenom 2013; 200: 14.
[http://dx.doi.org/10.4028/www.scientific.net/SSP.200.14]
[293]
Sirelkhatim A, Mahmud S, Seeni A, et al. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett 2015; 7(3): 219-42.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[294]
Nguyen NT, Grelling N, Wetteland CL, Rosario R, Liu H. Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (nMgO) against Pathogenic Bacteria, Yeasts, and Biofilms. Sci Rep 2018; 8(1): 16260.https://www.nature.com/articles/s41598-018-34567-5.pdf
[http://dx.doi.org/10.1038/s41598-018-34567-5] [PMID: 30389984]
[295]
Horie M, Fujita K, Kato H, et al. Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics 2012; 4(4): 350-60.
[http://dx.doi.org/10.1039/c2mt20016c] [PMID: 22419205]
[296]
Diez-Pascual AM. Antibacterial Nanocomposites Based on Thermosetting Polymers Derived from Vegetable Oils and Metal Oxide Nanoparticles. Polymers (Basel) 2019; 11(11): 1790.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918336/
[http://dx.doi.org/10.3390/polym11111790] [PMID: 31683856]
[297]
Chakraborty A, Ghosh S, Chakraborty R, Chatterjee SM, Hopper W. Molecular Mechanism of Nanotoxicity - A Critical Review. Int J Curr Biotechnol 2018; 6(5): 1-12.
[298]
Cornu C, Bonardet JL, Casale S, et al. Identification and location of iron species in Fe/SBA-15 catalysts: interest for catalytic Fenton reaction. J Phys Chem C 2012; 116(5): 3437-48.
[http://dx.doi.org/10.1021/jp2038625]
[299]
Fang M, Volotinen TV, Kulkarni SK, Belova L, Rao KV. Effect of embedding Fe3O4 nanoparticles in silica spheres on the optical transmission properties of threedimensional magnetic photonic crystals. J Appl Phys 2010; 108(10): 103501-103501-6.
[http://dx.doi.org/10.1063/1.3509146]
[300]
Garrido-Ramırez EG, Theng BKG, Mora ML. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - a review. Appl Clay Sci 2010; 47(3-4): 182-2.
[http://dx.doi.org/10.1016/j.clay.2009.11.044]
[301]
Jitianu A, Crisan M, Meghea A, Rau I, Zaharescu M. Influence of the silica based matrix on the formation of iron oxide nanoparticles in the Fe2O3-SiO2 system, obtained by sol-gel method. J Mater Chem 2002; 12(5): 1401-7.
[http://dx.doi.org/10.1039/b110652j]
[302]
Liang X, Zhong Y, Zhu S, et al. The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite. J Hazard Mater 2012; 199-200: 247-54.
[http://dx.doi.org/10.1016/j.jhazmat.2011.11.007] [PMID: 22119302]
[303]
Martınez F, Calleja G, Jmelero JA, Molina R. Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst. Appl Catal B 2005; 60(3-4): 181-0.
[http://dx.doi.org/10.1016/j.apcatb.2005.03.004]
[304]
Rasoulifard MH, Monfared HH, Masoudian S. Photo-assisted hetero-fenton decolorization of azo dye from contaminated water by Fe-Si mixed oxide nanocomposite. Environ Technol 2011; 32(13-14): 1627-35.
[http://dx.doi.org/10.1080/09593330.2010.545996] [PMID: 22329154]
[305]
Sun SP, Lemley AT. p-nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: process optimization, kinetics, and degradation pathways. J Mol Catal A 2011; 349(1-2): 71-9.
[http://dx.doi.org/10.1016/j.molcata.2011.08.022]
[306]
Costa RCC, Moura FCC, Ardisson JD, Fabris JD, Lago RM. Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Appl Catal B 2008; 83(1-2): 131-9.
[http://dx.doi.org/10.1016/j.apcatb.2008.01.039]
[307]
Das TK, Wati MR, Fatima-Shad K. Oxidative Stress Gated by Fenton and Haber Weiss Reactions and Its Association With Alzheimer’s Disease Arch Neurosci 2014; 2(3): e20078.. http://archneurosci.com/en/articles/60038.html Available from:
[308]
Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 2007; 46(8): 1222-44.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[309]
Sun Z, Yathindranath V, Worden M, et al. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. Int J Nanomedicine 2013; 8: 961-70.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3593762/
[http://dx.doi.org/10.2147/IJN.S39048] [PMID: 23494517]
[310]
Javaid R, Qazi UY. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. Int J Environ Res Public Health 2019; 16(11): 2066.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603921/
[http://dx.doi.org/10.3390/ijerph16112066] [PMID: 31212717]
[311]
Dewil R, Mantzavinos D, Poulios I, Rodrigo MA. New perspectives for advanced oxidation processes. J Environ Manage 2017; 195(Pt 2): 93-9.
[http://dx.doi.org/10.1016/j.jenvman.2017.04.010] [PMID: 28456288]
[312]
Haber F, Weiss J. The Catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond A Math Phys Sci 1934; 147(861): 332-1.
[http://dx.doi.org/10.1098/rspa.1934.0221]
[313]
Oturan MA, Aaron JJ. Advanced oxidation processes in water/wastewater treatment: principles and applications: a review. Crit Rev Environ Sci Technol 2014; 44(23): 2577-41.
[http://dx.doi.org/10.1080/10643389.2013.829765]
[314]
Majid I, Nayik G, Dar SM, Nanda V. Novel food packaging technologies: Innovations and future prospective. J Saudi Soc Agric Sci 2018; 17: 454-2.
[http://dx.doi.org/10.1016/j.jssas.2016.11.003]
[315]
Shafiq M, Anjum S, Hano C, Anjum I, Abbasi BH. An Overview of the Applications of Nanomaterials and Nanodevices in the Food Industry. Foods 2020; 9(2): 148.
[http://dx.doi.org/10.3390/foods9020148] [PMID: 32028580]
[316]
McClements DJ, Xiao H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles NPJ Sci Food 2017; 1(6). https://www.nature.com/articles/s41538-017-0005-1.pdf Available from:
[http://dx.doi.org/10.1038/s41538-017-0005-1]
[317]
Abdelkhaliq A, van der Zande M, Undas AK, Peters RJB, Bouwmeester H. Impact of in vitro digestion on gastrointestinal fate and uptake of silver nanoparticles with different surface modifications. Nanotoxicology 2020; 14(1): 111-26.
[http://dx.doi.org/10.1080/17435390.2019.1675794] [PMID: 31648587]
[318]
Ajdary M, Moosavi MA, Rahmati M, et al. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. Nanomaterials (Basel) 2018; 8(9): 634.
[http://dx.doi.org/10.3390/nano8090634] [PMID: 30134524]
[319]
Arrieta MA, Peltzer M, López J, Peponi L. PLA-Based Nanocomposites Reinforced with CNC for Food Packaging Applications: From Synthesis to BiodegradationIndustrial Applications of Renewable Biomass Products. Buenos Aires: Springer 2017; pp. 265-300.
[http://dx.doi.org/10.1007/978-3-319-61288-1_11]

© 2024 Bentham Science Publishers | Privacy Policy