Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Bestowal of Quinazoline Scaffold in Anticancer Drug Discovery

Author(s): Rina Das, Dinesh K. Mehta and Meenakshi Dhanawat*

Volume 21, Issue 11, 2021

Published on: 27 June, 2020

Page: [1350 - 1368] Pages: 19

DOI: 10.2174/1871520620666200627205321

Price: $65

Abstract

Background: Cancer is one of the major causes of human mortality worldwide. A number of existing antineoplastic medications and treatment regimens are already working in the field, and several new compounds are in different phases of clinical trials. An extensive series of anticancer drugs exist in the market, and studies suggest that these molecules are associated with different types of adverse side effects. The reduction of the cytotoxicity of drugs to normal cells is a major problem in anticancer therapy.

Therefore, researchers around the globe are involved in the development of more efficient and safer anticancer drugs. The output of extensive research is that the quinazoline scaffold and its various derivatives can be explored further as a novel class of cancer chemotherapeutic agents that has already shown promising activities against different tumours. Quinazoline derivatives have already occupied a crucial place in modern medicinal chemistry. Various research has been performed on quinazoline and their derivatives for anticancer activity and pharmacological importance of this scaffold has been well established.

Objective: The aim of this review is to compile and highlight the developments concerning the anticancer activity of quinazoline derivatives as well as to suggest some new aspects of the expansion of anticancer activity of novel quinazoline derivatives as anticancer agents in the near future.

Methods: Recent literature related to quinazoline derivatives endowed with encouraging anticancer potential is reviewed. With a special focus on quinazoline moiety, this review offers a detailed account of multiple mechanisms of action of various quinazoline derivatives: inhibition of the DNA repair enzyme system, inhibition of EGFR, thymidylate enzyme inhibition and inhibitory effects for tubulin polymerization by which these derivatives have shown promising anticancer potential.

Results: Exhaustive literature survey indicated that quinazoline derivatives are associated with properties of inhibiting EGFR and thymidylate enzymes. It was also found to be involved in disturbing tubulin assembly. Furthermore, quinazoline derivatives have been found to inhibit critical targets such as DNA repair enzymes. These derivatives have shown significant activity against cancer.

Conclusion: In cancer therapy, Quinazoline derivatives seems to be quite promising and act through various mechanisms that are well established. This review has shown that quinazoline derivatives can further be explored for the betterment of chemotherapy. A lot of potentials are still hidden, which demands to be discovered for upgrading quinazoline derivatives efficacy.

Keywords: Quinazoline, anticancer, EGFR, thymidylate enzyme, DNA inhibition, tubulin polymerization.

Graphical Abstract
[1]
Liu, J.; Wang, L.; Yang, X-M. Multi-targeted protein tyrosine kinase inhibitor: Research advances. J. Int. Pharm. Res., 2009, 36, 161-171.
[2]
Usifoh, C.O.; Scriba, G.K. Synthesis and anticonvulsant activity of acetylenic quinazolinone derivatives. Arch. Pharm. (Weinheim), 2000, 333(8), 261-266.
[http://dx.doi.org/10.1002/1521-4184(20008)333:8<261::AIDARDP261>3.0.CO;2-O] [PMID: 11008376]
[3]
Archana, V.; Srivastava, V.K.; Kumar, A. Synthesis of newer thiadiazolyl and thiazolidinonyl quinazolin-4 3H-ones as potential anticonvulsant agents. Eur. J. Med. Chem., 2002, 37(11), 873-882.
[http://dx.doi.org/10.1016/S0223-5234(02)01389-2] [PMID: 12446046]
[4]
Selvam, T.P.; Kumar, P.V. Quinazoline marketed drugs-A review. Res. Pharm., 2011, 1, 1-21.
[5]
Dempcy, R.O.; Skibo, E.B. Rational design of quinazoline-based irreversible inhibitors of human erythrocyte purine nucleoside phosphorylase. Biochemistry, 1991, 30(34), 8480-8487.
[http://dx.doi.org/10.1021/bi00098a028] [PMID: 1909177]
[6]
Skelton, L.A.; Ormerod, M.G.; Titley, J.; Kimbell, R.; Brunton, L.A.; Jackman, A.L. A novel class of lipophilic quinazoline-based folic acid analogues: Cytotoxic agents with a folate-independent locus. Br. J. Cancer, 1999, 79(11-12), 1692-1701.
[http://dx.doi.org/10.1038/sj.bjc.6690270] [PMID: 10206279]
[7]
Scanlon, K.J.; Moroson, B.A.; Bertino, J.R.; Hynes, J.B. Quinazoline analogues of folic acid as inhibitors of thymidylate synthetase from bacterial and mammalian sources. Mol. Pharmacol., 1979, 16(1), 261-269.
[PMID: 113660]
[8]
Oatis, J.E., Jr; Hynes, J.B. Sycnthesis of quinazoline analogues of folic acid modified at postion 10. J. Med. Chem., 1977, 20(11), 1393-1396.
[http://dx.doi.org/10.1021/jm00221a008] [PMID: 915899]
[9]
Davoll, J.; Johnson, A.M. Quinazoline analogues of folic acid. J. Chem. Soc. Perkin Trans. I, 1970, 8, 997-1002.
[PMID: 5464281]
[10]
Martin, G.J.; Moss, J.; Avakian, S. Folic acid activity of N-(4-(4-quinazoline)-benzoyl)glutamic acid. J. Biol. Chem., 1947, 167(3), 737-743.
[PMID: 20287905]
[11]
Srinivasa, R.D.; Lakshmana, R.V.; Tondepu, S. Synthesis, characterization of novel quinazoline derivatives and antimicrobial screening. Int. J. Chem. Sci., 2016, 14, 2751-2762.
[12]
Cavalli, A.; Lizzi, F.; Bongarzone, S.; Belluti, F.; Piazzi, L.; Bolognesi, M.L. Complementary medicinal chemistry-driven strategies toward new antitrypanosomal and antileishmanial lead drug candidates. FEMS Immunol. Med. Microbiol., 2010, 58(1), 51-60.
[http://dx.doi.org/10.1111/j.1574-695X.2009.00615.x] [PMID: 19845762]
[13]
Chevalier, J.; Mahamoud, A.; Baitiche, M.; Adam, E.; Viveiros, M.; Smarandache, A.; Militaru, A.; Pascu, M.L.; Amaral, L.; Pagès, J.M. Quinazoline derivatives are efficient chemosensitizers of antibiotic activity in Enterobacter aerogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa resistant strains. Int. J. Antimicrob. Agents, 2010, 36(2), 164-168.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.03.027] [PMID: 20494558]
[14]
Elslager, E.F.; Davoll, J.; Jacob, P.; Johnson, A.M.; Johnson, J.; Werbel, L.M. Folate antagonists. 12. Antimalarial and antibacterial effects of 2,4-diamino-6-[(aralkyl and alicyclid)thio-, sulfinyl-, and sulfonyl]quinazolines. J. Med. Chem., 1978, 21(7), 639-643.
[http://dx.doi.org/10.1021/jm00205a009] [PMID: 97382]
[15]
Elslager, E.F.; Jacob, P.; Johnson, J.; Werbel, L.M.; Worth, D.F.; Rane, L. Folate antagonists. 13. 2,4-Diamino-6-](alpha,alpha,alpha-trifluoro-m-tolyl)thio]quinazoline and related 2,4-diamino-6-[(phenyl- and naphthyl)thio]quinazolines, a unique class of antimetabolites with extraordinary antimalarial and antibacterial effects. J. Med. Chem., 1978, 21(10), 1059-1070.
[http://dx.doi.org/10.1021/jm00208a010] [PMID: 102792]
[16]
Rohini, R.; Shanker, K.; Reddy, P.M.; Ho, Y.P.; Ravinder, V. Mono and bis-6-arylbenzimidazo[1,2-c]quinazolines: A new class of antimicrobial agents. Eur. J. Med. Chem., 2009, 44(8), 3330-3339.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.022] [PMID: 19371978]
[17]
Desai, N.C.; Undavia, N.K.; Trivedi, P.B.; Dave, D.; Vyas, G.D. Synthesis and anti-HIV activity of some non-nucleoside 2,3-disubstituted quinazoline derivatives (Part-V). Indian J. Exp. Biol., 1998, 36(12), 1280-1283.
[PMID: 10093513]
[18]
Chao, Q.; Deng, L.; Shih, H.; Leoni, L.M.; Genini, D.; Carson, D.A.; Cottam, H.B. Substituted isoquinolines and quinazolines as potential antiinflammatory agents. Synthesis and biological evaluation of inhibitors of tumor necrosis factor alpha. J. Med. Chem., 1999, 42(19), 3860-3873.
[http://dx.doi.org/10.1021/jm9805900] [PMID: 10508435]
[19]
el-Bendary, E.R.; el-Ashmawy, M.B.; Barghash, A.M.; Shehata, I.A.; el-Kerdawy, M.M. Synthesis of some new quinazolines and quinoxalines of potential antiinflammatory activity. Boll. Chim. Farm., 1996, 135(11), 617-620.
[PMID: 9066171]
[20]
Jindal, D.P.; Bhatti, R.S.; Ahlawat, S.; Gupta, R. Synthesis and bronchodilatory activity of some nitrogen bridgehead compounds. Eur. J. Med. Chem., 2002, 37(5), 419-425.
[http://dx.doi.org/10.1016/S0223-5234(02)01345-4] [PMID: 12008056]
[21]
Combs, D.W.; Rampulla, M.S.; Russell, R.K.; Rampulla, R.A.; Klaubert, D.H.; Ritchie, D.; Meeks, A.S.; Kirchner, T. Design, synthesis and bronchodilatory activity of a series of quinazoline-3-oxides. Drug Des. Deliv., 1990, 6(4), 241-254.
[PMID: 2083028]
[22]
Chen, Z.; Hu, G.; Li, D.; Chen, J.; Li, Y.; Zhou, H.; Xie, Y. Synthesis and vasodilator effects of rutaecarpine analogues which might be involved transient receptor potential vanilloid subfamily, member 1 (TRPV1). Bioorg. Med. Chem., 2009, 17(6), 2351-2359.
[http://dx.doi.org/10.1016/j.bmc.2009.02.015] [PMID: 19254847]
[23]
Tseng, C.J.; Chen, S.Y.; Tao, P.L.; Chern, J.W.; Yen, M.H. Antihypertensive effects of AT-112, a newly synthesized quinazoline derivative, in spontaneously hypertensive rats. Proc. Natl. Sci. Counc. Repub. China B, 1995, 19(3), 159-165.
[PMID: 7480362]
[24]
Uckun, F.M.; Sudbeck, E.A.; Mao, C.; Ghosh, S.; Liu, X.P.; Vassilev, A.O.; Navara, C.S.; Narla, R.K. Structure-based design of novel anticancer agents. Curr. Cancer Drug Targets, 2001, 1(1), 59-71.
[http://dx.doi.org/10.2174/1568009013334287] [PMID: 12188892]
[25]
Zhou, H.; Aguilar, A.; Chen, J.; Bai, L.; Liu, L.; Meagher, J.L.; Yang, C-Y.; McEachern, D.; Cong, X.; Stuckey, J.A.; Wang, S. Structure-based design of potent Bcl-2/Bcl-xL inhibitors with strong in vivo antitumor activity. J. Med. Chem., 2012, 55(13), 6149-6161.
[http://dx.doi.org/10.1021/jm300608w] [PMID: 22747598]
[26]
Chandrika, P.M.; Ram Rao, A.R.; Narsaiah, B.; Raju, M.B. Quinazoline derivatives with potent anti-inflammatory and antiallergic activities. Int. J. Chem. Sci., 2008, 6, 1119-1146.
[27]
Kung, P-P.; Casper, M.D.; Cook, K.L.; Wilson-Lingardo, L.; Risen, L.M.; Vickers, T.A.; Ranken, R.; Blyn, L.B.; Wyatt, J.R.; Cook, P.D.; Ecker, D.J. Structure-activity relationships of novel 2-substituted quinazoline antibacterial agents. J. Med. Chem., 1999, 42(22), 4705-4713.
[http://dx.doi.org/10.1021/jm9903500] [PMID: 10579832]
[28]
Malamas, M.S.; Millen, J. Quinazolineacetic acids and related analogues as aldose reductase inhibitors. J. Med. Chem., 1991, 34(4), 1492-1503.
[http://dx.doi.org/10.1021/jm00108a038] [PMID: 1901912]
[29]
Madapa, S.; Tusi, Z.; Mishra, A.; Srivastava, K.; Pandey, S.K.; Tripathi, R.; Puri, S.K.; Batra, S. Search for new pharmacophores for antimalarial activity. Part II: Synthesis and antimalarial activity of new 6-ureido-4-anilinoquinazolines. Bioorg. Med. Chem., 2009, 17(1), 222-234.
[http://dx.doi.org/10.1016/j.bmc.2008.11.005] [PMID: 19041250]
[30]
Lowe, J.A., III; Archer, R.L.; Chapin, D.S.; Chen, J.B.; Helweg, D.; Johnson, J.L.; Koe, B.K.; Lebel, L.A.; Moore, P.F.; Nielsen, J.A. Structure-activity relationship of quinazolinedione inhibitors of calcium-independent phosphodiesterase. J. Med. Chem., 1991, 34(2), 624-628.
[http://dx.doi.org/10.1021/jm00106a024] [PMID: 1995886]
[31]
Hao, J. Dan, Hu G.; Rao, G.-W. Research progress in quinazoline derivatives as multi-target tyrosine kinase inhibitors. Heterocycl. Commun., 2018, 24, 1-10.
[http://dx.doi.org/10.1515/hc-2017-0066]
[32]
Hengel, S.R.; Spies, M.A.; Spies, M. Small-molecule inhibitors targeting DNA repair and DNA repair deficiency in research and cancer therapy. Cell Chem. Biol., 2017, 24(9), 1101-1119.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.027] [PMID: 28938088]
[33]
Dempcy, J.; Searle, M.S.; Maynard, A.J.; Williams, H.E. Design of 2-ethenyl and 2-(2′-haloethyl) substituted quinazolinones (3) as anticancer agents. Org. Biomol. Chem., 1992, 7, 60-63.
[34]
Ma, Z.Z.; Hano, Y.; Nomura, T.; Chen, Y.J. Two new pyrroloquinazolinoquinoline alkaloids from Peganum nigellastrum. Heterocycles, 1997, 46, 54-546.
[35]
Ma, Z.Z.; Hano, Y.; Nomura, T.; Chen, Y.J. Two new quinazoline-quinoline alkaloids from Peganum nigellastrum. Heterocycles, 1999, 51, 1883-1889.
[http://dx.doi.org/10.3987/COM-99-8595]
[36]
Ma, Z.; Hano, Y.; Nomura, T.; Chen, Y. Novel quinazoline-quinoline alkaloids with cytotoxic and DNA topoisomerase II inhibitory activities. Bioorg. Med. Chem. Lett., 2004, 14(5), 1193-1196.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.048] [PMID: 14980663]
[37]
Kinoshita, T.; Nakanishi, I.; Warizaya, M.; Iwashita, A.; Kido, Y.; Hattori, K.; Fujii, T. Inhibitor-induced structural change of the active site of human poly(ADP-ribose) polymerase. FEBS Lett., 2004, 556(1-3), 43-46.
[http://dx.doi.org/10.1016/S0014-5793(03)01362-0] [PMID: 14706823]
[38]
Orvieto, F.; Branca, D.; Giomini, C.; Jones, P.; Koch, U.; Ontoria, J.M.; Palumbi, M.C.; Rowley, M.; Toniatti, C.; Muraglia, E. Identification of substituted pyrazolo[1,5-a]quinazolin-5(4H)-one as potent Poly(ADP-Ribose)Polymerase-1 (PARP-1) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(15), 4196-4200.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.113] [PMID: 19541484]
[39]
Dante, R.; Domenico, T.; Biagina, M.; Christina, G.; Veronique, M.; Valerie, P.; Frederic, A.; Yanqi, C.; Donatella, L.; Sandro, C.; Salvatore, Di M.; Ettore, N.; Michael, S.; Cindy, G.; Celine, B.; Marc, D.; Xiaodong, C.; Paola, B.A.; Antonello, M. Properly substituted analogues of BIX-01294 lose inhibition of G9a histone methyltransferase and gain selective anti-DNA methyltransferase 3A activity. PLoS One, 2014, 9, e96941.
[40]
Garofalo, A.; Goossens, L.; Baldeyrou, B.; Lemoine, A.; Ravez, S.; Six, P.; David-Cordonnier, M.H.; Bonte, J.P.; Depreux, P.; Lansiaux, A.; Goossens, J.F. Design, synthesis, and DNA-binding of N-alkyl(anilino)quinazoline derivatives. J. Med. Chem., 2010, 53(22), 8089-8103.
[http://dx.doi.org/10.1021/jm1009605] [PMID: 21033670]
[41]
Margolis, R.L.; Wilson, L. Microtubule treadmilling: What goes around comes around. BioEssays, 1998, 20(10), 830-836.
[http://dx.doi.org/10.1002/(SICI)1521-1878(199810)20:10<830::AID-BIES8>3.0.CO;2-N] [PMID: 9819570]
[42]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[43]
Hong, F.D.; Chen, J.; Donovan, S.; Schneider, N.; Nisen, P.D. Taxol, vincristine or nocodazole induces lethality in G1-checkpoint-defective human astrocytoma U373MG cells by triggering hyperploid progression. Carcinogenesis, 1999, 20(7), 1161-1168.
[http://dx.doi.org/10.1093/carcin/20.7.1161] [PMID: 10383885]
[44]
Karbowski, M.; Spodnik, J.H.; Teranishi, M.; Wozniak, M.; Nishizawa, Y.; Usukura, J.; Wakabayashi, T. Opposite effects of microtubule-stabilizing and microtubule-destabilizing drugs on biogenesis of mitochondria in mammalian cells. J. Cell Sci., 2001, 114(Pt 2), 281-291.
[PMID: 11148130]
[45]
Raffa, D.; Edler, M.C.; Daidone, G.; Maggio, B.; Merikech, M.; Plescia, S.; Schillaci, D.; Bai, R.; Hamel, E. Synthesis, cytotoxicity, and inhibitory effects on tubulin polymerization of a new 3-heterocyclo substituted 2-styrylquinazolinones. Eur. J. Med. Chem., 2004, 39(4), 299-304.
[http://dx.doi.org/10.1016/j.ejmech.2003.12.009] [PMID: 15072839]
[46]
Tian, W.; Qin, L.; Song, Q.; He, L.; Ai, M.; Jin, Y.; Zhou, Z.; You, S.; Long, Y.; Yu, Q. A novel synthetic analog of 5, 8-disubstituted quinazolines blocks mitosis and induces apoptosis of tumor cells by inhibiting microtubule polymerization. PLoS One, 2010, 5(5), e10499.
[http://dx.doi.org/10.1371/journal.pone.0010499] [PMID: 20463925]
[47]
Pan, Y.; Wang, Y.; Bryant, S.H. Pharmacophore and 3D-QSAR characterization of 6-arylquinazolin-4-amines as Cdc2-like kinase 4 (Clk4) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) inhibitors. J. Chem. Inf. Model., 2013, 53(4), 938-947.
[http://dx.doi.org/10.1021/ci300625c] [PMID: 23496085]
[48]
Mott, B.T.; Tanega, C.; Shen, M.; Maloney, D.J.; Shinn, P.; Leister, W.; Marugan, J.J.; Inglese, J.; Austin, C.P.; Misteli, T.; Auld, D.S.; Thomas, C.J. Evaluation of substituted 6-arylquinazolin-4-amines as potent and selective inhibitors of cdc2-like kinases (Clk). Bioorg. Med. Chem. Lett., 2009, 19(23), 6700-6705.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.121] [PMID: 19837585]
[49]
Conconi, M.T.; Marzaro, G.; Urbani, L.; Zanusso, I.; Di Liddo, R.; Castagliuolo, I.; Brun, P.; Tonus, F.; Ferrarese, A.; Guiotto, A.; Chilin, A. Quinazoline-based multi-tyrosine kinase inhibitors: synthesis, modeling, antitumor and antiangiogenic properties. Eur. J. Med. Chem., 2013, 67, 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.057] [PMID: 23900004]
[50]
Marzaro, G.; Coluccia, A.; Ferrarese, A.; Brun, P.; Castagliuolo, I.; Conconi, M.T.; La Regina, G.; Bai, R.; Silvestri, R.; Hamel, E.; Chilin, A. Discovery of biarylaminoquinazolines as novel tubulin polymerization inhibitors. J. Med. Chem., 2014, 57(11), 4598-4605.
[http://dx.doi.org/10.1021/jm500034j] [PMID: 24801610]
[51]
Smaill, J.B.; Gonzales, A.J.; Spicer, J.A.; Lee, H.; Reed, J.E.; Sexton, K.; Althaus, I.W.; Zhu, T.; Black, S.L.; Blaser, A.; Denny, W.A.; Ellis, P.A.; Fakhoury, S.; Harvey, P.J.; Hook, K.; McCarthy, F.O.J.; Palmer, B.D.; Rivault, F.; Schlosser, K.; Ellis, T.; Thompson, A.M.; Trachet, E.; Winters, R.T.; Tecle, H.; Bridges, A. Tyrosine kinase inhibitors. 20. Optimization of substituted quinazoline and pyrido[3,4-d]pyrimidine derivatives as orally active, irreversible inhibitors of the epidermal growth factor receptor family. J. Med. Chem., 2016, 59(17), 8103-8124.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00883] [PMID: 27491023]
[52]
Zayed, M.F.; Rateb, H.S.; Ahmed, S.; Khaled, O.A.; Ibrahim, S.R.M. Quinazolinone-amino acid hybrids as dual inhibitors of EGFR kinase and tubulin polymerization. Molecules, 2018, 23(7), 1699-1716.
[http://dx.doi.org/10.3390/molecules23071699] [PMID: 30002297]
[53]
Yan, W.; Yang, T.; Yang, J.; Wang, T.; Yu, Y.; Wang, Y.; Chen, Q.; Bai, P.; Li, D.; Ye, H.; Qiu, Q.; Zhou, Y.; Hu, Y.; Yang, S.; Wei, Y.; Li, W.; Chen, L. SKLB060 reversibly binds to colchicine site of tubulin and possesses efficacy in multidrug-resistant cell lines. Cell. Physiol. Biochem., 2018, 47(2), 489-504.
[http://dx.doi.org/10.1159/000489983] [PMID: 29794416]
[54]
Tazarki, H.; Zeinyeh, W.; Esvan, Y.J.; Knapp, S.; Chatterjee, D.; Schröder, M.; Joerger, A.C.; Khiari, J.; Josselin, B.; Baratte, B.; Bach, S.; Ruchaud, S.; Anizon, F.; Giraud, F.; Moreau, P. New pyrido[3,4-g]quinazoline derivatives as CLK1 and DYRK1A inhibitors: synthesis, biological evaluation and binding mode analysis. Eur. J. Med. Chem., 2019, 166, 304-317.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.052] [PMID: 30731399]
[55]
Dhanasekaran, N.; Premkumar Reddy, E. Signaling by dual specificity kinases. Oncogene, 1998, 17(11 Reviews), 1447-1455.
[http://dx.doi.org/10.1038/sj.onc.1202251] [PMID: 9779990]
[56]
Besant, P.G.; Tan, E.; Attwood, P.V. Mammalian protein histidine kinases. Int. J. Biochem. Cell Biol., 2003, 35(3), 297-309.
[http://dx.doi.org/10.1016/S1357-2725(02)00257-1] [PMID: 12531242]
[57]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[58]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[http://dx.doi.org/10.1038/35052073] [PMID: 11252954]
[59]
Holbro, T.; Hynes, N.E. ErbB receptors: Directing key signaling networks throughout life. Annu. Rev. Pharmacol. Toxicol., 2004, 44, 195-217.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121440] [PMID: 14744244]
[60]
Fry, D.W.; Kraker, A.J.; McMichael, A.; Ambroso, L.A.; Nelson, J.M.; Leopold, W.R.; Connors, R.W.; Bridges, A.J. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science, 1994, 265(5175), 1093-1095.
[http://dx.doi.org/10.1126/science.8066447] [PMID: 8066447]
[61]
Rewcastle, G.W.; Denny, W.A.; Bridges, A.J.; Zhou, H.; Cody, D.R.; McMichael, A.; Fry, D.W. Tyrosine kinase inhibitors. 5. Synthesis and structure-activity relationships for 4-[(phenylmethyl) amino]- and 4-(phenylamino)quinazolines as potent adenosine 5′-triphosphate binding site inhibitors of the tyrosine kinase domain of the epidermal growth factor receptor. J. Med. Chem., 1995, 38(18), 3482-3487.
[http://dx.doi.org/10.1021/jm00018a008] [PMID: 7658435]
[62]
Barker, A.J. Quinazoline derivatives., EU Patent 0,566,226A1, 1993.
[63]
Ward, W.H.J.; Cook, P.N.; Slater, A.M.; Davies, D.H.; Holdgate, G.A.; Green, L.R. Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor. Biochem. Pharmacol., 1994, 48(4), 659-666.
[http://dx.doi.org/10.1016/0006-2952(94)90042-6] [PMID: 8080438]
[64]
Bridges, A.J.; Zhou, H.; Cody, D.R.; Rewcastle, G.W.; McMichael, A.; Showalter, H.D.H.; Fry, D.W.; Kraker, A.J.; Denny, W.A. Tyrosine kinase inhibitors. 8. An unusually steep structure-activity relationship for analogues of 4-(3-bromoanilino)-6,7-dimethoxy-quinazoline (PD 153035), a potent inhibitor of the epidermal growth factor receptor. J. Med. Chem., 1996, 39(1), 267-276.
[http://dx.doi.org/10.1021/jm9503613] [PMID: 8568816]
[65]
El-Zayat, A.A.E.; Pingree, T.F.; Mock, P.M.; Clark, G.M.; Otto, R.A.; Von Hoff, D.D. Epidermal growth factor receptor amplification in head and neck cancer. Cancer J., 1991, 4, 375-380.
[66]
Morishige, K.; Kurachi, H.; Amemiya, K.; Fujita, Y.; Yamamoto, T.; Miyake, A.; Tanizawa, O. Evidence for the involvement of transforming growth factor alpha and epidermal growth factor receptor autocrine growth mechanism in primary human ovarian cancers in vitro. Cancer Res., 1991, 51(19), 5322-5328.
[PMID: 1717146]
[67]
Jardines, L.; Weiss, M.; Fowble, B.; Greene, M. neu(c-erbB-2/HER2) and the Epidermal Growth Factor Receptor (EGFR) in breast cancer. Pathobiology, 1993, 61(5-6), 268-282.
[http://dx.doi.org/10.1159/000163805] [PMID: 7905269]
[68]
Hickey, K.; Grehan, D.; Reid, I.M.; O’Briain, S.; Walsh, T.N.; Hennessy, T.P.J. Expression of epidermal growth factor receptor and proliferating cell nuclear antigen predicts response of esophageal squamous cell carcinoma to chemoradiotherapy. Cancer, 1994, 74(6), 1693-1698.
[http://dx.doi.org/10.1002/1097-0142(19940915)74:6<1693::AID-CNCR2820740609>3.0.CO;2-#] [PMID: 7915963]
[69]
Delarue, J.C.; Terrier, P.; Terrier-Lacombe, M.J.; Mouriesse, H.; Gotteland, M.; May-Levin, F. Combined overexpression of c-erbB-2 protein and Epidermal Growth Factor Receptor (EGF-R) could be predictive of early and long-term outcome in human breast cancer: A pilot study. Bull. Cancer, 1994, 81(12), 1067-1077.
[PMID: 7742595]
[70]
Ismail, R.S.M.; Ismail, N.S.M.; Abuserii, S.; Abou El Ella, D.A. Recent advances in 4-aminoquinazoline based scaffold derivatives targeting EGFR kinases as anticancer agents. Fut. J. Pharm. Sci., 2016, 2, 9-19.
[71]
Jiang, M.; Liu, D.; Lan, S.P. Progressed in quinolines as protein tyrosine kinase inhibitors. Chem. Reagents, 2013, 35, 333-336.
[72]
Rewcastle, G.W.; Palmer, B.D.; Bridges, A.J.; Showalter, H.D.S.; Sun, L.; Nelson, J.; McMichael, A.; Kraker, A.J.; Fry, D.W.; Denny, W.A. Tyrosine kinase inhibitors. 9. Synthesis and evaluation of fused tricyclic quinazoline analogues as ATP site inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor. J. Med. Chem., 1996, 39(4), 918-928.
[http://dx.doi.org/10.1021/jm950692f] [PMID: 8632415]
[73]
Smaill, J.B.; Rewcastle, G.W.; Loo, J.A.; Greis, K.D.; Chan, O.H.; Reyner, E.L.; Lipka, E.; Showalter, H.D.H.; Vincent, P.W.; Elliott, W.L.; Denny, W.A. Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor receptor: 4-(phenylamino) quinazoline- and 4-(phenylamino)pyrido[3,2-d]pyrimidine-6-acryl-amides bearing additional solubilizing functions. J. Med. Chem., 2000, 43(7), 1380-1397.
[http://dx.doi.org/10.1021/jm990482t] [PMID: 10753475]
[74]
Tsou, H.R.; Mamuya, N.; Johnson, B.D.; Reich, M.F.; Gruber, B.C.; Ye, F.; Nilakantan, R.; Shen, R.; Discafani, C.; DeBlanc, R.; Davis, R.; Koehn, F.E.; Greenberger, L.M.; Wang, Y.F.; Wissner, A. 6-Substituted-4-(3-bromophenylamino)quinazolines as putative irreversible inhibitors of the Epidermal Growth Factor Receptor (EGFR) and Human Epidermal growth factor Receptor (HER-2) tyrosine kinases with enhanced antitumor activity. J. Med. Chem., 2001, 44(17), 2719-2734.
[http://dx.doi.org/10.1021/jm0005555] [PMID: 11495584]
[75]
Ballard, P.; Bradbury, R.H.; Harris, C.S.; Hennequin, L.F.; Hickinson, M.; Johnson, P.D.; Kettle, J.G.; Klinowska, T.; Leach, A.G.; Morgentin, R.; Pass, M.; Ogilvie, D.J.; Olivier, A.; Warin, N.; Williams, E.J. Inhibitors of epidermal growth factor receptor tyrosine kinase: Novel C-5 substituted anilinoquinazolines designed to target the ribose pocket. Bioorg. Med. Chem. Lett., 2006, 16(6), 1633-1637.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.028] [PMID: 16380259]
[76]
Petrov, K.G.; Zhang, Y.M.; Carter, M.; Cockerill, G.S.; Dickerson, S.; Gauthier, C.A.; Guo, Y.; Mook, R.A., Jr; Rusnak, D.W.; Walker, A.L.; Wood, E.R.; Lackey, K.E. Optimization and SAR for dual ErbB-1/ErbB-2 tyrosine kinase inhibition in the 6-furanylquinazoline series. Bioorg. Med. Chem. Lett., 2006, 16(17), 4686-4691.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.090] [PMID: 16777410]
[77]
Fernandes, C.; Oliveira, C.; Gano, L.; Bourkoula, A.; Pirmettis, I.; Santos, I. Radioiodination of new EGFR inhibitors as potential SPECT agents for molecular imaging of breast cancer. Bioorg. Med. Chem., 2007, 15(12), 3974-3980.
[http://dx.doi.org/10.1016/j.bmc.2007.04.008] [PMID: 17449254]
[78]
Wissner, A.; Fraser, H.L.; Ingalls, C.L.; Dushin, R.G.; Floyd, M.B.; Cheung, K.; Nittoli, T.; Ravi, M.R.; Tan, X.; Loganzo, F. Dual irreversible kinase inhibitors: Quinazoline-based inhibitors incorporating two independent reactive centers with each targeting different cysteine residues in the kinase domains of EGFR and VEGFR-2. Bioorg. Med. Chem., 2007, 15(11), 3635-3648.
[http://dx.doi.org/10.1016/j.bmc.2007.03.055] [PMID: 17416531]
[79]
Abouzid, K.; Shouman, S. Design, synthesis and in vitro antitumor activity of 4-aminoquinoline and 4-aminoquinazoline derivatives targeting EGFR tyrosine kinase. Bioorg. Med. Chem., 2008, 16(16), 7543-7551.
[http://dx.doi.org/10.1016/j.bmc.2008.07.038] [PMID: 18678492]
[80]
Al-Obaid, A.M.; Abdel-Hamide, S.G.; El-Kashef, H.A.; Abdel-Aziz, A.A.; El-Azab, A.S.; Al-Khamees, H.A.; El-Subbagh, H.I. Substituted quinazolines, part 3. Synthesis, in vitro antitumor activity and molecular modeling study of certain 2-thieno-4(3H)-quinazolinone analogs. Eur. J. Med. Chem., 2009, 44(6), 2379-2391.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.015] [PMID: 18950904]
[81]
Garofalo, A.; Goossens, L.; Lemoine, A.; Farce, A.; Arlot, Y.; Depreux, P. Quinazoline-urea, new protein kinase inhibitors in treatment of prostate cancer. J. Enzyme Inhib. Med. Chem., 2010, 25(2), 158-171.
[http://dx.doi.org/10.3109/14756360903169485] [PMID: 20222760]
[82]
Chilin, A.; Conconi, M.T.; Marzaro, G.; Guiotto, A.; Urbani, L.; Tonus, F.; Parnigotto, P. Exploring Epidermal Growth Factor Receptor (EGFR) inhibitor features: The role of fused dioxygenated rings on the quinazoline scaffold. J. Med. Chem., 2010, 53(4), 1862-1866.
[http://dx.doi.org/10.1021/jm901338g] [PMID: 20095624]
[83]
Wu, X.; Li, M.; Tang, W.; Zheng, Y.; Lian, J.; Xu, L.; Ji, M. Design, synthesis, and in vitro antitumor activity evaluation of novel 4-pyrrylamino quinazoline derivatives. Chem. Biol. Drug Des., 2011, 78(6), 932-940.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01234.x] [PMID: 21895983]
[84]
Li, H-Q.; Li, D-D.; Lu, X.; Xu, Y-Y.; Zhu, H-L. Design and synthesis of 4,6-substituted-(diaphenylamino)quinazolines as potent EGFR inhibitors with antitumor activity. Bioorg. Med. Chem., 2012, 20(1), 317-323.
[http://dx.doi.org/10.1016/j.bmc.2011.10.085] [PMID: 22112541]
[85]
Hamed, M.M.; El Ella, D.A.A.; Keeton, A.B.; Piazza, G.A.; Engel, M.; Hartmann, R.W.; Abadi, A.H. Quinazoline and tetrahydropyridothieno [2, 3-d] pyrimidine derivatives as irreversible EGFR tyrosine kinase inhibitors: Influence of the position 4 substituent. MedChemComm, 2013, 4, 1202-1207.
[http://dx.doi.org/10.1039/c3md00118k]
[86]
Noolvi, M.N.; Patel, H.M. A comparative QSAR analysis and molecular docking studies of quinazoline derivatives as tyrosine kinase (EGFR) inhibitors: A rational approach to anticancer drug design. J. Saudi Chem. Soc., 2013, 17, 361-379.
[http://dx.doi.org/10.1016/j.jscs.2011.04.017]
[87]
Barbosa, M.L.; Lima, L.M.; Tesch, R.; Sant’Anna, C.M.R.; Totzke, F.; Kubbutat, M.H.; Schächtele, C.; Laufer, S.A.; Barreiro, E.J. Novel 2-chloro-4-anilino-quinazoline derivatives as EGFR and VEGFR-2 dual inhibitors. Eur. J. Med. Chem., 2014, 71, 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.058] [PMID: 24269511]
[88]
Zhao, F.; Lin, Z.; Wang, F.; Zhao, W.; Dong, X. Four-membered heterocycles-containing 4-anilino-quinazoline derivatives as Epidermal Growth Factor Receptor (EGFR) kinase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(19), 5385-5388.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.049] [PMID: 23973168]
[89]
Zhang, Y.; Huang, Y.J.; Xiang, H.M.; Wang, P.Y.; Hu, D.Y.; Xue, W.; Song, B.A.; Yang, S. Synthesis and anticancer activities of 4-(4-substituted piperazin)-5,6,7-trialkoxy quinazoline derivatives. Eur. J. Med. Chem., 2014, 78, 23-34.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.036] [PMID: 24675177]
[90]
Cheng, W.; Zhu, S.; Ma, X.; Qiu, N.; Peng, P.; Sheng, R.; Hu, Y. Design, synthesis and biological evaluation of 6-(nitroimidazole-1H-alkyloxyl)-4-anilinoquinazolines as efficient EGFR inhibitors exerting cytotoxic effects both under normoxia and hypoxia. Eur. J. Med. Chem., 2015, 89, 826-834.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.010] [PMID: 25462282]
[91]
Chen, J.N.; Wang, X.F.; Li, T.; Wu, D.W.; Fu, X.B.; Zhang, G.J.; Shen, X.C.; Wang, H.S. Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur. J. Med. Chem., 2016, 107, 12-25.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.045] [PMID: 26560049]
[92]
Qin, X.; Lv, Y.; Liu, P.; Li, Z.; Hu, L.; Zeng, C.; Yang, L. Novel morpholin-3-one fused quinazoline derivatives as EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(6), 1571-1575.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.009] [PMID: 26879314]
[93]
Yin, S.; Tang, C.; Wang, B.; Zhang, Y.; Zhou, L.; Xue, L.; Zhang, C. Design, synthesis and biological evaluation of novel EGFR/HER2 dual inhibitors bearing a oxazolo[4,5-g]quinazolin-2(1H)-one scaffold. Eur. J. Med. Chem., 2016, 120, 26-36.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.072] [PMID: 27187856]
[94]
Zhang, Y.; Zhang, Y.; Liu, J.; Chen, L.; Zhao, L.; Li, B.; Wang, W. Synthesis and in vitro biological evaluation of novel quinazoline derivatives. Bioorg. Med. Chem. Lett., 2017, 27(7), 1584-1587.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.027] [PMID: 28238614]
[95]
Abuelizz, H.A.; Marzouk, M.; Ghabbour, H.; Al-Salahi, R. Synthesis and anticancer activity of new quinazoline derivatives. Saudi Pharm. J., 2017, 25(7), 1047-1054.
[http://dx.doi.org/10.1016/j.jsps.2017.04.022] [PMID: 29158714]
[96]
El-Azab, A.S.; Al-Dhfyan, A.; Abdel-Aziz, A.A.M.; Abou-Zeid, L.A.; Alkahtani, H.M.; Al-Obaid, A.M.; Al-Gendy, M.A. Synthesis, anticancer and apoptosis-inducing activities of quinazoline-isatin conjugates: epidermal growth factor receptor-tyrosine kinase assay and molecular docking studies. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 935-944.
[http://dx.doi.org/10.1080/14756366.2017.1344981] [PMID: 28718672]
[97]
Robba, M.; Bekhit, A.A. Synthesis and cytotoxic evaluation of 4-oxo Quinazolyl-L-glutamic acid and its analogues. Bull. Pharm. Assiut Univ., 1975, 18, 107-114.
[98]
Hennequin, L.F.; Boyle, F.T.; Wardleworth, J.M.; Marsham, P.R.; Kimbell, R.; Jackman, A.L. Quinazoline antifolates thymidylate synthase inhibitors: Lipophilic analogues with modification to the C2-methyl substituent. J. Med. Chem., 1996, 39(3), 695-704.
[http://dx.doi.org/10.1021/jm950645n] [PMID: 8576912]
[99]
Marsham, P.R.; Wardleworth, J.M.; Boyle, F.T.; Hennequin, L.F.; Kimbell, R.; Brown, M.; Jackman, A.L. Design and synthesis of potent non-polyglutamatable quinazoline antifolate thymidylate synthase inhibitors. J. Med. Chem., 1999, 42(19), 3809-3820.
[http://dx.doi.org/10.1021/jm9803727] [PMID: 10508430]
[100]
Al-Omary, F.A.M.; Abou-Zeid, L.A.; Nagi, M.N.; Habib, S.E.; Abdel-Aziz, A.A.; El-Azab, A.S.; Abdel-Hamide, S.G.; Al-Omar, M.A.; Al-Obaid, A.M.; El-Subbagh, H.I. Non-classical antifolates. Part 2: Synthesis, biological evaluation, and molecular modeling study of some new 2,6-substituted-quinazolin-4-ones. Bioorg. Med. Chem., 2010, 18(8), 2849-2863.
[http://dx.doi.org/10.1016/j.bmc.2010.03.019] [PMID: 20350811]
[101]
Al-Omary, F.A.M.; Hassan, G.S.; El-Messery, S.M.; Nagi, M.N.; Habib, S.E.; El-Subbagh, H.I. Nonclassical antifolates, part 3: Synthesis, biological evaluation and molecular modeling study of some new 2-heteroarylthio-quinazolin-4-ones. Eur. J. Med. Chem., 2013, 63, 33-45.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.061] [PMID: 23454532]
[102]
Chandrika, P.M.; Yakaiah, T.; Rao, A.R.; Narsaiah, B.; Reddy, N.C.; Sridhar, V.; Rao, J.V. Synthesis of novel 4,6-disubstituted quinazoline derivatives, their anti-inflammatory and anti-cancer activity (cytotoxic) against U937 leukemia cell lines. Eur. J. Med. Chem., 2008, 43(4), 846-852.
[http://dx.doi.org/10.1016/j.ejmech.2007.06.010] [PMID: 17689837]
[103]
el-Sherbeny, M.A.; Gineinah, M.M.; Nasr, M.N.; el-Shafeih, F.S. Synthesis and biological evaluation of some quinazoline derivatives as antitumor and antiviral agents. Arzneimittelforschung, 2003, 53(3), 206-213.
[PMID: 12705177]
[104]
Abbas, S.E.; Barsoum, F.F.; Georgey, H.H.; Mohammed, E.R. Synthesis and antitumor activity of certain 2,3,6-trisubstituted quinazolin-4(3H)-one derivatives. Bullet. Faculty Pharm., 2013, 51, 273-282.
[http://dx.doi.org/10.1016/j.bfopcu.2013.08.003]
[105]
Kim, J.Y.; Choi, H.E.; Lee, H.H.; Shin, J.S.; Shin, D.H.; Choi, J.H.; Lee, Y.S.; Lee, K.T. Resveratrol analogue (E)-8-acetoxy-2-[2-(3,4-diacetoxyphenyl)ethenyl]-quinazoline induces G2/M cell cycle arrest through the activation of ATM/ATR in human cervical carcinoma HeLa cells. Oncol. Rep., 2015, 33(5), 2639-2647.
[http://dx.doi.org/10.3892/or.2015.3871] [PMID: 25812484]
[106]
Shaik, T.B.; Malik, M.S.; Seddigid, Z.S.; Routhu, S.R.; Kamal, S. Evaluation of anticancer and anti-mitotic properties of quinazoline and quinazolino-benzothiadiazine derivatives. Anti-Cancer Agents Med. Chem., 2020, 20(5), 599-611.
[http://dx.doi.org/10.2174/1871520620666191224122204]
[107]
He, J.; Wang, X.; Zhao, X.; Liang, Y.; He, H.; Fu, L. Synthesis and antitumor activity of novel quinazoline derivatives containing thiosemicarbazide moiety. Eur. J. Med. Chem., 2012, 54, 925-930.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.003] [PMID: 22749192]
[108]
Marvania, B.; Lee, P.C.; Chaniyara, R.; Dong, H.; Suman, S.; Kakadiya, R.; Chou, T.C.; Lee, T.C.; Shah, A.; Su, T.L. Design, synthesis and antitumor evaluation of phenyl N-mustard-quinazoline conjugates. Bioorg. Med. Chem., 2011, 19(6), 1987-1998.
[http://dx.doi.org/10.1016/j.bmc.2011.01.055] [PMID: 21356592]
[109]
El-Azab, A.S.; Al-Omar, M.A.; Abdel-Aziz, A.A.; Abdel-Aziz, N.I.; el-Sayed, M.A.; Aleisa, A.M.; Sayed-Ahmed, M.M.; Abdel-Hamide, S.G. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential antitumor agents: Molecular docking study. Eur. J. Med. Chem., 2010, 45(9), 4188-4198.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.013] [PMID: 20599299]
[110]
Faraj, F.L.; Zahedifard, M.; Paydar, M.; Looi, C.Y.; Majid, N.A.; Ali, H.M.; Ahmad, N.; Gwaram, N.S.; Abdulla, M.A. Synthesis, characterization, and anticancer activity of new quinazoline derivatives against MCF-7 cells. Sci. World J., 2014, 15, Article ID 212096.
[111]
Krapf, M.K.; Gallus, J.; Namasivayam, V.; Wiese, M. 2,4,6-substituted quinazolines with extraordinary inhibitory potency toward ABCG2. J. Med. Chem., 2018, 61(17), 7952-7976.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01011] [PMID: 30075623]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy